首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In adipose tissue, muscle, liver and macrophages, signaling by the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) is a determinant of insulin sensitivity and this receptor mediates the insulin-sensitizing effects of thiazolidinediones (TZDs). As PPAR-γ is also expressed in neurons, we generated mice with neuron-specific Pparg knockout (Pparg brain knockout (BKO)) to determine whether neuronal PPAR-γ signaling contributes to either weight gain or insulin sensitivity. During high-fat diet (HFD) feeding, food intake was reduced and energy expenditure increased in Pparg-BKO mice compared to Pparg(f/f) mice, resulting in reduced weight gain. Pparg-BKO mice also responded better to leptin administration than Pparg(f/f) mice. When treated with the TZD rosiglitazone, Pparg-BKO mice were resistant to rosiglitazone-induced hyperphagia and weight gain and, relative to rosiglitazone-treated Pparg(f/f) mice, experienced only a marginal improvement in glucose metabolism. Hyperinsulinemic euglycemic clamp studies showed that the increase in hepatic insulin sensitivity induced by rosiglitazone treatment during HFD feeding was completely abolished in Pparg-BKO mice, an effect associated with the failure of rosiglitazone to improve liver insulin receptor signal transduction. We conclude that excess weight gain induced by HFD feeding depends in part on the effect of neuronal PPAR-γ signaling to limit thermogenesis and increase food intake. Neuronal PPAR-γ signaling is also required for the hepatic insulin sensitizing effects of TZDs.  相似文献   

2.
In cortical collecting ducts (CCDs) perfused in vitro, inhibiting the epithelial Na(+) channel (ENaC) reduces Cl(-) absorption. Since ENaC does not transport Cl(-), the purpose of this study was to determine how ENaC modulates Cl(-) absorption. Thus, Cl(-) absorption was measured in CCDs perfused in vitro that were taken from mice given aldosterone for 7 days. In wild-type mice, we observed no effect of luminal hydrochlorothiazide on either Cl(-) absorption or transepithelial voltage (V(T)). However, application of an ENaC inhibitor [benzamil (3 μM)] to the luminal fluid or application of a Na(+)-K(+)-ATPase inhibitor to the bath reduced Cl(-) absorption by ~66-75% and nearly obliterated lumen-negative V(T). In contrast, ENaC inhibition had no effect in CCDs from collecting duct-specific ENaC-null mice (Hoxb7:CRE, Scnn1a(loxlox)). Whereas benzamil-sensitive Cl(-) absorption did not depend on CFTR, application of a Na(+)-K(+)-2Cl(-) cotransport inhibitor (bumetanide) to the bath or ablation of the gene encoding Na(+)-K(+)-2Cl(-) cotransporter 1 (NKCC1) blunted benzamil-sensitive Cl(-) absorption, although the benzamil-sensitive component of V(T) was unaffected. In conclusion, first, in CCDs from aldosterone-treated mice, most Cl(-) absorption is benzamil sensitive, whereas thiazide-sensitive Cl(-) absorption is undetectable. Second, benzamil-sensitive Cl(-) absorption occurs by inhibition of ENaC, possibly due to elimination of lumen-negative V(T). Finally, benzamil-sensitive Cl(-) flux occurs, at least in part, through transcellular transport through a pathway that depends on NKCC1.  相似文献   

3.
Primary cultures of rat renal inner medullary collecting duct cells were grown to confluence on glass coverslips and treated permeant supports, and the pH-sensitive fluorescent probe 2,7-biscarboxyethyl-5,6-carboxyfluorescein was employed to delineate the nature of the transport pathways that allowed for recovery from an imposed acid load in a HCO3-/CO2-buffered solution. The H+ efflux rate of acid-loaded cells was 13.44 +/- 0.94 mM/min. Addition of amiloride, 10(-4) M, to the recovery solution reduced the H+ efflux rate to 4.06 +/- 0.63 mM/min. The amiloride-resistant pHi recovery mechanism displayed an absolute requirement for Na+ but was Cl(-)-independent. Studies performed on permeable supports demonstrated that the latter pathway was located primarily on the basolateral-equivalent (BE) cell surface and was inhibited by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In a Na(+)-replete solution containing DIDS (50 microM) and amiloride (10(-4) M), acid-loaded cells failed to return to basal pHi. To delineate further the amiloride-inhibitable component of pHi recovery, monolayers were studied in the nominal absence of HCO3-/CO2. In 70% of monolayers studied, Na(+)-dependent, amiloride-inhibitable H+ efflux was the sole mechanism whereby acid-loaded cells returned to basal pHi. A Na(+)-independent pathway was observed in 30% of monolayers examined and represented only a minor component of the pHi recovery process. In studies performed on permeable supports, the Na(+)-dependent amiloride-inhibitable pathway was found to be confined exclusively to the BE cell surface. In summary, confluent monolayers of rat renal inner medullary collecting duct cells in primary culture possess two major mechanisms that contribute toward recovery from an imposed acid load, namely, Na+/H+ antiport and Na+/HCO3- cotransport. Na(+)-independent pHi recovery mechanisms represent a minor component of the pHi recovery process in the cultured cell. Both the Na+/H+ antiporter and Na+/HCO3- cotransporter are located primarily on the BE cell surface.  相似文献   

