共查询到20条相似文献,搜索用时 0 毫秒
1.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity. 相似文献
2.
Previous studies have shown that flavonoids inhibit glucose uptake in cultured cells. In this report, we show that the grapefruit flavanone naringenin inhibited insulin-stimulated glucose uptake in 3T3-L1 adipocytes in a dose-dependent manner. Naringenin acts by inhibiting the activity of phosphoinositide 3-kinase (PI3K), a key regulator of insulin-induced GLUT4 translocation. Although naringenin did not alter the phosphotyrosine status of the insulin receptor, insulin receptor substrate proteins, or PI3K, it did inhibit the phosphorylation of the downstream signaling molecule Akt. In an in vitro kinase assay, naringenin inhibited PI3K activity. A physiologically attainable dose of 6 microM naringenin reduced insulin-stimulated glucose uptake by approximately 20%. This inhibitory effect remained 24h after the removal of naringenin from the culture medium. Collectively, our findings suggest that the regular consumption of naringenin in grapefruit may exacerbate insulin resistance in susceptible individuals via impaired glucose uptake in adipose tissue. 相似文献
3.
Hui Zhou 《Archives of biochemistry and biophysics》2009,486(1):88-313
Uncoupling protein 2 (UCP2) was reported to be involved in insulin-glucose homeostasis, based on well established event that inhibition of UCP2 stimulates insulin secretion in pancreatic β-cells. However, the role of UCP2 on insulin-stimulated glucose uptake in adipose tissue, which is an indispensable process in insulin-glucose homeostasis, remains unknown. In this study, UCP2 was inhibited by genipin in 3T3-L1 adipocytes, which increased mitochondrial membrane potential, intracellular ATP level and production of reactive oxygen species (ROS). Importantly, insulin-stimulated glucose uptake in 3T3-L1 adipocytes was largely impaired in the presence of genipin, and recovered by CCCP, a mitochondrial uncoupler. Furthermore, genipin leaded to suppression of insulin signal transduction through hyperactivation of c-Jun N-terminal kinase (JNK) and subsequent serine phosphorylation of insulin receptor substrate-1 (IRS-1). These results suggest that mitochondrial uncoupling in adipocytes positively regulates insulin-stimulated glucose uptake in adipocytes, and UCP2 may play an important role in insulin resistance. 相似文献
4.
Berenguer M Zhang J Bruce MC Martinez L Gonzalez T Gurtovenko AA Xu T Le Marchand-Brustel Y Govers R 《Biochimie》2011,93(4):697-709
Insulin increases muscle and fat cell glucose uptake by inducing the translocation of glucose transporter GLUT4 from intracellular compartments to the plasma membrane. Here, we have demonstrated that in 3T3-L1 adipocytes, DMSO at concentrations higher than 7.5% augmented cell surface GLUT4 levels in the absence and presence of insulin, but that at lower concentrations, DMSO only enhanced GLUT4 levels in insulin-stimulated cells. At a 5% concentration, DMSO also increased cell surface levels of the transferrin receptor and GLUT1. Glucose uptake experiments indicated that while DMSO enhanced cell surface glucose transporter levels, it also inhibited glucose transporter activity. Our studies further demonstrated that DMSO did not sensitize the adipocytes for insulin and that its effect on GLUT4 was readily reversible (t1/2∼12 min) and maintained in insulin-resistant adipocytes. An enhancement of insulin-induced GLUT4 translocation was not observed in 3T3-L1 preadipocytes and L6 myotubes, indicating cell specificity. DMSO did not enhance insulin signaling nor exocytosis of GLUT4 vesicles, but inhibited GLUT4 internalization. While other chemical chaperones (glycerol and 4-phenyl butyric acid) also acutely enhanced insulin-induced GLUT4 translocation, these effects were not mediated via changes in GLUT4 endocytosis. We conclude that DMSO is the first molecule to be described that instantaneously enhances insulin-induced increases in cell surface GLUT4 levels in adipocytes, at least in part through a reduction in GLUT4 endocytosis. 相似文献
5.
