首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The gadolinium complexes of poly-L-lysine-poly(diethylenetriamine-N,N,N',N",N"-pentaacetic acid) (Gd-PL-DTPA) and poly-L-lysine-poly(1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetr aacetic acid) (Gd-PL-DOTA) and their conjugates with human serum albumin (HSA) have been prepared and characterized. Poly-L-lysine (PL, degree of polymerization approximately 100) was N-acylated with a mixed anhydride of the chelating ligand (DTPA or DOTA). Sixty to ninety chelating groups per molecule of PL could be attached in this way. Following purification of the polychelate by size-exclusion chromatography, the gadolinium complexes were prepared by standard methods and conjugated to HSA with heterobifunctional cross-linking reagents. The molar relaxities of these macromolecular species were 2-3-fold higher than those of the corresponding monomeric metal complexes [( Gd(DTPA)] and [Gd(DOTA)]). The conjugation conditions were optimized to produce conjugates containing 60-90 metal centers per molecule of HSA (ca. one polychelate per protein).  相似文献   

2.
Peptoids belong to a class of sequence-controlled polymers comprising of N-alkylglycine. This study focuses on using tandem mass spectrometry techniques to characterize the fragmentation patterns of a set of singly and doubly protonated peptoids consisting of one basic residue placed at different positions. The singly protonated peptoids fragment by producing predominately high-abundant C-terminal ions called Y-ions and low-abundant N-terminal ions called B-ions. Computational studies suggest that the proton affinity (PA) of the C-terminal fragments is generally higher than that of the N-terminal fragments, and the PA of the former increases as the fragments are elongated. The B-ions are likely formed upon dissociating the proton-activated amide bonds via an oxazolone structure, and the Y-ions are produced subsequently by abstracting a proton from the newly formed B-ions, which is energetically favored. The doubly protonated peptoids prefer to fragment closest to either the N- or the C-terminus and produce corresponding B/Y-ion pairs. The basic residue seems to dictate the preferred fragmentation site, which may be the result of minimizing the repulsion between the two charges. Water and terminal neutral losses are a facile process accompanying the peptoid fragmentation in both charge states. The patterns appear to be highly influenced by the location of the basic residue.  相似文献   

3.
A simple, water-soluble procedure for conjugation of monoclonal antibodies to 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) has been improved by optimizing pH, buffer, and temperature conditions for the preparation of N-hydroxysulfosuccinimidyl DOTA and its conjugation to the human/murine chimeric anti-carcinoembryonic antigen antibody cT84.66. This improved method results in a 6-fold increase in conjugation efficiency, a 3-7-fold decrease in antibody cross-linking, a more homogeneous population of conjugate species, and a 5-fold decrease in the quantities of reagents needed for conjugation. The cT84.66-DOTA conjugate was labeled to high specific activity with 111In, 90Y, 88Y, 64Cu, and 67Cu, affording near-quantitative incorporation of the majority of these radiometals. This improved conjugation procedure facilitates large-scale production and radiometal labeling of cT84.66-DOTA for clinical radioimmunotherapy trials.  相似文献   

4.
Due to the high stability of its complexes with many M(2+) and M(3+)-ions, DOTA (1,4,7,10-tetraazacyclododecane-N,N',N″,N?-tetraacetic acid) is the most commonly used chelator for the derivatization and radiolabeling of bioactive molecules. Most of the currently used DOTA derivatives comprise amine-reactive functionalities, limiting their application to the derivatization of fully protected molecules or otherwise resulting in randomly distributed conjugation sites of undefined number. Click chemistry reactions are a valuable alternative to this unspecific conjugation as they proceed efficiently and chemoselectively under mild conditions allowing a site-specific derivatization of unprotected biomolecules. In this work, we describe straightforward syntheses of DOTA derivatives containing thiol, maleimide, aminooxy, aldehyde, alkyne, and azide functionalities, amenable to the currently most often used click chemistry reactions. Furthermore, the efficiency of the respective click reactions introducing DOTA into bioactive molecules was investigated. For each of the synthesized DOTA synthons, the site-specific and efficient conjugation to Tyr(3)-octreotate could be shown. Among these, the addition and oxime formation reactions proceeded fast and without side reactions, giving the products in high yields of 64-83% after purification. The copper-catalyzed triazole formation reactions produced some side-products, giving the desired products in lower, but still reasonable overall yields of 19-25%. All synthesized peptide-DOTA-conjugates were labeled with (68)Ga in high radiochemical yields of 96-99% and high specific activities providing compounds of high purity, demonstrating the applicability of all synthons for biomolecule modification and subsequent radiolabeling.  相似文献   