4.
Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ相似文献   

5.
The adipose tissue-derived hormone adiponectin improves insulin sensitivity and its circulating levels are decreased in obesity-induced insulin resistance. Here, we report the generation of a mouse line with a genomic disruption of the adiponectin locus. We aimed to identify whether these mice develop insulin resistance and which are the primary target tissues affected in this model. Using euglycemic/insulin clamp studies, we demonstrate that these mice display severe hepatic but not peripheral insulin resistance. Furthermore, we wanted to test whether the lack of adiponectin magnifies the impairments of glucose homeostasis in the context of a dietary challenge. When exposed to high fat diet, adiponectin null mice rapidly develop glucose intolerance. Specific PPARgamma agonists such as thiazolidinediones (TZDs) improve insulin sensitivity by mechanisms largely unknown. Circulating adiponectin levels are significantly up-regulated in vivo upon activation of PPARgamma. Both TZDs and adiponectin have been shown to activate AMP-activated protein kinase (AMPK) in the same target tissues. We wanted to address whether the ability of TZDs to improve glucose tolerance is dependent on adiponectin and whether this improvement involved AMPK activation. We demonstrate that the ability of PPARgamma agonists to improve glucose tolerance in ob/ob mice lacking adiponectin is diminished. Adiponectin is required for the activation of AMPK upon TZD administration in both liver and muscle. In summary, adiponectin is an important contributor to PPARgamma-mediated improvements in glucose tolerance through mechanisms that involve the activation of the AMPK pathway.  相似文献   

6.
The extent to which endogenously generated nitric oxide alters Na(+) transport across the mammalian alveolar epithelium in vivo has not been documented. Herein we measured alveolar fluid clearance and nasal potential differences in mice lacking the inducible form of nitric oxide synthase [iNOS; iNOS(-/-)] and their corresponding wild-type controls [iNOS(+/+)]. Alveolar fluid clearance values in iNOS(+/+) and iNOS(-/-) anesthetized mice with normal oxygenation and acid-base balance were ~30% of instilled fluid/30 min. In both groups of mice, fluid absorption was dependent on vectorial Na(+) movement. Amiloride (1.5 mM) decreased alveolar fluid clearance in iNOS(+/+) mice by 61%, whereas forskolin (50 microM) increased alveolar fluid clearance by 55% by stimulating amiloride-insensitive pathways. Neither agent altered alveolar fluid clearance in iNOS(-/-) mice. Hyperoxia upregulated iNOS expression in iNOS(+/+) mice and decreased their amiloride-sensitive component of alveolar fluid clearance but had no effect on the corresponding values in iNOS(-/-) mice. Nasal potential difference measurements were consistent with alveolar fluid clearance in that both groups of mice had similar baseline values, which were amiloride sensitive in the iNOS(+/+) but not in the iNOS(-/-) mice. These data suggest that nitric oxide produced by iNOS under basal conditions plays an important role in regulating amiloride-sensitive Na(+) channels in alveolar and airway epithelia.  相似文献   