C.N. Vishnu Prasad 《Biochemical and biophysical research communications》2009,380(1):39-43
Insulin stimulated GLUT4 (glucose transporter 4) translocation and glucose uptake in muscles and adipocytes is important for the maintenance of blood glucose homeostasis in our body. In this paper, we report the identification of kaempferitrin (kaempferol 3,7-dirhamnoside), a glycosylated flavonoid, as a compound that inhibits insulin stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes. In the absence of insulin, we observed that addition of kaempferitrin did not affect GLUT4 translocation or glucose uptake. On the other hand, kaempferitrin acted as an inhibitor of insulin-stimulated GLUT4 translocation and glucose uptake in 3T3-L1 adipocytes by inhibiting Akt activation. Molecular docking studies using a homology model of GLUT4 showed that kaempferitrin binds directly to GLUT4 at the glucose transportation channel, suggesting the possibility of a competition between kaempferitrin and glucose during the transport. Taken together, our data demonstrates that kaempferitrin inhibits GLUT4 mediated glucose uptake at least by two different mechanisms, one by interfering with the insulin signaling pathway and the other by a possible competition with glucose during the transport. 相似文献
6.
Fujimoto M Masuzaki H Tanaka T Yasue S Tomita T Okazawa K Fujikura J Chusho H Ebihara K Hayashi T Hosoda K Nakao K 《FEBS letters》2004,576(3):492-497
Evidence has accumulated that some of the angiotensin II AT1 receptor antagonists have insulin-sensitizing property. We thus examined the effect of telmisartan on insulin action using 3T3-L1 adipocytes. With standard differentiation inducers, a higher dose of telmisartan effectively facilitated differentiation of 3T3-L1 preadipocytes. Treatment of both differentiating adipocytes and fully differentiated adipocytes with telmisartan caused a dose-dependent increase in mRNA levels for PPARgamma target genes such as aP2 and adiponectin. By contrast, telmisartan attenuated 11beta-hydroxysteroid dehydrogenase type 1 mRNA level in differentiated adipocytes. Of note, we demonstrated for the first time that telmisartan augmented GLUT4 protein expression and 2-deoxy glucose uptake both in basal and insulin-stimulated state of adipocytes, which may contribute, at least partly, to its insulin-sensitizing ability. 相似文献
7.
Insulin regulates glucose uptake in adipocytes and muscle by stimulating the movement of sequestered glucose transporter 4 (GLUT4) proteins from intracellular membranes to the cell surface. Here we report that optimal insulin-mediated GLUT4 translocation is dependent upon both microtubule and actin-based cytoskeletal structures in cultured adipocytes. Depolymerization of microtubules and F-actin in 3T3-L1 adipocytes causes the dispersion of perinuclear GLUT4-containing membranes and abolishes insulin action on GLUT4 movements to the plasma membrane. Furthermore, heterologous expression in 3T3-L1 adipocytes of the microtubule-binding protein hTau40, which impairs kinesin motors that move toward the plus ends of microtubules, markedly delayed the appearance of GLUT4 at the plasma membrane in response to insulin. The hTau40 protein had no detectable effect on microtubule structure or perinuclear GLUT4 localization under these conditions. These results are consistent with the hypothesis that both the actin and microtubule-based cytoskeleton, as well as a kinesin motor, direct the translocation of GLUT4 to the plasma membrane in response to insulin. 相似文献
8.
Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes 总被引:4,自引:0,他引:4
Takahashi M Takahashi Y Takahashi K Zolotaryov FN Hong KS Kitazawa R Iida K Okimura Y Kaji H Kitazawa S Kasuga M Chihara K 《FEBS letters》2008,582(5):573-578
To explore a novel adipokine, we screened adipocyte differentiation-related gene and found that TIG2/chemerin was strongly induced during the adipocyte differentiation. Chemerin was secreted by the mature 3T3-L1 adipocytes and expressed abundantly in adipose tissue in vivo as recently described. Intriguingly, the expression of chemerin was differently regulated in the liver and adipose tissue in db/db mice. In addition, serum chemerin concentration was decreased in db/db mice. Chemerin and its receptor/ChemR23 were expressed in mature adipocytes, suggesting its function in autocrine/paracrine fashion. Finally, chemerin potentiated insulin-stimulated glucose uptake concomitant with enhanced insulin signaling in the 3T3-L1 adipocytes. These data establish that chemerin is a novel adipokine that regulates adipocyte function. 相似文献
9.
