首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

2.
The trace element zinc affects several aspects of immune function, such as the release of proinflammatory cytokines from monocytes. We investigated the role of cyclic nucleotide signaling in zinc inhibition of LPS-induced TNF-alpha and IL-1beta release from primary human monocytes and the monocytic cell line Mono Mac1. Zinc reversibly inhibited enzyme activity of phosphodiesterase-1 (PDE-1), PDE-3, and PDE-4 in cellular lysate. It additionally reduced mRNA expression of PDE-1C, PDE-4A, and PDE-4B in intact cells. Although these PDE can also hydrolyze cAMP, only the cellular level of cGMP was increased after incubation with zinc, whereas cAMP was found to be even slightly reduced due to inhibition of its synthesis. To investigate whether an increase in cGMP alone is sufficient to inhibit cytokine release, the cGMP analogues 8-bromo-cGMP and dibutyryl cGMP as well as the NO donor S-nitrosocysteine were used. All three treatments inhibited TNF-alpha and IL-1beta release after stimulation with LPS. Inhibition of soluble guanylate cyclase-mediated cGMP synthesis with LY83583 reversed the inhibitory effect of zinc on LPS-induced cytokine release. In conclusion, inhibition of PDE by zinc abrogates the LPS-induced release of TNF-alpha and IL-1beta by increasing intracellular cGMP levels.  相似文献   

3.
CCK-8对内毒素休克大鼠肺脏细胞因子的抑制效应   总被引:8,自引:1,他引:7  
Meng AH  Ling YL  Zhao XY  Zhang JL  Wang QH 《生理学报》2002,54(2):99-102
观察八肽胆囊收缩素(cholecystokinin-octapeptide,CCK-8)改善脂多糖(lipopolysaccharide,LPS)引起的大鼠内毒素性休克(endotoxic shock,ES)过程中血清及肺脏细胞因子的变化,探讨p38比裂素活化蛋白激酶(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入LPS(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入 LPS(8mg/kg i.v.)复制的SD大鼠ES模型、LPS注入前10min尾静脉注入CCK-8(40ug/kg i.v.)、单独注入CCK-8(40Uug/kg i.v.)或生理盐水(对照)的四组大鼠平均动脉血压(MAP)的改变,应用ELISA试剂盒检测血清和肺脏中炎性细胞因子(TNF-a、IL-1β和IL-6)的变化。用Western blot检测肺脏p38 MAPK的表达。结果显示:CCK-8可改善LPS引起的大鼠MAP的下降。与对照组相比,LPS可显著增加血清和肺脏TNF-a、IL-1β和IL-6含量;CCK-8可显著抑制LPS诱导的血清和肺脏TNF-a、IL-1β和IL-6的增加。CCK-8可增加ES大鼠肺脏磷酸化p38 MAPK的表达。结果提示CCK-8可改善ES大鼠MAP的降低,并对肺脏促炎性细胞因子过量产生有抑制作用,p38MAPK可能参与了其信号转导机制。  相似文献   

4.
5.
The bacterial product LPS is a critical stimulus for the host immune system in the response against the corresponding bacterial infection. LPS provides an activation stimulus for macrophages and a maturation signal for dendritic cells to set up innate and adaptive immune responses, respectively. The signaling cascade of myeloid differentiation factor 88-->IL-1R-associated kinase (IRAK)-->TNFR-associated factor 6 has been implicated in mediating LPS signaling. In this report, we studied the function of IRAK-4 in various LPS-induced signals. We found that IRAK-4-deficient cells were severely impaired in producing some IFN-regulated genes as well as inflammatory cytokines in response to LPS. Among the critical downstream signaling pathways induced by LPS, NF-kappaB activation but not IFN regulatory factor 3 or STAT1 activation was defective in cells lacking IRAK-4. IRAK-4 was also required for the proper maturation of dendritic cells by LPS stimulation, particularly in terms of cytokine production and the ability to stimulate Th cell differentiation. Our results demonstrate that IRAK-4 is critical for the LPS-induced activations of APCs.  相似文献   