7.
8.
9.
Extracellular ATP has been shown to increase the Na+ permeability of human lymphocytes by 3 to 12-fold. The kinetics of this ATP-induced response were studied by measuring 22Na+ influx into chronic lymphocytic leukemic lymphocytes incubated in low-sodium media without divalent cations. ATP-stimulated uptake of 22Na-ions was linear over 4 min incubation and this influx component showed a sigmoid dependence on ATP concentration. Hill analysis yielded a K1/2 of 160 microM and a n value of 2.5. The nucleotide ATP-gamma-S (1-2 mM) gave 30% of the permeability increase produced by ATP, but UTP (2 mM) and dTTP (2 mM) had no effect on 22Na influx. The amiloride analogs 5-(N-ethyl-N-isopropyl) amiloride and 5-(N,N-hexamethylene) amiloride, which are potent inhibitors of Na(+)-H+ countertransport, abolished 72-95% of the ATP-stimulated 22Na+ influx. However, the involvement of Na(+)-H+ countertransport in the ATP-stimulated Na+ influx was excluded by three lines of evidence. Sodium influx was stimulated 7-fold by extracellular ATP but only 2.4-fold by hypertonic conditions which are known to activate Na(+)-H+ countertransport. Addition of ATP to lymphocytes produced no change in intracellular pH when these cells were suspended in isotonic NaCl media. Finally ATP caused a membrane depolarization of lymphocytes which is inconsistent with stimulation of electroneutral Na(+)-H+ exchange. These data suggest that ATP acts cooperatively to induce the formation of membrane channels which allow increased Na+ influx by a pathway which is partially inhibited by amiloride and its analogs.  相似文献   

10.
The expression of the serum- and glucocorticoid-regulated kinase 1 (Sgk1) is induced by mineralocorticoids and, in turn, upregulates the renal epithelial Na(+) channel (ENaC). Total inactivation of Sgk1 has been associated with transient urinary Na(+) wasting with a low-Na(+) diet, while the aldosterone-mediated ENaC channel activation was unchanged in the collecting duct. Since Sgk1 is ubiquitously expressed, we aimed to study the role of renal Sgk1 and generated an inducible kidney-specific knockout (KO) mouse. We took advantage of the previously described TetOn/CreLoxP system, in which rtTA is under the control of the Pax8 promotor, allowing inducible inactivation of the floxed Sgk1 allele in the renal tubules (Sgk1fl/fl/Pax8/LC1 mice). We found that under a standard Na(+) diet, renal water and Na(+)/K(+) excretion had a tendency to be higher in doxycycline-treated Sgk1 KO mice compared with control mice. The impaired ability of Sgk1 KO mice to retain Na(+) increased significantly with a low-salt diet despite higher plasma aldosterone levels. On a low-Na(+) diet, the Sgk1 KO mice were also hyperkaliuric and lost body weight. This phenotype was accompanied by a decrease in systolic and diastolic blood pressure. At the protein level, we observed a reduction in phosphorylation of the ubiquitin protein-ligase Nedd4-2 and a decrease in the expression of the Na(+)-Cl(-)-cotransporter (NCC) and to a lesser extent of ENaC.  相似文献   

11.
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.  相似文献   

12.
Wnt signalling regulates several aspects of kidney development such as nephrogenesis, ureteric bud branching and organisation of the collecting duct cells. We addressed the potential involvement of Dickkopf-1 (Dkk1), a secreted Wnt pathway antagonist. Dkk1 is expressed in the developing mouse kidney by pretubular cell aggregates and the nephrons derived from them. Besides the mesenchyme cells, the epithelial ureteric bud and more mature ureteric bud derivatives in the medulla and the papilla tip express the Dkk1 gene. To reveal the potential roles of Dkk1, we generated a floxed allele and used three Cre lines to inactivate Dkk1 function in the developing kidney. Interestingly, Dkk1 deficiency induced by Pax8Cre in the kidneys led in newborn mice to an overgrown papilla that was generated by stimulated proliferation of the collecting duct and loop of Henle cells, implying a role for Dkk1 in the collecting duct and/or loop of Henle development. Since Pax8Cre-induced Dkk1 deficiency reduced marker gene expression, Scnn1b in the collecting duct and Slc12a1 in the loop of Henle, these results together with the extended papilla phenotype are likely reasons for the decreased amount of ions and urine produced by Dkk1-deficient kidneys in the adult. Recombinant Dkk1 protein in cultured cells inhibited Wnt-7b-induced canonical Wnt signalling, which is critical for collecting duct and loop of Henle development. Moreover, Dkk1 deficiency led to an increase in the expression of canonical Wnt signalling of target Lef-1 gene expression in the stromal cells of the developing papilla. Based on the results, we propose that Dkk1 controls the degree of Wnt-7b signalling in the papilla to coordinate kidney organogenesis.  相似文献   

