首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-eight spontaneous auxotrophic aroP mutants with deletions in the azi--nadC--aroP--aceE--aceF--lpd region of the Escherichia coli K12 chromosome were characterized genetically with respect to various azi, nadC, ace and lpd markers by P1-mediated transduction. One mutant (Kdelta18; aroP--lpddelta) had a deletion which extended through the aceE and aceF genes to end within the lpd gene. The polarity of the ace operon (aceE to aceF) was confirmed. It was concluded that 10 out of 15 deletions generating a strict requirement for acetate terminated in the aceE gene. Of the ten, three mutants (Kdelta22, Cdelta41 and Cdelta41) synthesized detectable dihydrolipoamide acetyltransferase (the aceF gene product) and seven were assumed to possess deletions generating polar effects on aceF gene expression. Five deletions appeared to extend into the aceF gene. A further five deletions, which limited the expression of the ace operon without generating an Ace- phenotype or a complete Ace- phenotype, ended closest to the aroP-proximal aceE markers. The opposite ends of all these deletions appeared to terminate before (10), within (2) or extend beyond (9) the nadC gene. There was no obvious correlation between the deletion end-points and the corresponding lipoamide dehydrogenase activities, which ranged from 30 to 95% of parental levels in different deletion strains. The remaining seven deletions simply extended between the aroP and nadC genes (nad--aroPdelta) without affecting expression of the ace operon. Regulation of the synthesis of the pyruvate and alpha-ketoglutarate dehydrogenase complexes was investigated in some of the parental and deletion strains under different physiological conditions including thiamin-deprivation. The results indicate that the syntheses of the two dehydrogenase complexes are independently regulated. Expression of the lpd gene appears to be coupled to complex synthesis but can be dissociated under some conditions. Mechanisms for regulating lpd gene expression are discussed and an autogenous mechanism involving uncomplexed lipoamide dehydrogenase functioning as a negatively acting repressor at the operator site of an independent lpd gene is proposed as the simplest mechanism which is consistent with all available information.  相似文献   

2.
A sample of colonies from the Clarke-Carbon ColE1-Escherichia coli DNA plasmid gene bank was screened by conjugation for complementation of the lipoamide dehydrogenase lesion of a deletion strain lacking all components of the pyruvate dehydrogenase complex, delta (aroP aceE aceF lpd). Two ColE1-lpd+ hybrid plasmids were identified: pGS2 (ColE1-ace lpd+; 24 kb) and pGS5 (ColE1-lpd+; 14 kb). Enzymological studies confirmed that pGS2 expressed all the activities of the pyruvate dehydrogenase complex, whereas pGS5 expressed the lipoamide dehydrogenase and acetyltransferase activities (the latter from a ColE1 promoter). These and other plasmids were used to construct a 47-site (15 enzymes) restriction map for a 24.2 kb segment of bacterial DNA in the nadC-lpd region. A further 13 sites (six enzymes) were defined in a 5.4 kb sub-segment containing the lpd gene. lambda phage derivatives containing specific fragments were constructed and used in transduction studies which located the ace and lpd genes in a 7.78 kb sub-segment flanked by AccI and NruI sites.  相似文献   

3.
I purified a new dihydrolipoamide dehydrogenase from a lpd mutant of Escherichia coli deficient in the lipoamide dehydrogenase (EC 1.6.4.3) common to the pyruvate dehydrogenase (EC 1.2.4.1) and 2-oxoglutarate dehydrogenase complexes. The occurrence of the new lipoamide dehydrogenase in lpd mutants, including a lpd deletion mutant and the immunological properties of the enzyme, showed that it is different from the lpd gene product. The new dihydrolipoamide dehydrogenase had a molecular weight of 46,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was expressed in low amounts. It catalyzed the NAD+-dependent reduction of dihydrolipoamide with a maximal activity of 20 mumol/min per mg of protein and exhibited a hyperbolic dependence of catalytic activity on the concentration of both dihydrolipoamide and NAD+. The possible implication of the new dihydrolipoamide in the function of 2-oxo acid dehydrogenase complexes is discussed, as is its relation to binding protein-dependent transport.  相似文献   