6.
7.
Bosshart H  Heinzelmann M 《FEBS letters》2003,553(1-2):135-140
Inflammatory responses of human peripheral blood monocytes to the Gram-negative endotoxin lipopolysaccharide (LPS) are enhanced by structurally diverse substances, such as anionic polysaccharides or cationic polypeptides. Only a few substances are known to effectively blunt LPS-induced monocyte activation. We now show that synthetic poly-L-histidine (Hn) binds to LPS and abrogates the release of the proinflammatory cytokine interleukin-8 (IL-8) in LPS-stimulated human whole blood. LPS-induced stimulation of monocytes was strictly pH-dependent with only minor amounts of IL-8 secreted in acidic blood. Maximum levels of IL-8 secretion occurred at a strongly basic pH. Hn inhibition of the release of IL-8 from LPS-stimulated monocytes was observed under acidic, neutral and physiological conditions. With increasing alkalosis, the effectiveness of Hn was gradually lost, suggesting that protonated, but not deprotonated, Hn was effective in inhibiting LPS-induced monocyte responses. Histidine-rich protein 2 from the malaria parasite, Plasmodium falciparum, inhibited the ability of LPS to evoke an inflammatory response in CD14-transfected THP-1 cells. Further, a short synthetic peptide derived from human histidine- and proline-rich glycoprotein also exhibited LPS-inhibitory effects in CD14 transfectants. Taken together, these observations demonstrate the capacity of histidine-rich peptides, irrespective of their origin, to neutralize LPS-induced proinflammatory host responses.  相似文献   

8.
Recognition of lipopolysaccharide (LPS), the endotoxin of gram-negative bacteria, by microglia occurs through its binding to specific receptors, cluster of differentiation 14 and toll-like receptor-4. LPS binding to these receptors triggers the synthesis of proinflammatory cytokines that coordinate the brain innate immune response to protect the CNS of the infection. Docosahexaenoic acid (DHA), a n -3 polyunsaturated fatty acid highly incorporated in the brain, is a potent immunomodulator. In this study, we investigated whether DHA modulates LPS receptor localization and, as a consequence, LPS-induced signaling pathway and proinflammatory cytokine production. We demonstrated that DHA, when added exogenously, is specifically enriched in membrane phospholipids, but not in raft lipids of microglial cells. DHA incorporation in membrane impaired surface presentation of LPS receptors cluster of differentiation 14 and toll-like receptor-4, but not their membrane subdomain localization. LPS-induced nuclear factor kappa B activation was inhibited by DHA, hence, LPS-induced proinflammatory cytokine synthesis of interleukin-1β and tumor necrosis factor α was strongly attenuated. We suggest that DHA is highly anti-inflammatory by targeting LPS receptor surface location, therefore reducing LPS action on microglia. This effect represents a new insight by which DHA modulates in the brain the expression of proinflammatory cytokines in response to bacterial product.  相似文献   

9.
Bacterial lipopolysaccharide (LPS) is a powerful activator of the innate immune system. Exposure to LPS induces an inflammatory reaction in the lung mediated primarily by human blood monocytes and alveolar macrophages, which release an array of inflammatory chemokines and cytokines including IL-8, TNF-alpha, IL-1beta, and IL-6. The signaling mechanisms utilized by LPS to stimulate the release of cytokines and chemokines are still incompletely understood. Pretreatment with the protein tyrosine kinase-specific inhibitors genistein and herbimycin A effectively blocked LPS-induced NF-kappaB activation as well as IL-8 gene expression in human peripheral blood monocytes. However, when genistein was added 2 min after the addition of LPS, no inhibition was observed. Utilizing a coimmunoprecipitation assay, we further showed that LPS-stimulated tyrosine phosphorylation of Toll-like receptor 4 (TLR4) may be involved in downstream signaling events induced by LPS. These findings provide evidence that LPS-induced NF-kappaB activation and IL-8 gene expression use a signaling pathway requiring protein tyrosine kinase and that such regulation may occur through tyrosine phosphorylation of TLR4.  相似文献   