13.
14.
15.
To investigate whether 'aldosterone-induced proteins' could be detected in mammalian species, cultured renal collecting duct epithelia from neonatal rabbit kidneys were labelled under aldosterone administration with radioactive methionine and subsequently fractionated into cytosolic and coarse membrane protein fractions. Newly synthesized proteins were then analyzed by SDS-PAGE, isoelectric focussing and two-dimensional electrophoresis. Quantitative estimates of individual newly synthesized proteins were performed utilizing gel slicing, scintillation counting and autoradiography. The labelling experiments demonstrated that, in comparison to controls, aldosterone (1 X 10(-6) M) generally increased the amount of radioactive protein. No qualitative changes in the pattern of newly synthesized proteins and, therefore, no classical aldosterone-induced proteins were observed. The increase of radioactive protein was already seen after 1, 6, and 18 h of hormone treatment. The effect could be blocked partially by spironolactone (1.5 X 10(-4) M), and totally by amiloride (1 X 10(-6) M), g-strophantin (5 X 10(-4) M), and cycloheximide (1 X 10(-6) M. Thus, the interference of aldosterone action at the receptor level, the Na+ channels and the Na+/K(+)-ATPase pump demonstrate that the expression of proteins in cultured renal collecting duct cells is a sensitive system and seems to be controlled by aldosterone at the receptor level, but also counter-controlled by specific plasma membrane sites.  相似文献   

16.
Wu H  Chen L  Zhou Q  Zhang W 《PloS one》2011,6(11):e27429
Our previous work in 293T cells and AF17(-/-) mice suggests that AF17 upregulates expression and activity of the epithelial Na(+) channel (ENaC), possibly by relieving Dot1a-AF9-mediated repression. However, whether and how AF17 directly regulates Dot1a cellular distribution and ENaC function in renal collecting duct cells remain unaddressed. Here, we report our findings in mouse cortical collecting duct M-1 cells that overexpression of AF17 led to preferential distribution of Dot1a in the cytoplasm. This effect could be blocked by nuclear export inhibitor leptomycin B. siRNA-mediated depletion of AF17 caused nuclear accumulation of Dot1a. AF17 overexpression elicited multiple effects that are reminiscent of aldosterone action. These effects include 1) increased mRNA and protein expression of the three ENaC subunits (α, β and γ) and serum- and glucocorticoid inducible kinase 1, as revealed by real-time RT-qPCR and immunoblotting analyses; 2) impaired Dot1a-AF9 interaction and H3 K79 methylation at the αENaC promoter without affecting AF9 binding to the promoter, as evidenced by chromatin immunoprecipitation; and 3) elevated ENaC-mediated Na(+) transport, as analyzed by measurement of benzamil-sensitive intracellular [Na(+)] and equivalent short circuit current using single-cell fluorescence imaging and an epithelial Volt-ohmmeter, respectively. Knockdown of AF17 elicited opposite effects. However, combination of AF17 overexpression or depletion with aldosterone treatment did not cause an additive effect on mRNA expression of the ENaC subunits. Taken together, we conclude that AF17 promotes Dot1a nuclear export and upregulates basal, but not aldosterone-stimulated ENaC expression, leading to an increase in ENaC-mediated Na(+) transport in renal collecting duct cells.  相似文献   

17.
Treating H441 cells with dexamethasone raised the abundance of mRNA encoding the epithelial Na(+) channel alpha- and beta-subunits and increased transepithelial ion transport (measured as short-circuit current, I(sc)) from <4 microA.cm(-2) to 10-20 microA.cm(-2). This dexamethasone-stimulated ion transport was blocked by amiloride analogs with a rank order of potency of benzamil >or= amiloride > EIPA and can thus be attributed to active Na(+) absorption. Studies of apically permeabilized cells showed that this increased transport activity did not reflect a rise in Na(+) pump capacity, whereas studies of basolateral permeabilized cells demonstrated that dexamethasone increased apical Na(+) conductance (G(Na)) from a negligible value to 100-200 microS.cm(-2). Experiments that explored the ionic selectivity of this dexamethasone-induced conductance showed that it was equally permeable to Na(+) and Li(+) and that the permeability to these cations was approximately fourfold greater than to K(+). There was also a small permeability to N-methyl-d-glucammonium, a nominally impermeant cation. Forskolin, an agent that increases cellular cAMP content, caused an approximately 60% increase in I(sc), and measurements made after these cells had been basolaterally permeabilized demonstrated that this response was associated with a rise in G(Na). This cAMP-dependent control over G(Na) was disrupted by brefeldin A, an inhibitor of vesicular trafficking. Dexamethasone thus stimulates Na(+) transport in H441 cells by evoking expression of an amiloride-sensitive apical conductance that displays moderate ionic selectivity and is subject to acute control via a cAMP-dependent pathway.  相似文献   