5.
Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His37 tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His37 provide insight into the mechanism of proton transport. The channel is closed at both His37 and Trp41 sites in the singly and doubly protonated states, but it opens at Trp41 upon further protonation. Anions access the charged His37 and by doing so stabilize the protonated states of the channel. The narrow opening at the His37 site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His37 correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val27 remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations.  相似文献   

6.
Molecular dynamics trajectories 2 μs in length have been generated for the pH-activated, tetrameric M2 proton channel of the influenza A virus in all protonation states of the pH sensor located at the His37 tetrad. All simulated structures are in very good agreement with high-resolution structures. Changes in the channel caused by progressive protonation of His37 provide insight into the mechanism of proton transport. The channel is closed at both His37 and Trp41 sites in the singly and doubly protonated states, but it opens at Trp41 upon further protonation. Anions access the charged His37 and by doing so stabilize the protonated states of the channel. The narrow opening at the His37 site, further blocked by anions, is inconsistent with the water-wire mechanism of proton transport. Instead, conformational interconversions of His37 correlated with hydrogen bonding to water molecules indicate that these residues shuttle protons in high-protonation states. Hydrogen bonds between charged and uncharged histidines are rare. The valve at Val27 remains on average quite narrow in all protonation states but fluctuates sufficiently to support water and proton transport. A proton transport mechanism in which the channel, depending on pH, opens at either the histidine or valine gate is only partially supported by the simulations.  相似文献   

7.
A concise synthesis of the bifunctional chelating agent 1,4,7,10-tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N',N',N' '-tris(acetic acid)cyclododecane (PA-DOTA) is reported. Difficulties involving the production of partially alkylated products and their removal have been addressed and obviated. After the pure nitro form of PA-DOTA was obtained, conversion to the isothiocyanato form PA-DOTA (1, conjugation to HuCC49 and HuCC49deltaCH2 monoclonal antibodies was achieved. Subsequent radiolabeling with 177Lu was performed, demonstrating a useful bifunctional chelating agent suitable for clinical radioimmunotherapy applications.  相似文献   

8.
As a first step to determine the folding pathway of a protein with an alpha/beta doubly wound topology, the 1H, 13C, and 15N backbone chemical shifts of Azotobacter vinelandii holoflavodoxin II (179 residues) have been determined using multidimensional NMR spectroscopy. Its secondary structure is shown to contain a five-stranded parallel beta-sheet (beta2-beta1-beta3-beta4-beta5) and five alpha-helices. Exchange rates for the individual amide protons of holoflavodoxin were determined using the hydrogen exchange method. The amide protons of 65 residues distributed throughout the structure of holoflavodoxin exchange slowly at pH* 6.2 [kex < 10(-5) s(-1)] and can be used as probes in future folding studies. Measured exchange rates relate to apparent local free energies for transient opening. We propose that the amide protons in the core of holoflavodoxin only exchange by global unfolding of the apo state of the protein. The results obtained are discussed with respect to their implications for flavodoxin folding and for modulation of the flavin redox potential by the apoprotein. We do not find any evidence that A. vinelandii holoflavodoxin II is divided into two subdomains based on its amide proton exchange rates, as opposed to what is found for the structurally but not sequentially homologous alpha/beta doubly wound protein Che Y.  相似文献   

9.
Salom D  Hill BR  Lear JD  DeGrado WF 《Biochemistry》2000,39(46):14160-14170
The M2 proton channel from the influenza A virus is a small protein with a single transmembrane helix that associates to form a tetramer in vivo. This protein forms proton-selective ion channels, which are the target of the drug amantadine. Here, we propose a mechanism for the pH-dependent association, and amantadine binding of M2, based on studies of a peptide representing the M2 transmembrane segment in dodecylphosphocholine micelles. Using analytical ultracentrifugation, we find that the sedimentation curves for the peptide depend on its concentration in the micellar phase. The data are well-described by a monomer-tetramer equilibrium, and the binding of amantadine shifts the monomer-tetramer equilibrium toward tetrameric species. Both tetramerization and the binding of amantadine lead to increases in the magnitude of the ellipticity at 223 nm in the circular dichroism spectrum of the peptide. The tetramerization and binding of amantadine are more favorable at elevated pH, with a pK(a) that is assigned to a His side chain, the only ionizable residue within the transmembrane helix. Our results, interpreted quantitatively in terms of a reversible monomer and tetramer protonation equilibrium model, suggest that amantadine competes with protons for binding to the deprotonated tetramer, thereby stabilizing the tetramer in a slightly altered conformation. This model accounts for the observed inhibition of proton flux by amantadine. Additionally, our measurements suggest that the M2 tetramer is substantially protonated at neutral pH and that both singly and doubly protonated states could be involved in M2's proton conduction at more acidic pHs.  相似文献   