10.
Proinflammatory cytokines produced by monocytes, like Interleukin-6 (IL-6), Interleukin-8 (IL-8), and tumor necrosis factor (TNF-alpha) are known for their pivotal role in the initiation of the inflammatory response following cardiopulmonary bypass (CPB). Catecholamines like epinephrine (Epi) and norepinephrine (Nor) are often necessary to stabilize the cardiac function in the early postoperative period and may influence the cytokine expression in monocytes. In this study we investigated the effects of Epi and Nor on IL-6, IL-8 and TNF-alpha expression in human monocytes stimulated with lipopolysaccharide (LPS) in whole blood, analyzed intracellularly by flow cytometry. Kinetics of intracellular proinflammatory cytokine production and LPS ED(50) were obtained. To simulate different stages of inflammation in vivo, varying concentrations of LPS (0.2 ng/ml, 1 ng/ml and 10 ng/ml) were used for stimulation. After a stimulation with LPS TNF-alpha was the first produced cytokine, followed by IL-8 and IL-6. All cytokines peaked from 3 h to 6 h. Epi and Nor had comparable effects on the expression of IL-6, IL-8 and TNF-a in monocytes. Both inhibited IL-6 and TNF-alpha expression in a concentration dependent manner whereas IL-8 expression remained unchanged. We conclude that monocytes are targets for Epi and Nor concerning their cytokine expression. The inhibiting effects of Nor and Epi were almost identical for all cytokines. Cytokine expression was affected most at low LPS concentrations.  相似文献   

11.
Acute ethanol (EtOH) intoxication has been identified as a risk factor for infectious complications in trauma and burn victims. However, the mechanism of this immune dysfunction has yet to be elucidated. The monocyte/macrophage production of cytokines, in particular IL-8 and TNF-alpha, is critical in the regulation of the acute inflammatory response to infectious challenge. IL-8 is a potent chemoattractant and activator of neutrophils. TNF-alpha, a proinflammatory cytokine, initiates expression of endothelial cell surface adhesion molecules and neutrophil migration. p38, a member of the mitogen-activated protein kinases, plays an important role in mediating intracellular signal transduction in endotoxin-induced inflammatory responses. We examined the effects of LPS and ethanol on p38 activation and the corresponding IL-8 and TNF-alpha production in human mononuclear cells. LPS-induced IL-8 and TNF-alpha production was inhibited in a similar pattern by pretreatment with either EtOH or SB202190 (1 microM), a specific inhibitor of p38 kinase. Western blot analysis, using a dual phospho-specific p38 mitogen-activated protein kinase Ab, demonstrated that EtOH pretreatment inhibited LPS-induced p38 activation. These results demonstrate that alcohol suppresses the normal host immune inflammatory response to LPS. This dysregulation appears to be mediated in part via inhibition of p38 activation. Inhibition of IL-8 and TNF-alpha production by acute EtOH intoxication may inhibit inflammatory focused neutrophil migration and activation and may be a mechanism explaining the increased risk of trauma- and burn-related infections.  相似文献   

