首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smolders  E.  Sweeck  L.  Buysse  J.  Van Den Brande  K.  Merckx  R. 《Plant and Soil》1993,(1):431-434
Young spinach (Spinacia oleracea L., cv. Subito) and wheat (Triticum aestivum, cv. Tonic) plants were hydroponically grown in eight different nutrient solutions containing 137Cs. Ca, Mg, K and NH4 concentrations were varied whilst anion concentrations were equal in all solutions. The large differences in potassium content between spinach and wheat were not reflected in similar differences in 137Cs content at any nutritive treatment.Both crops were also grown in a potted podzolic soil contaminated with radiocaesium. This experiment was conducted in a phytotron at two climatic conditions (summer and winter) which differed in day length and light intensity. Wheat plants had higher 137Cs levels than spinach at both conditions. The 137Cs levels furthermore decreased during development. The 137Cs plant/soil solution concentration ratio was lower at the summer than at the winter conditions.  相似文献   

2.
Genotypic differences in cadmium uptake and distribution in soybeans   总被引:9,自引:0,他引:9  
In order to investigate the genetic differences in uptake and distribution of cadmium in soybeans, 17 varieties of soybean were grown first in soil and then four or five varieties of soybean were grown in nutrient solution with different levels of cadmium.Significant genotypic differences in seed cadmium levels were found. The seed cadmium concentration was lowest for the En-b0-1-2 soybean variety, and highest for Harosoy, in both field and pot experiments. The seed cadmium levels of Tohoku 128, a cross between Enrei and Suzuyutaka, were intermediate between those of the parents. For four soil types, containing from 0.2 to 6.5 mg kg–1 extractable cadmium, the ranking of soybean genotypes based on seed cadmium level was similar, indicating that there is a genetic factor involved in the varietal differences in cadmium concentration. Among the four soybean varieties tested in one experiment in the present study, the cadmium concentrations in leaves, stems and pods as well as the total cadmium uptake were lowest for En-b0-1-2. These results suggest that cadmium uptake and/or translocation from root to shoot are low in En-b0-1-2. In solution culture containing 100 g L–1 cadmium, the cadmium concentrations in seeds, stems and pods at the seed maturation stage were also the lowest for En-b0-1-2. In a second experiment, the cadmium concentrations in the leaves, stem and petiole were lower at both 7 and 15 days after the addition of cadmium to the nutrient solution for En-b0-1-2 and Enrei than for Tohoku 128, Suzuyutaka and Harosoy; however, the cadmium concentrations of roots for En-b0-1-2 and Enrei were higher than for the other varieties. We propose that the lower levels of cadmium found in the seeds of certain varieties of soybean result from the combination of lower initial uptake and retention of higher levels of cadmium in the roots, thus limiting its translocation to the shoot.  相似文献   

3.
Spring wheat plants were grown in a 137Cs labelled nutrient solution, either in the presence or absence of NH4 as a secondary N source. Between 11 and 64 days after sowing (DAS), plants were harvested on nine occasions. The plants supplied with NH4 and NO3 had lower root 137Cs Activity Concentrations (AC) than those supplied with NO3 only. Shoot AC were equal in both nutrition treatments. Shoot and root 137Cs AC (dry weight basis) showed the same trends with plant age in both nutrition treatments. Shoot AC almost doubled between 11 and 28 DAS after which they gradually decreased concomitant with a similar decrease in K concentrations. Root AC were always higher than shoot AC and increased to a maximum at 35 DAS after which they fluctuated. Expressed on a tissue water basis, the 137Cs AC varied less during plant age than did dry weight based AC. Furthermore, root and shoot AC expressed on a tissue water basis were almost equal. It is shown that the initial increase in 137Cs AC in both root and shoot can largely be explained by the initial dilution of absorbed 137Cs in the unlabelled seedling tissues. No correlation was found between K and 137Cs distribution among ears, leaves, stems and roots in 64 old wheat plants. NH4 as a secondary N source in a nitrate nutrient solution marginally affected 137Cs distribution.Abbreviations AC activity concentrations - DAS days after sowing FAX no corresponding author: +3216321997  相似文献   