10.
As part of our interest into the bioinorganic chemistry of gallium, gallium(III) complexes of the peptide ligand N-(2-(4-imidazolyl)ethyl)pyridine-2-carboxamide (pypepH2) resembling a fragment of the metal-binding domain of bleomycins (BLMs), have been isolated. Reaction of pypepH2 with (Et4N)[GaCl4] and Ga(acac)3 [acac- is the acetylacetonate(-1) ion] affords the mononuclear complex [Ga(pypepH)2]Cl.2H2O (1) and the tetranuclear complex [Ga4(acac)4(pypep)4].4.4H2O (2), respectively. Both complexes were characterized by single-crystal X-ray crystallography, IR spectroscopy and thermal decomposition data. The pypepH- ion in 1 behaves as a N(pyridyl), N(deprotonated amide), N(pyridine-type imidazole) chelating ligand. The doubly deprotonated pypep2- ion in 2 behaves as a N(pyridyl), N(deprotonated amide), N(imidazolate), N'(imidazolate) mu2 ligand and binds to one Ga(III) atom at its pyridyl, amide and one of the imidazolate nitrogens, and to a second metal ion at the other imidazolate nitrogen; a chelating acac- ligand completes six coordination at each Ga(III) centre. The IR data are discussed in terms of the nature of bonding and known structures. The 1H NMR spectrum of 1 suggests that the cation of the complex maintains its integrity in dimethylsulfoxide (DMSO) solution. Complexes 1 and 2 are the first synthetic analogues of metallobleomycins with gallium(III).  相似文献   

11.
Integrating elemental labeling in quantitative LC-ICP-MS based bio-analysis requires fundamental experiments concerning the stability of complexes during analysis. In a competitive approach complex stability of the chelating moieties 1,4,7,10-tetraazacyclododecane-N,N',N',N'-tetraaceticacid (DOTA), 1,4,7-triazacyclononane-N,N',N'-triacetic acid (NOTA) and diethylenetriaminepentaacetic dianhydride (DTPA) in combination with 11 different lanthanides was investigated under typical chromatographic conditions. Measurements were carried out via LC-ICP-QMS using a novel mixed mode separation method. The influence of chromatographic separation, pH and temperature on complex stability constants was assessed regarding further applications of multiplexing in bio-analytical assays. The limit of detection (LOD) for LC-ICP-QMS was 0.03 nM for all investigated Tm complexes (0.15 fmol absolute). Quantification of the complexes was performed via external, flow injection based calibration. For all investigated complexes the stability was significantly decreased by the chromatographic conditions. Moreover, complexation by DOTA revealed two different signals suggesting the presence of a stable intermediate product. Ln(3+)-DOTA and Ln(3+)-NOTA complexes provided high stability at 5 °C and 37 °C over a time of 12 hours, whereas Ln(3+)-DTPA complexes showed significant degradation at 37 °C.  相似文献   

12.
Flash-driven ATP formation by spinach chloroplast thylakoids, using the luciferin luminescence assay to detect ATP formed in single turnover flashes, was studied under conditions where a membrane protein amine buffering pool was either protonated or deprotonated before the beginning of the flash trains. The flash number for the onset of ATP formation was delayed by about 10 flashes (from 15 to about 25) when the amine pool was deprotonated as compared to the protonated state. The delay was substantially reversed again by reprotonating the pool upon application of 20–30 single-turnover flashes and 8 min of dark before addition of ADP, Pi, and the luciferin system. In the case of deprotonation by desaspidin, the uncoupler was removed by binding to BSA before the reprotonating flashes were given. Reprotonation was carried out before addition of ADP and Pi, to avoid a possible interference by the ATP-ase, which can energize the system by pumping protons. The reprotonated state, as indicated by an onset lag of about 15 flashes rather than 25 for the deprotonated state, was stable in the dark over extended dark times. The number of protons released by 10 flashes is approximately 30 nmol H+ (mg chl)–1, an amount similar to the size of the reversibly protonated amine group buffering pool. The data are consistent with the hypothesis that the amine buffering groups must be in the protonated state before any protons proceed to the coupling complex and energize ATP formation. Other work has suggested that the amine buffering pool is sequestered within membrane proteins rather than being exposed directly to the inner aqueous bulk phase. Therefore, it is possible that the sequested amine group array may provide localized association-dissociation sites for proton movement to the coupling complex.  相似文献   