12.
Tobacco smoking has been associated with impaired pulmonary functions and increased incidence of infections; however, mechanisms that underlie these phenomena are poorly understood. In this study, we examined whether smokers' alveolar macrophages (AM) exhibit impaired sensing of bacterial components via TLR2 and TLR4 and determined the effect of smoking on expression levels of TLR2, TLR4 and coreceptors, and activation of signaling intermediates. Smokers' AMs exhibited reduced gene expression and secretion of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6) and chemokines (RANTES and IL-8) upon stimulation with TLR2 and TLR4 agonists, S-[2,3-bis(palmitoyloxy)-(2-RS)-propyl]-N-palmitoyl-(R)-Cys-(S)-Ser-Lys4-OH trihydrochloride (Pam(3)Cys), and LPS, whereas expression of anti-inflammatory cytokines (IL-10 and IL-1 receptor antagonist) was not affected. TLR3 activation with polyinosinic-polycytidylic acid led to comparable or even higher cytokine responses in smokers' AMs, indicating that smoking-induced suppression does not affect all TLRs. Comparable expression of cytokines and chemokines was detected in PBMC and purified monocytes obtained from smokers and nonsmokers, demonstrating that the suppressive effect of smoking is restricted to the lung. TLR2/4-inducible IL-1R-associated kinase-1 (IRAK-1) and p38 phosphorylation and NF-kappaB activation was suppressed in smokers' AMs, whereas TLR2, TLR4, CD14, MD-2 mRNA levels, and TLR4 protein expression were not altered. These data suggest that changes in expression and/or activities of signaling intermediates at the postreceptor level account for smoking-induced immunosuppression. Thus, exposure of AMs to tobacco smoke induces a hyporesponsive state similar to endotoxin tolerance as manifested by inhibited TLR2/4-induced expression of proinflammatory cytokines, chemokines, and impaired activation of IRAK-1, p38, and NF-kappaB, resulting in suppressed expression of proinflammatory mediators.  相似文献   

13.
The cyclopentenone prostaglandins (cyPGs) prostaglandin A1 (PGA1) and 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) have been reported to exhibit antiinflammatory activity in activated monocytes/macrophages. However, the effects of these two cyPGs on the expression of cytokine genes may differ. In this study, we investigated the mechanism of action of PGA1 in lipopolysaccharide (LPS)-induced expression of interleukin (IL)-10 mRNA in mouse peritoneal macrophages. 15d-PGJ2 inhibited expression of LPSinduced IL-10, whereas PGA1 increased LPS-induced IL-10 expression. This synergistic effect of PGA1 on LPS-induced IL-10 expression reached a maximum as early as 2 h after simultaneous PGA1 and LPS treatment (PGA1/LPS), and did not require new protein synthesis. The synergistic effect of PGA1 was inhibited by GW9662, a specific peroxisome proliferator-activated receptor (PPAR) antagonist, and Bay-11-7082, a NF-kappaB inhibitor. The extracellular signalregulated kinases (ERK) inhibitor PD98059 increased the expression of PGA1/LPS-induced IL-10 mRNA, rather than inhibiting the IL-10 expression. Moreover, PGA1 inhibited LPS-induced ERK phosphorylation. The synergistic effect of PGA1 on LPS-induced IL-10 mRNA and protein production was inhibited by p38 inhibitor PD169316, and PGA1 increased LPS-induced p38 phosphorylation. In the case of stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK), the SAPK/JNK inhibitor SP600125 did not inhibit IL-10 mRNA synthesis but inhibited the production of IL-10 protein remarkably. These results suggest that the synergistic effect of PGA1 on LPS-induced IL-10 expression is NF-kappaB-dependent and mediated by mitogen-activated protein (MAP) kinases, p38, and SAPK/ JNK signaling pathways, and also associated with the PPARgamma pathway. Our data may provide more insight into the diverse mechanisms of PGA1 effects on the expression of cytokine genes.  相似文献   

14.
Regulation of cytokine and chemokine expression in microglia may have implications for CNS inflammatory disorders. In this study we examined the role of the cyclopentenone PG 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) in microglial inflammatory activation in primary cultures of human fetal microglia. 15d-PGJ(2) potently inhibited the expression of microglial cytokines (IL-1, TNF-alpha, and IL-6). We found that 15d-PGJ(2) had differential effects on the expression of two alpha-chemokines; whereas the Glu-Lys-Arg (ELR)(-) chemokine IFN-inducible protein-10/CXCL10 was inhibited, the ELR(+) chemokine IL-8/CXCL8 was not inhibited. These findings were shown in primary human microglia and the human monocytic cells line THP-1 cells, using diverse cell stimuli such as bacterial endotoxin, proinflammatory cytokines (IL-1 and TNF-alpha), IFN-beta, and HIV-1. Furthermore, IL-8/CXCL8 expression was induced by 15d-PGJ(2) alone or in combination with TNF-alpha or HIV-1. Combined results from EMSA, Western blot analysis, and immunocytochemistry showed that 15d-PGJ(2) inhibited NF-kappaB, Stat1, and p38 MAPK activation in microglia. Adenoviral transduction of super-repressor IkappaBalpha, dominant negative MKK6, and dominant negative Ras demonstrated that NF-kappaB and p38 MAPK were involved in LPS-induced IFN-inducible protein 10/CXCL10 production. Interestingly, although LPS-induced IL-8/CXCL8 was dependent on NF-kappaB, the baseline or 15d-PGJ(2)-mediated IL-8/CXCL8 production was NF-kappaB independent. Our results demonstrate that 15d-PGJ(2) has opposing effects on the expression of two alpha-chemokines. These data may have implications for CNS inflammatory diseases.  相似文献   