18.
Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear hormone receptor superfamily, plays an essential role in the mediation of the actions of antidiabetic drugs known as thiazolidinediones (TZDs). PPARgamma activates many target genes involved in lipid anabolism including the adipocyte fatty acid binding protein (aP2). In this study, induction of aP2 gene expression by PPARgamma agonists was examined in both cultured cells and diabetic mice using branched DNA (bDNA)-mediated mRNA quantitation. bDNA technology allows for the direct measurement of a particular mRNA directly within cellular lysate using a 96-well plate format in a time frame comparable to a reporter gene assay. In cultured human subcutaneous preadipocytes, the TZDs, troglitazone and BRL-49653, both rapidly induced aP2 mRNA as detected with the bDNA method. In these cells, the effect of BRL-49653 on aP2 mRNA levels was detectable as early as 30 min after treatment (47% increase) and was maximal after 24 h of treatment (12-fold increase). The effects of troglitazone on aP2 mRNA induction were similar to those of BRL-49653 except that the maximal level of induction was consistently lower (e.g. 24 h treatment = 4-fold increase). Dose-response relationships for both of the TZDs were also determined using the 24-h treatment time point. EC50s for both BRL-49653 and troglitazone were estimated to be 80 nM and 690 nM, respectively. A natural PPARgamma ligand, 15-deoxy-delta12,14-PGJ2, was also active in this assay with a maximal induction of aP2 mRNA of approximately 5-fold when tested at 1 microM. Since the PPARgamma:retinoid X receptor (RXR) heterodimer has been characterized as a permissive heterodimer with respect to RXR ligands, the ability of 9-cis-retinoic acid (9-cis-RA) to induce aP2 mRNA was examined. Although 9-cis-RA had very low efficacy (2-fold induction), the maximal effect was reached at 100 nM. No synergism or additivity in aP2 mRNA induction was detected when 9-cis-RA was included with either of the TZDs used in this study. Significant induction of aP2 mRNA in bone marrow of db/db mice treated with either troglitazone or BRL-49653 was also detected, indicating that the bDNA assay may be a simple method to monitor nuclear receptor target gene induction in vivo.  相似文献   

19.
Medullary collecting duct function was studied using the in vivo microcatheterization technique in three groups of rats receiving amiloride, hydrochlorothiazide, or both diuretics. In each group of animals, atrial natriuretic factor (ANF99-126) was given in the second phase of the experiment. The combination of amiloride and hydrochlorothiazide resulted in a more marked natriuresis than either diuretic given as a single agent. Sodium reabsorption in the medullary collecting duct, as a fraction of the delivered load, was reduced from 64% (amiloride) and 69% (hydrochlorothiazide) to 29% (amiloride and hydrochlorothiazide). Atrial natriuretic factor reduced collecting duct sodium reabsorption when added to amiloride or hydrochlorothiazide to 23% and to 41%, respectively, but had no additional effect when given with amiloride and hydrochlorothiazide. Potassium excretion with amiloride and hydrochlorothiazide was intermediate between amiloride or hydrochlorothiazide given as single agents. With the diuretic combination, potassium transport showed no significant reabsorption or secretion along the medullary collecting duct, amiloride was associated with potassium reabsorption, and hydrochlorothiazide was associated with potassium secretion in the duct. The results confirm the importance of the medullary collecting duct as a site of diuretic action. The known additive effects of amiloride and hydrochlorothiazide on sodium excretion and the opposing effects of these agents on potassium excretion occur, to a major degree, in the medullary collecting duct. Furthermore, the additive effects of amiloride and ANF indicate that blocking of amiloride-sensitive sodium channels is not the only mechanism of action of ANF on duct salt transport in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号