4.
Horst  W. J.  Abdou  M.  Wiesler  F. 《Plant and Soil》1993,155(1):293-296
In an attempt to evaluate whether breeding and selection for high yielding capacity did change the P requirements of modern wheat cultivars, the response of two wheat cultivars to different levels of P supply was investigated. A traditional cultivar (Peragis) and a modern cultivar (Cosir) were cultivated in a C-loess low in available P and high in CaCO3 in 120 cm high PVC pots. Shoot and root growth at different developmental stages was compared. The grain yield of the modern cultivar Cosir was higher at limiting and non-limiting P supply and, therefore, this cultivar can be considered as more P-efficient than the traditional cultivar. From the results it can be concluded that the main factors contributing to the higher P efficiency of the modern cultivar are (i) efficient use of assimilates for root growth characteristics which enhance P acquisition: smaller root diameter, and longer root hairs, (ii) efficient remobilization of P from vegetative plant organs to the grains, and (iii) lower P requirement for grain yield formation because of lower ear number per plant but higher grain number per ear.  相似文献   

5.
Summary Liquid medium and an enriched agar were used to detect endophytic bacteria in micropropagated mints (Mentha spp.) within 2 to 6 d of inoculation. Bacteria isolated from the cultures were screened on several antibiotic concentrations to determine bactericidal doses. Antibiotics were also tested for phytotoxic effects. Shoot tips from infected plants were treated by immersion in liquid MS medium containing antibiotics either singly or in combination. Streptomycin applied at 1000µg/ml for a period of 10 d was effective and less phytotoxic in a larger number of cases than gentamicin (50µg/ml), neomycin (500µg/ml), or rifampicin (30µg/ml). Mint cultures that tested negative for bacteria after antibiotic treatment were multiplied, retested, and cold-stored for 1 yr or longer. Upon regrowth after storage, 25 of 30 treated cultures (83%) tested negative for bacteria. Of the 25, 8 were successfully treated with streptomycin, 1 with gentamicin, 2 with neomycin, 1 with rifampicin, and 1 with streptomycin and gentamicin; 12 required more than one treatment. An early detection system, initial trial treatment with streptomycin for infected plants, and monitoring of treated cultures successfully reduced the spread of bacterial contamination. Antibiotic treatment in liquid MS medium at pH 6.9 resulted in enhanced bactericidal activity over that seen at pH 5.5.  相似文献   

6.
The mechanism of zinc uptake in plants   总被引:1,自引:0,他引:1  
  相似文献   

7.
Young maize (Zea mays L.) plants, 7 days after germination were exposed to nutrient solutions which were either aerated or not aerated for 14 days. Nutrients were supplied as 50% strength Hoagland’s solution or, in the case of the four ‘low nutrient’ treatments, N, P, K or Ca were supplied at the equivalent of 10% strength Hoagland’s solution. Shoot fresh weight was decreased by 25% due to lack of aeration; O2 deficiency also impaired leaf elongation but not dry weights, suggesting that lack of O2 in the roots impaired cell expansion in shoots more than dry weight accumulation. The distribution of N, P, K and Ca within shoots was consistent with their relative mobilities in the phloem; at least 7% of Ca in plants after 14 days of treatments was found in the oldest leaf whereas N, P and K were rapidly remobilised to younger tissues. Between 33 and 49% of the total N, P and K in the shoot was found in the 40 mm of tissue at the base of the growing leaves in plants grown for 14 days at low nutrient concentrations. Concentrations (dry weight basis) of phloem-mobile nutrients were also greatest in the growing zones of the leaves, especially in the case of N and P. Calcium, on the other hand, was found in relatively low concentrations in the youngest tissue and as with the other nutrients, concentrations declined due to low external supply, non-aeration or a combination of both. In spite of the failure of Ca to move from old to young leaves, the effect of the deficiencies of N, P and K was probably as severe as that of Ca in the youngest tissues of treated plants. Calcium uptake by the whole shoot appeared to be slightly less sensitive to O2 deficits than that of N, P and K. This compensated for the failure of Ca to move to growing tissues during periods of low external Ca supply.  相似文献   