15.
16.
17.
Qi J  Qiao Y  Wang P  Li S  Zhao W  Gao C 《FEBS letters》2012,586(8):1201-1207
Ligation of TLR4 with LPS in macrophages leads to the production of proinflammatory cytokines, which are central to eliminate viral and bacterial infection. However, uncontrolled TLR4 activation may contribute to pathogenesis of inflammatory diseases such as septic shock. In this study, we found microRNA-210 was induced in murine macrophages by LPS. Transfection of miR-210 mimics significantly inhibited LPS-induced production of inflammatory cytokines. In contrast, transfection of anti-miR-210 inhibitors increased LPS-induced expression of proinflammatory cytokines. Furthermore, we demonstrated that miR-210 targets NF-κB1. Therefore, our data identify miR-210 as a very important feedback negative regulator for LPS-induced production of proinflammatory cytokines.  相似文献   

18.
19.
CD14 is a receptor for cell wall components of Gram-negative and Gram-positive bacteria that has been implicated in the initiation of the inflammatory response to sepsis. To determine the role of CD14 in LPS-induced effects in humans, 16 healthy subjects received an i.v. injection of LPS (4 ng/kg) preceded (-2 h) by i.v. IC14, a recombinant chimeric mAb against human CD14, at a dose of 1 mg/kg over 1 h, or placebo. In subjects receiving IC14, saturation of CD14 on circulating monocytes and granulocytes was >90% at the time of LPS injection. IC14 attenuated LPS-induced clinical symptoms and strongly inhibited LPS-induced proinflammatory cytokine release, while only delaying the release of the anti-inflammatory cytokines soluble TNF receptor type I and IL-1 receptor antagonist. IC14 also inhibited leukocyte activation, but more modestly reduced endothelial cell activation and the acute phase protein response. The capacity of circulating monocytes and granulocytes to phagocytose Escherichia coli was only marginally reduced after infusion of IC14. These data provide the first proof of principle that blockade of CD14 is associated with reduced LPS responsiveness in humans in vivo.  相似文献   

20.
Lipopolysaccharide (LPS) exerts a myriad of effects in rat hippocampus; it increases the concentration of the proinflammatory cytokine, interleukin-1beta (IL-1beta), and signalling via the IL-1 type I receptor (IL-1RI) resulting in phosphorylation of the stress-activated protein kinase, c-jun-N-terminal kinase (JNK) and impairment in long-term potentiation (LTP). This study was designed to establish whether activation of JNK is a pivotal event in mediating the effects of LPS in hippocampus and therefore LPS-treated rats were injected intracerebroventricularly with saline, the JNK inhibitor D-JNKI1, or with the anti-inflammatory cytokine IL-4, which antagonizes the effects of IL-1beta upstream of JNK activation. We report that IL-4 blocked the LPS-induced increase in IL-1RI expression and associated increases in phosphorylation of JNK and c-jun, whereas D-JNKI1 inhibited the LPS-induced phosphorylation of c-jun. Both IL-4 and D-JNKI1 inhibited the increase in caspase-3 staining which was associated with LPS treatment, and both abrogated the LPS-induced inhibition of LTP in perforant path-granule cell synapses. The data presented are consistent with the proposal that JNK activation, probably as a result of increased IL-1RI activation, is a critical step in mediating the detrimental effects of LPS in hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号