4.
Mycobacterium tuberculosis (Mtb) persists for prolonged periods in macrophages, where it must adapt to metabolic limitations and oxidative/nitrosative stress. However, little is known about Mtb's intermediary metabolism or antioxidant defences. We recently identified a peroxynitrite reductase-peroxidase complex in Mtb that included products of the genes sucB and lpd, which are annotated to encode the dihydrolipoamide succinyltransferase (E2) and lipoamide dehydrogenase (E3) components of alpha-ketoglutarate dehydrogenase (KDH). However, we could detect no KDH activity in Mtb lysates, nor could we reconstitute KDH by combining the recombinant proteins SucA (annotated as the E1 component of KDH), SucB and Lpd. We therefore renamed the sucB product dihydrolipoamide acyltransferase (DlaT). Mtb lysates contained pyruvate dehydrogenase (PDH) activity, which was lost when the dlaT gene (formerly, sucB) was disrupted. Purification of PDH from Mtb yielded AceE, annotated as an E1 component of PDH, along with DlaT and Lpd. Moreover, anti-DlaT antibody coimmunoprecipitated AceE. Finally, recombinant AceE, DlaT and Lpd, although encoded by genes that are widely separated on the chromosome, reconstituted PDH in vitro with Km values typical of bacterial PDH complexes. In sum, Mtb appears to lack KDH. Instead, DlaT and Lpd join with AceE to constitute PDH.  相似文献   

5.
6.
The lpd-encoded lipoamide dehydrogenase, common to the pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes, also functions as the lipoamide dehydrogenase (L protein) in the Escherichia coli glycine cleavage (GCV) enzyme complex. Inducible GCV enzyme activity was not detected in an lpd deletion mutant; lpd+ transductants had normal levels of inducible GCV enzyme activity. A serA lpd double mutant was unable to utilize glycine as a serine source and lacked detectable GCV enzyme activity, the phenotype of a serA gcv mutant. Transformation of the double mutant with a plasmid encoding a functional lpd gene restored the ability of the mutant to use glycine as a serine source and restored inducible GCV enzyme activity to normal levels. The presence of acetate and succinate in the growth medium of a strain wild type for lpd and gcv resulted in a 50% reduction in inducible GCV enzyme activity. Enzyme levels were restored to normal under these growth conditions when the strain was transformed with a plasmid encoding a functional lpd gene.  相似文献   

7.
The lpd gene encoding lipoamide dehydrogenase (dihydrolipoamide dehydrogenase; EC 1.8.1.4) was isolated from a library of Pseudomonas fluorescens DNA cloned in Escherichia coli TG2 by use of serum raised against lipoamide dehydrogenase from Azotobacter vinelandii. Large amounts (up to 15% of total cellular protein) of the P. fluorescens lipoamide dehydrogenase were produced by the E. coli clone harbouring plasmid pCJB94 with the lipoamide dehydrogenase gene. The enzyme was purified to homogeneity by a three-step procedure. The gene was subcloned from plasmid pCJB94 and the complete nucleotide sequence of the subcloned fragment (3610 bp) was determined. The derived amino acid sequence of P. fluorescens lipoamide dehydrogenase showed 84% and 42% homology when compared to the amino acid sequences of lipoamide dehydrogenase from A. vinelandii and E. coli, respectively. The lpd gene of P. fluorescens is clustered in the genome with genes for the other components of the 2-oxoglutarate dehydrogenase complex.  相似文献   

8.
We report the 2.4 A crystal structure for lipoamide dehydrogenase encoded by lpdC from Mycobacterium tuberculosis. Based on the Lpd structure and sequence alignment between bacterial and eukaryotic Lpd sequences, we generated single point mutations in Lpd and assayed the resulting proteins for their ability to catalyze lipoamide reduction/oxidation alone and in complex with other proteins that participate in pyruvate dehydrogenase and peroxidase activities. The results suggest that amino acid residues conserved in mycobacterial species but not conserved in eukaryotic Lpd family members modulate either or both activities and include Arg-93, His-98, Lys-103, and His-386. In addition, Arg-93 and His-386 are involved in forming both "open" and "closed" active site conformations, suggesting that these residues play a role in dynamically regulating Lpd function. Taken together, these data suggest protein surfaces that should be considered while developing strategies for inhibiting this enzyme.  相似文献   