8.
Weeds are probably the most important vascular plants with relation to hayfever. This is because several plant families such as the Chenopodiaceae, Amaranthaceae, Graminae (Poaceae) and Compositae have wide-spread, abundant, anemophylous taxa which occur as major weeds of both agriculture and waste places. Several characteristics will be presented about the ability of these species to be successful in promoting allergies on a international basis. Interestingly, many of these plant species have been included on weed lists of countries whose geography, ecological amplitudes, climates, and agricultural practices are similar. The subsequent reproductive strategy for these species will be reviewed and biological traits discussed with reference to pollen grain production, and dispersal methods or importance as both weeds and hayfever plants.  相似文献   

9.
Inhibition of starch biosynthesis in transgenic potato (Solanum tuberosum L. cv. Désirée) plants (by virtue of antisense inhibition of ADP-glucose pyrophosphorylase) has recently been reported to influence tuber formation and drastically reduce dry matter content of tubers, indicating a reduction in sink strength (Müller-Röber et al. 1992, EMBO J 11: 1229–1238). Transgenic tubers produced low levels of starch, but instead accumulated high levels of soluble sugars. We wanted to know whether these changes in tuber development/sink strength could be reversed by the production of a new high-molecular-weight polymer, i.e. fructan, that incorporates sucrose and thereby should reduce the level of osmotically active compounds. To this end the enzyme levan sucrase from the gram-negative bacterium Erwinia amylovora was expressed in tubers of transgenic potato plants inhibited for starch biosynthesis. Levan sucrase was targeted to different subcellular compartments (apoplasm, vacuole and cytosol). Only in the case of apoplastic and vacuolar targeting was significant accumulation of fructan observed, leading to fructan representing between 12% and 19% of the tuber dry weight. Gel filtration and 13C-nuclear magnetic resonance spectroscopy showed that the molecular weight and structure of the fructan produced in transgenic plants is identical to levan isolated from E. amylovora. Whereas apoplastic expression of levansucrase had deleterious effects on tuber development, tubers containing the levansucrase in the vacuole did not differ in phenotype from tubers of the starch-deficient plants used as starting material for transformation with the levansucrase. When tuber yield was analysed, no increase but rather a further decrease relative to ADP-glucose pyrophosphorylase antisense plants was observed.Abbreviations CaMV cauliflower mosaic virus - NMR nuclear magnetic resonanceWe gratefully acknowledge Dr. Ulrich Eder (Schering AG, Berlin, Germany) for performing 13C-NMR spectroscopy, and Dr. Susanne Hoffmann-Benning (Institut für Genbiologische Forschung) for introducing us to immunohistochemistry. We thank Jessyca Dietze for plant transformations, Birgit Burose for taking care of greenhouse plants, and Antje Voigt for photographic work.  相似文献   

10.
Melon seedlings (Cucumis melo L. cv.Galia) were grown hydroponically to study the effect of salinity (80 mmol/LNaCl) on phosphate (Pi) uptake and translocation at two levels of Pi (25 μmol/L and 1 mmol/L). Net uptake rates of Pi were determined by depletionof the medium and by plant content. Salinity decreased Pi uptake at low Pi (high affinity uptake mechanism), 25 μmol/L, although no specific competitive inhibition of Pi uptake by Cl was observed. When plants were grown with high Pi (1 mmol/L), the uptake of Pi through the low affinity system was increased by 80 mmol/L NaCl. Salinity also reduced the phosphorus flux, as Pi, through the xylem. It is hypothesised that high levels of NaCl decrease the mobility of Pi stored in vacuoles, and as a result, inhibit export from this storage compartment to other parts of the plant.  相似文献   