13.
A model of redox-linked proton translocation is presented for the terminal heme-copper oxidases. The new model, which is distinct both in principle and in detail from previously suggested mechanisms, is introduced in a historical perspective and outlined first as a set of general principles, and then as a more detailed chemical mechanism, adapted to what is known about the chemistry of dioxygen reduction in this family of enzymes. The model postulates a direct mechanistic role in proton-pumping of the oxygenous ligand on the iron in the binuclear heme-copper site through an electrostatic nonbonding interaction between this ligand and the doubly protonated imidazolium group of a conserved histidine residue nearby. In the model this histidine residue cycles between imidazolium and imidazolate states translocating two protons per event, the imidazolate state stabilized by bonding to the copper in the site. The model also suggests a key role in proton translocation for those protons that are taken up in reduction of O2 to water, in that their uptake to the oxygenous ligand unlatches the electrostatically stabilized imidazolium residue and promotes proton release.  相似文献   

14.
Tunable laser resonance Raman spectroscopy has been applied to probe (in vivo) the role of rhodopsin in transducing light energy into the chemical necessary to generate a neural response. These in vivo experiments have suggested that the Schiff base linkage through which retinal is attached to opsin in rhodopsin is protonated. Furthermore, it appears that light eventually stimulates the deprotonation of the Schiff base linkage between the Meta I and Meta II steps in the intermediate sequence which is the result of light interacting with rhodopsin. Our data suggest that this deprotonation of the Schiff base occurs on the same time scale as overall proton release and uptake by the rhodopsin molecule. It is interesting to note that this series of protonations and deprotonations also occurs within the same time scale as the neural response generation in vertebrates and the generation of a proton gradient by bacteriorhodopsin, which is used by the bacterium, Halobacterium halobium, for ATP synthesis. If these data are analyzed within the context of the in vivo resonance Raman experiments (which seem to indicate that proton release is stimulated in the disc membrane during transduction) then there is a strong suggestion that the proton will assume an important role in any working hypothesis of visual transduction. In essence it appears that protons along with ATP and calcium ions must all be essential elements in the transduction process.  相似文献   

15.
A proton electrochemical potential across the membranes of photosynthetic purple bacteria is established by a light-driven proton pump mechanism: the absorbed light in the reaction center initiates electron transfer which is coupled to the vectorial displacement of protons from the cytoplasm to the periplasm. The stoichiometry and kinetics of proton binding and release can be tracked directly by electric (glass electrodes), spectrophotometric (pH indicator dyes) and conductimetric techniques. The primary step in the formation of the transmembrane chemiosmotic potential is the uptake of two protons by the doubly reduced secondary quinone in the reaction center and the subsequent exchange of hydroquinol for quinone from the membrane quinone-pool. However, the proton binding associated with singly reduced promary and/or secondary quinones of the reaction center is substoichiometric, pH-dependent and its rate is electrostatically enhanced but not diffusion limited. Molecular details of protonation are discussed based on the crystallographic structure of the reaction center of purple bacteriaRb. sphaeroides andRps. viridis, structure-based molecular (electrostatic) calculations and mutagenesis directed at protonatable amino acids supposed to be involved in proton conduction pathways.  相似文献   