9.
10.
11.
The enzymatic defects in a number of Bacillus subtilis mutants of the alpha-ketoglutarate dehydrogenase complex lacking activity have been investigated. Mutants in the citK locus, as well as a series of deletions of unknown length covering the citK locus, are deficient in E1 of the complex, alpha-ketoglutarate dehydrogenase, but have normal activities of E2, dehydrolipoyl transsuccinylase, and E3, lipoamide dehydrogenase. The citK mutants and the citL22 mutant show in vitro complementation of alpha-ketoglutarate dehydrogenase complex activity. The citL22 mutant is severely deficient in lipoamide dehydrogenase activity, and, as a result, lacks activity for both the alpha-ketoglutarate and the pyruvate dehydrogenase complexes. Thus, the E3 components of both complexes are identical. The citL22 mutation maps between ura and metC on the chromosome.  相似文献   

12.
Pseudomonads are the only organisms so far known to produce two lipoamide dehydrogenases (LPDs), LPD-Val and LPD-Glc. LPD-Val is the specific E3 component of branched-chain oxoacid dehydrogenase, and LPD-Glc is the E3 component of 2-ketoglutarate and possibly pyruvate dehydrogenases and the L-factor of the glycine oxidation system. Three mutants of Pseudomonas putida, JS348, JS350, and JS351, affected in lpdG, the gene encoding LPD-Glc, have been isolated; all lacked 2-ketoglutarate dehydrogenase, but two, JS348 and JS351, had normal pyruvate dehydrogenase activity. The pyruvate and 2-ketoglutarate dehydrogenases of the wild-type strain of P. putida were both inhibited by anti-LPD-Glc, but the pyruvate dehydrogenase of the lpdG mutants was not inhibited, suggesting that the mutant pyruvate dehydrogenase E3 component was different from that of the wild type. The lipoamide dehydrogenase present in one of the lpdG mutants, JS348, was isolated and characterized. This lipoamide dehydrogenase, provisionally named LPD-3, differed in molecular weight, amino acid composition, and N-terminal amino acid sequence from LPD-Glc and LPD-Val. LPD-3 was clearly a lipoamide dehydrogenase as opposed to a mercuric reductase or glutathione reductase. LPD-3 was about 60% as effective as LPD-Glc in restoring 2-ketoglutarate dehydrogenase activity and completely restored pyruvate dehydrogenase activity in JS350. These results suggest that LPD-3 is a lipoamide dehydrogenase associated with an unknown multienzyme complex which can replace LPD-Glc as the E3 component of pyruvate and 2-ketoglutarate dehydrogenases in lpdG mutants.  相似文献   

13.
Summary In Saccharomyces cerevisiae a nuclear recessive mutation, lpd1, which simultaneously abolishes the activities of lipoamide dehydrogenase, 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase has been identified. Strains carrying this mutation can grow on glucose or poorly on ethanol, but are unable to grow on media with glycerol or acetate as carbon source. The mutation does not prevent the formation of other tricarboxylic acid cycle enzymes such as fumarase, NAD+-linked isocitrate dehydrogenase or succinate-cytochrome c oxidoreductase, but these are produced at about 50%–70% of the wild-type levels. The mutation probably affects the structural gene for lipoamide dehydrogenase since the amount of this enzyme in the cell is subject to a gene dosage effect; heterozygous lpd1 diploids produce half the amount of a homozygous wild-type strain. Moreover, a yeast sequence complementing this mutation when present in the cell on a multicopy plasmid leads to marked overproduction of lipoamide dehydrogenase. Homozygous lpd1 diploids were unable to sporulate indicating that some lipoamide dehydrogenase activity is essential for sporulation to occur on acetate.  相似文献   