11.
Two experiments were carried out in pots with three compartments, a central one for root and hyphal growth and two outer ones which were accessible only for hyphae of the arbuscular mycorrhizal fungus, Glomus mosseae ([Nicol. and Gerd.] Gerdemann and Trappe). In the first experiment, mycorrhizal and nonmycorrhizal bean (Phaseolus vulgaris L.) plants were grown in two soils with high geogenic cadmium (Cd) or nickel (Ni) contents. In the second experiment, mycorrhizal and nonmycorrhizal maize (Zea mays L.) or bean plants were grown in a non-contaminated soil in the central compartment, and either the Cd- or Ni-rich soil in the outer compartments. In additional pots, mycorrhizal plants were grown without hyphal access to the outer compartments. Root and shoot dry weight was not influenced by mycorrhizal inoculation, but plant uptake of metals was significantly different between mycorrhizal and nonmycorrhizal plants. In the first experiment, the contribution of mycorrhizal fungi to plant uptake accounted for up to 37% of the total Cd uptake by bean plants, for up to 33% of the total copper (Cu) uptake and up to 44% of the total zinc (Zn) uptake. In contrast, Ni uptake in shoots and roots was not increased by mycorrhizal inoculation. In the second experiment, up to 24% of the total Cd uptake and also up to 24% of the total Cu uptake by bean could be attributed to mycorrhizal colonisation and delivery by hyphae from the outer compartments. In maize, the mycorrhizal colonisation and delivery by hyphae accounted for up to 41% of the total Cd uptake and 19% of the total Cu uptake. Again, mycorrhizal colonisation did not contribute to Ni uptake by bean or maize. The results demonstrate that the arbuscular mycorrhizal fungus contributed substantially not only to Cu and Zn uptake, but also to uptake of Cd (but not Ni) by plants from soils rich in these metal cations. Deceased 21 September 1996 Deceased 21 September 1996  相似文献   

12.
Cold tolerance of field grown plants and shoot cultures of a commercial sugarbeet cultivar, Hilma, was compared with that of two cultivars bred for improved cold tolerance, Monofeb and Winter Hybrid 88619. Leaves of Monofeb and Winter Hybrid 88619 showed an increase in frost tolerance compared to Hilma, as assessed by electrolyte leakage measurements, in both July, and November. However, all varieties exhibited acclimation in the latter month. Similar qualitative differences between cultivars were detected in shoot cultures only when maintained on low (1%) sucrose medium, without added plant growth regulators. The use of high (3%) sucrose and benzyladenine, which releases apical dominance producing multiple shoots, each contributed to a substantial lowering of the temperature at which cold-induced damage occurred in leaves. Under these conditions varietal differences were masked. The implications of these findings in regard to in vitro selection for improved cold tolerance in organized cultures are discussed.Abbreviations BA benzyladenine - MS Murashige & Skoog (1962)  相似文献   

13.
Molecular mechanisms of potassium and sodium uptake in plants   总被引:20,自引:0,他引:20  
Potassium (K+) is an essential nutrient and the most abundant cation in plants, whereas the closely related ion sodium (Na+) is toxic to most plants at high millimolar concentrations. K+ deficiency and Na+ toxicity are both major constraints to crop production worldwide. K+ counteracts Na+ stress, while Na+, in turn, can to a certain degree alleviate K+ deficiency. Elucidation of the molecular mechanisms of K+ and Na+ transport is pivotal to the understanding – and eventually engineering – of plant K+ nutrition and Na+ sensitivity. Here we provide an overview on plant K+ transporters with particular emphasis on root K+ and Na+ uptake. Plant K+-permeable cation transporters comprise seven families: Shaker-type K+ channels, `two-pore' K+ channels, cyclic-nucleotide-gated channels, putative K+/H+ antiporters, KUP/HAK/KT transporters, HKT transporters, and LCT1. Candidate genes for Na+ transport are the KUP/HAK/KTs, HKTs, CNGCs, and LCT1. Expression in heterologous systems, localization in plants, and genetic disruption in plants will provide insight into the roles of transporter genes in K+ nutrition and Na+ toxicity.  相似文献   