16.
Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation.  相似文献   

17.
Nanosecond-to-microsecond time-resolved Fourier transform infrared (FTIR) spectroscopy in the 3000-1000-cm(-1) region has been used to examine the polarizable proton continua observed in bacteriorhodopsin (bR) during its photocycle. The difference in the transient FTIR spectra in the time domain between 20 ns and 1 ms shows a broad absorption continuum band in the 2100-1800-cm(-1) region, a bleach continuum band in the 2500-2150-cm(-1) region, and a bleach continuum band above 2700 cm(-1). According to Zundel (G., J. Mol. Struct. 322:33-42), these continua appear in systems capable of forming polarizable hydrogen bonds. The formation of a bleach continuum suggests the presence of a polarizable proton in the ground state that changes during the photocycle. The appearance of a transient absorption continuum suggests a change in the polarizable proton or the appearance of new ones. It is found that each continuum has a rise time of less than 80 ns and a decay time component of approximately 300 micros. In addition, it is found that the absorption continuum in the 2100-1800-cm(-1) region has a slow rise component of 190 ns and a fast decay component of approximately 60 micros. Using these results and those of the recent x-ray structural studies of bR(570) and M(412) (H. Luecke, B. Schobert, H.T. Richter, J.-P. Cartailler, and J. K., Science 286:255-260), together with the already known spectroscopic properties of the different intermediates in the photocycle, the possible origins of the polarizable protons giving rise to these continua during the bR photocycle are proposed. Models of the proton pump are discussed in terms of the changes in these polarizable protons and the hydrogen-bonded chains and in terms of previously known results such as the simultaneous deprotonation of the protonated Schiff base (PSB) and Tyr185 and the disappearance of water molecules in the proton release channel during the proton pump process.  相似文献   

18.
The proton transfer to solvent in the excited state of protonated diaminonaphthalenes, 1,5-diaminonaphthalene (1,5-DAN) and 1,8-diaminonaphthalene (1,8-DAN), in aqueous solution, has been investigated by picosecond time-resolved fluorescence measurements. The deprotonation rate constants of the dications of 1,8-DAN and 1,5-DAN in the excited state to produce the corresponding monocations are determined to be 1.3 x 10(10) and 5.6 x 10(9) s(-1), respectively, from dynamic analyses of their fluorescence time profiles. The much larger proton-dissociation rates compared with that of 1-aminonaphthalene (0.6 x 10(9) s(-1)) can be attributed to an electron-withdrawing effect due to the ammonium group at the 5- or 8-position in the naphthalene ring. The remarkably large proton-dissociation rate in 1,8-DAN can be ascribed to its larger reaction exergonicity which results from the electrostatic repulsion between the two ammonium groups in the reactant (the dication state) and the stabilization of the monocation state due to hydrogen bonding interactions between the NH3+ and NH2 moieties. The difference in their acidities in the excited state is discussed in terms of the reaction free energy and the proton affinities are evaluated from ab initio MO calculations.  相似文献   

19.
Considerable controversy exists in the literature as to the occurrence of intramolecular migration of amide hydrogens upon collisional activation of protonated peptides and proteins. This phenomenon has important implications for the application of CID as an experimental tool to obtain site-specific information about the incorporation of deuterium into peptides and proteins in solution. Using a unique set of peptides with their carboxyl-terminal half labeled with deuterium we have shown unambiguously that hydrogen (1H/2H) scrambling is such a dominating factor during low energy collisional activation of doubly protonated peptides that the original regioselective deuterium pattern of these peptides is completely erased (J?rgensen, T. J. D., G?rdsvoll, H., Ploug, M., and Roepstorff, P. (2005) Intramolecular migration of amide hydrogens in protonated peptides upon collisional activation. J. Am. Chem. Soc.127, 2785-2793). Taking further advantage of this unique test system we have now investigated the influence of the charge state and collision energy on the occurrence of scrambling in protonated peptides. Our MALDI tandem time-of-flight experiments clearly demonstrate that complete positional randomization among all exchangeable sites (i.e. all N- and O-linked hydrogens) also occurs upon high energy collisional activation of singly protonated peptides. This intense proton/deuteron traffic precludes the use of MALDI tandem time-of-flight mass spectrometry to obtain reliable information on the specific incorporation pattern of deuterons obtained during exchange experiments in solution.  相似文献   

20.
Magnetic resonance imaging (MRI) is used to evaluate gastrointestinal (GI) structure and functions in humans. Despite filling the viscus lumen with a contrast agent, visualization of the viscus wall is limited. To overcome this limitation, we de novo synthesized a conjugate that covalently combines a Gd-based MRI contrast agent, encaged with a chelating agent (DOTA), with pantoprazole, which is a widely used proton pump inhibitor that binds to proton pumps in the stomach and colon. The DOTA linkage was installed at a mechanism-based strategic location in the pantoprazole molecule to minimize a possible negative effect of the structural modification on the drug. It is anticipated that by defining the wall of the stomach and colon, this compound will facilitate functional MRI of the GI tract in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号