14.
In the pyruvate dehydrogenase complex (PDHC) of Zymomonas mobilis the beta subunit of the pyruvate dehydrogenase (E1p) as well as the acetyltransferase (E2p) contain an N-terminal lipoyl domain. Both lipoyl domains were acetylated in vitro using 2-14C-pyruvate as a substrate, demonstrating that both lipoyl domains can accept acetyl groups from the E1 component. As previously shown the structural genes (pdhA alpha beta, pdhB, lpd) encoding the pyruvate dehydrogenase complex of Z. mobilis are located in two distinct gene clusters, pdhA alpha beta and pdhB-orf2-lpd (U. Neveling et al. (1998) J. Bacteriol. 180, 1540-1548). Analysis of pdh gene expression using lacZ fusions revealed that the DNA fragments upstream of pdhA alpha, pdhB and lpd each have promoter activities. These pdh promoter activities were 7-30-fold higher in Z. mobilis than in Escherichia coli.  相似文献   

15.
The pyruvate dehydrogenase complex of Bacillus stearothermophilus was treated with Staphylococcus aureus V8 proteinase, causing cleavage of the dihydrolipoamide acetyltransferase polypeptide chain (apparent Mr 57 000), inhibition of the enzymic activity and disassembly of the complex. Fragments of the dihydrolipoamide acetyltransferase chains with apparent Mr 28 000, which contained the acetyltransferase activity, remained assembled as a particle ascribed the role of an inner core of the complex. The lipoic acid residue of each dihydrolipoamide acetyltransferase chain was found as part of a small but stable domain that, unlike free lipoamide, was able still to function as a substrate for reductive acetylation by pyruvate in the presence of intact enzyme complex or isolated pyruvate dehydrogenase (lipoamide) component. The lipoyl domain was acidic and had an apparent Mr of 6500 (by sedimentation equilibrium), 7800 (by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis) and 10 000 and 20 400 (by gel filtration in the presence and in the absence respectively of 6M-guanidinium chloride). 1H-n.m.r. spectroscopy of the dihydrolipoamide acetyltransferase inner core demonstrated that it did not contain the segments of highly mobile polypeptide chain found in the pyruvate dehydrogenase complex. 1H-n.m.r. spectroscopy of the lipoyl domain demonstrated that it had a stable and defined tertiary structure. From these and other experiments, a model of the dihydrolipoamide acetyltransferase chain is proposed in which the small, folded, lipoyl domain comprises the N-terminal region, and the large, folded, core-forming domain that contains the acetyltransferase active site comprises the C-terminal region. These two regions are separated by a third segment of the chain, which includes a substantial region of polypeptide chain that enjoys high conformational mobility and facilitates movement of the lipoyl domain between the various active sites in the enzyme complex.  相似文献   

16.
A simple procedure is described for the purification of the pyruvate dehydrogenase complex and dihydrolipoamide dehydrogenase from Bacillus subtilis. The method is rapid and applicable to small quantities of bacterial cells. The purified pyruvate dehydrogenase complex (s0(20),w = 73S) comprises multiple copies of four different types of polypeptide chain, with apparent Mr values of 59 500, 55 000, 42 500 and 36 000: these were identified as the polypeptide chains of the lipoate acetyltransferase (E2), dihydrolipoamide dehydrogenase (E3) and the two types of subunit of the pyruvate decarboxylase (E1) components respectively. Pyruvate dehydrogenase complexes were also purified from two ace (acetate-requiring) mutants of B. subtilis. That from mutant 61142 was found to be inactive, owing to an inactive E1 component, which was bound less tightly than wild-type E1 and was gradually lost from the E2E3 subcomplex during purification. Subunit-exchange experiments demonstrated that the E2E3 subcomplex retained full enzymic activity, suggesting that the lesion was limited to the E1 component. Mutant 61141R elaborated a functional pyruvate dehydrogenase complex, but this also contained a defective E1 component, the Km for pyruvate being raised from 0.4 mM to 4.3 mM. The E1 component rapidly dissociated from the E2E3 subcomplex at low temperature (0-4 degrees C), leaving an E2E3 subcomplex which by subunit-exchange experiments was judged to retain full enzymic activity. These ace mutants provide interesting opportunities to analyse defects in the self-assembly and catalytic activity of the pyruvate dehydrogenase complex.  相似文献   