14.
Selenium uptake,translocation, assimilation and metabolic fate in plants   总被引:24,自引:0,他引:24  
The chemical and physical resemblance between selenium (Se) and sulfur (S) establishes that both these elements share common metabolic pathways in plants. The presence of isologous Se and S compounds indicates that these elements compete in biochemical processes that affect uptake, translocation and assimilation throughout plant development. Yet, minor but crucial differences in reactivity and other metabolic interactions infer that some biochemical processes involving Se may be excluded from those relating to S. This review examines the current understanding of physiological and biochemical relationships between S and Se metabolism by highlighting their similarities and differences in relation to uptake, transport and assimilation pathways as observed in Se hyperaccumulator and non-accumulator plant species. The exploitation of genetic resources used in bioengineering strategies of plants is illuminating the function of sulfate transporters and key enzymes of the S assimilatory pathway in relation to Se accumulation and final metabolic fate. These strategies are providing the basic framework by which to resolve questions relating to the essentiality of Se in plants and the mechanisms utilized by Se hyperaccumulators to circumvent toxicity. In addition, such approaches may assist in the future application of genetically engineered Se accumulating plants for environmental renewal and human health objectives.  相似文献   

15.
Summary Soybean plants were grown in a soil very low in available P. Seedlings were inoculated with two vesicular-arbuscular mycorrhizal (VAM) fungi or were left non-inoculated and fertilized with P. Assimilation and allocation of micronutrients (Fe, Mn, Zn, and Cu) were determined during host development, and the uptake of trace elements in VAM plants was compared to P-fertilized, non-VAM plants of similar weight, growth stage, and P status. Copper and zinc concentrations were always higher in VAM plants, while iron and manganese concentrations were lower than in the equivalent P-fertilized soybeans. Differences in the micronutrient content of fully-mature soybean pods reflected differences in the leaves and roots. Thus, for trace elements, seed quality can be altered by VAM colonization in a fashion not duplicated by P fertilizer. Contribution from the Western Regional Research Center, USDA-ARS (CRIS No. 5325-20580-003).  相似文献   

16.
The relation between the total alkaloid content and the activity of strictosidine synthase (EC 4.3.3.2), a key enzyme in alkaloid biosynthesis, was studied in distinct parts of six-month-old plants of Cinchona ledgeriana Moens. Strictosidine-synthase activity was present in the tops of the stems, including the young developing leaflets, and in the roots. The highest alkaloid contents of the plant were also found in these parts; however, the types of alkaloids differed, cinchophyllines being present in the aerial parts and quinoline alkaloids in the roots. In the stem and in old leaves, both strictosidine-synthase activity and alkaloid content were low. These results indicate that in young Cinchona plants the alkaloids are mainly synthesized in the axial extremities of the plant and that they are stored at the site of their synthesis.Abbreviations HPLC high-performance liquid chromatography - SSS strictosidine synthase We wish to thank Wim Snoeijer for excellent technical assistance, and Dr. H.J.v.d. Meulen, Multiplant Holding B.V. (Maarssen), for kindly providing us with Cinchona ledgeriana Moens seeds. Financial support by Multiplant Holding B.V. (Maarssen) is gratefully acknowledged.To whom correspondence should be addressed.  相似文献   

17.
[背景]黑沙蒿是我国北方沙漠地区分布广泛、抗旱性能优良的固沙灌木,对稳定沙漠地区生态系统有至关重要的作用.[目的]内生菌在植物生命过程中扮演着重要角色,认识植物生长发育阶段幼嫩和成熟组织内生菌群的结构变化,对于理解菌群间的相互作用及保护宿主植物抵御生物和非生物胁迫具有积极意义.[方法]以宁夏拉巴湖林场黑沙蒿为研究对象,...  相似文献   