17.
Mycobacterium tuberculosis (Mtb) adapts to persist in a nutritionally limited macrophage compartment. Lipoamide dehydrogenase (Lpd), the third enzyme (E3) in Mtb's pyruvate dehydrogenase complex (PDH), also serves as E1 of peroxynitrite reductase/peroxidase (PNR/P), which helps Mtb resist host-reactive nitrogen intermediates. In contrast to Mtb lacking dihydrolipoamide acyltransferase (DlaT), the E2 of PDH and PNR/P, Lpd-deficient Mtb is severely attenuated in wild-type and immunodeficient mice. This suggests that Lpd has a function that DlaT does not share. When DlaT is absent, Mtb upregulates an Lpd-dependent branched-chain keto acid dehydrogenase (BCKADH) encoded by pdhA, pdhB, pdhC, and lpdC. Without Lpd, Mtb cannot metabolize branched-chain amino acids and potentially toxic branched-chain intermediates accumulate. Mtb deficient in both DlaT and PdhC phenocopies Lpd-deficient Mtb. Thus, Mtb critically requires BCKADH along with PDH and PNR/P for pathogenesis. These findings position Lpd as a potential target for anti-infectives against Mtb.  相似文献   

18.
Under anaerobic growth conditions, an active pyruvate dehydrogenase (PDH) is expected to create a redox imbalance in wild-type Escherichia coli due to increased production of NADH (>2 NADH molecules/glucose molecule) that could lead to growth inhibition. However, the additional NADH produced by PDH can be used for conversion of acetyl coenzyme A into reduced fermentation products, like alcohols, during metabolic engineering of the bacterium. E. coli mutants that produced ethanol as the main fermentation product were recently isolated as derivatives of an ldhA pflB double mutant. In all six mutants tested, the mutation was in the lpd gene encoding dihydrolipoamide dehydrogenase (LPD), a component of PDH. Three of the LPD mutants carried an H322Y mutation (lpd102), while the other mutants carried an E354K mutation (lpd101). Genetic and physiological analysis revealed that the mutation in either allele supported anaerobic growth and homoethanol fermentation in an ldhA pflB double mutant. Enzyme kinetic studies revealed that the LPD(E354K) enzyme was significantly less sensitive to NADH inhibition than the native LPD. This reduced NADH sensitivity of the mutated LPD was translated into lower sensitivity of the appropriate PDH complex to NADH inhibition. The mutated forms of the PDH had a 10-fold-higher K(i) for NADH than the native PDH. The lower sensitivity of PDH to NADH inhibition apparently increased PDH activity in anaerobic E. coli cultures and created the new ethanologenic fermentation pathway in this bacterium. Analogous mutations in the LPD of other bacteria may also significantly influence the growth and physiology of the organisms in a similar fashion.  相似文献   

19.
20.
Abstract Nucleotide sequence analysis of a 3.3-kb genomic Eco RI fragment and of relevant subfragments of a genomic 13.2-kb Sma I fragment of Alcaligenes eutrophus , which were identified by using a dihydrolipoamide dehydrogenase-specific DNA probe, revealed the structural genes of the 2-oxoglutarate dehydrogenase complex in a 7.5-kb genomic region. The genes odhA (2850 bp), odhB (1248 bp), and odhL (1422 bp), encoding 2-oxoglutarate dehydrogenase (El), dihydrolipoamide succinyltransferase (E2), and dihydrolipoamide dehydrogenase (E3), respectively, occur co-linearly in one gene cluster downstream of a putative −35 / −10 promoter in the order odhA, odhB , and odhL . In comparison to other bacteria, the occurrence of genes for two E3 components for the pyruvate as well as for the 2-oxoglutarate dehydrogenase complexes is unique. Heterologous expression of the A. eutrophus odh genes in E. coli XL1-Blue and in the kgdA mutant Pseudomonas putida JS347 was demonstrated by the occurrence of protein bands in electropherograms, by spectrometric detection of enzyme activities, and by phenotypic complementation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号