18.
The genotypic variation of 1180 progeny from 118 genitors belonging to five taxa ofPennisetum sect.Brevivalvula has been estimated by isoenzyme electrophoresis with observations on five enzymatic systems, in order to compare the type of reproduction in polyploid and diploid taxa. A total of 112 different isozyme genotypes has been found, over all taxa. Genotypic variation was found among all progeny of the diploid populations ofP. polystachion andP. subangustum, as a consequence of their sexual reproduction system. At the polyploid level the type of reproduction appears to be predominantly agamic, but genotypic variation in the progeny was not rare: five tetraploid and one hexaploidP. pedicellatum, one pentaploid and one hexaploidP. polystachion and one hexaploidP. hordeoides, in a total of 90 genitors. Genetic relationships have been observed between the diploid sexualP. polystachion andP. subangustum, and, to a lesser extent, with the tetraploids of the same taxa as well. TetraploidP. polystachion andP. pedicellatum share genotypes with most other chromosomal taxa.  相似文献   

19.
The ceIV1 gene encoding a secreted cellulase (CelV1) of Erwinia carotovora subsp. carotovora SCC3193 was cloned and its nucleotide sequence determined. The gene contains an open reading frame of 1511 by and codes for an exported protein of 504 amino acids. The predicted amino acid sequence of Ce1V1 was highly similar to that of CeIV of another E. c. subsp. carotovora strain SCRI193 but completely different from the previously characterized cellulase, CelS, of the strain SCC3193. Gene fusions to the lacZ reporter were employed to characterize the regulation of celV1 and celS. Both genes are coordinately induced in a growth phase-dependent manner and are catabolite repressed. Expression of celV1 but not celS was stimulated by plant extracts. The celS gene was expressed at a much lower level than celV1 under all conditions tested. Inactivation of the celV1 gene in E. c. subsp. carotovora strain SCC3193 by marker exchange showed that celV1 encodes the major cellulase of strain SCC3193, as the resulting mutant strain SCC6001 was devoid of cellulase activity. Ce1Vl mutants exhibited reduced virulence suggesting that CelV1, although not absolutely required for pathogenicity, enhances the ability of strain SCC3193 to macerate plant tissue. Inactivation of the celS gene in the celV1 mutant did not lead to any further decrease in virulence.  相似文献   

20.
The effect of varied Zn supply on the pH of the nutrient solution and uptake of cations and anions was studied in cotton (Gossypium hirsutum L.), sunflower (Helianthus annuus L.) and buckwheat (Fagopyrum esculentum Moench) plants grown under controlled environmental conditions in nutrient solutions with nitrate as source of nitrogen. With the appearance of visual Zn deficiency symtoms, the pH of the nutrient solutions decreased from 6 to about 5 whereas the pH increased to about 7 when the plants were adequately supplied with Zn. In Zn deficient plants the pH decrease was associated with a shift in the cation-anion uptake ratio in favour of cation uptake. Of the major ions, uptake of Ca2+ and K+ was either not affected or only slightly lowered whereas NO3 - uptake was drastically decreased in Zn deficient plants. Although the Zn nutritional status of plants hardly affected the NO3 - concentrations in the plants, the leakage of NO3 - from roots of Zn deficient plants into a diluted CaCl2 solution was nearly 10 times higher than that of plants adequately supplied with Zn. In contrast to Zn deficiency, Mn deficiency in cotton plants neither affected NO3 - uptake nor the pH of the nutrient solution.The results indicate that, probably as a consequence of the role of Zn in plasma membrane integrity and nitrogen metabolism, when Zn is deficient in dicotyledonous species net uptake of NO3 - is particularly depressed which in turn results in an increase in cation-anion uptake ratio and a corresponding decrease in external pH. The ecological relevance of this rhizosphere acidification is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号