Saito K Lee S Shiuchi T Toda C Kamijo M Inagaki-Ohara K Okamoto S Minokoshi Y 《Analytical biochemistry》2011,(1):9-17
An enzymatic assay adapted to photometric analysis with 96-well microplates was evaluated for the measurement of 2-deoxyglucose (2DG) uptake in insulin-responsive tissues and differentiated 3T3-L1 adipocytes. For in vivo measurements, a small amount of nonradiolabeled 2DG was injected into mice without affecting glucose metabolism. For photometric quantification of the small amount of 2-deoxyglucose 6-phosphate (2DG6P) that accumulates in cells, we introduced glucose-6-phosphate dehydrogenase, glutathione reductase, and 5,5′-dithiobis(2-nitrobenzoic acid) to the recycling amplification reaction of NADPH. We optimized the enzyme reaction for complete oxidation of endogenous glucose 6-phosphate (G6P) and glucose in mouse tissues in vivo and serum as well as in 3T3-L1 adipocytes in vitro. All reactions are performed in one 96-well microplate by consecutive addition of reagents, and the assay is able to quantify 2DG and 2DG6P in the range of 5–80 pmol. The results obtained with the assay for 2DG uptake in vitro and in vivo in the absence or presence of insulin stimulation was similar to those obtained with the standard radioisotopic method. Thus, the enzymatic assay should prove to be useful for measurement of 2DG uptake in insulin-responsive tissues in vivo as well as in cultured cells. 相似文献
10.
Sigrid Verhasselt Christian V. Stevens Tom Van den broecke Marc E. Bracke Bart I. Roman 《Bioorganic & medicinal chemistry letters》2017,27(13):2986-2989
Myosin II is an interesting target for therapeutic intervention, as it is involved in a large number of motility-based diseases. (S)-Blebbistatin is a known micromolar inhibitor of this protein. A new series of (S)-blebbistatin derivatives with a modified A-ring was synthesized and the myosin II inhibitory properties were evaluated in vitro. In this way, we gained insight into the influence of structural modifications in this part of the scaffold on myosin II inhibitory potency. Our results indicate there are few possibilities for potency enhancement via ring A modification of the blebbistatin scaffold. 相似文献
11.
Björn Magnusson Lena M.S. Carlsson Kajsa Sjöholm 《Biochemical and biophysical research communications》2010,395(3):373-376
Activin B, consisting of two inhibin βB (INHBB) subunits, is a hormone known to affect gonadal function, reproduction and fetal development. We have reported that INHBB and activin B receptors are highly expressed in adipocytes suggesting that activin B may have local effects in adipose tissue. In this study, we investigate the effect of activin B on lipolysis, measured as release of non-esterified fatty acids and free glycerol. Recombinant activin B decreased lipolysis in a concentration-dependent manner and increased intracellular triglyceride content in 3T3-L1 adipocytes. siRNA-mediated knock-down of INHBB expression increased lipolysis, and this effect was abolished by addition of recombinant activin B. In line with its inhibitory effect on lipolysis, activin B caused a down regulation of the expression of adipose triglyceride lipase and hormone sensitive lipase, key genes involved in lipolysis. In summary, we suggest that activin B is a novel adipokine that inhibits lipolysis in a paracrine or autocrine manner. 相似文献
12.
Mulder AH Tack CJ Olthaar AJ Smits P Sweep FC Bosch RR 《American journal of physiology. Endocrinology and metabolism》2005,289(4):E627-E633
Activation of the sympathetic nervous system inhibits insulin-stimulated glucose uptake. However, the underlying mechanisms are incompletely understood. Therefore, we studied the effects of catecholamines on insulin-stimulated glucose uptake and insulin-stimulated translocation of GLUT4 to the plasma membrane in 3T3-L1 adipocytes. We found that epinephrine (1 microM) nearly halved insulin-stimulated 2-deoxyglucose uptake. The beta-adrenoceptor antagonist propranolol (0.3 microM) completely antagonized the inhibitory effect of epinephrine on insulin-stimulated glucose uptake, whereas the alpha-adrenoceptor antagonist phentolamine (10 microM) had no effect. When norepinephrine was used instead of epinephrine, the results were identical. None of the individual selective beta-adrenoceptor antagonists (1 microM, beta(1): metoprolol, beta(2): ICI-118551, beta(3): SR-59230A) could counteract the inhibitory effect of epinephrine. Combination of ICI-118551 and SR-59230A, as well as combination of all three selective beta-adrenoceptor antagonists, abolished the effect of epinephrine on insulin-stimulated glucose uptake. After differential centrifugation, we measured the amount of GLUT1 and GLUT4 in the plasma membrane and in intracellular vesicles by means of Western blotting. Both epinephrine and norepinephrine reduced insulin-stimulated GLUT4 translocation to the plasma membrane. These results show that beta-adrenergic (but not alpha-adrenergic) stimulation inhibits insulin-induced glucose uptake in 3T3-L1 adipocytes, most likely via the beta(2)- and beta(3)-adrenoceptor by interfering with GLUT4 translocation from intracellular vesicles to the plasma membrane. 相似文献
13.
Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes 总被引:1,自引:0,他引:1
Kang SI Ko HC Shin HS Kim HM Hong YS Lee NH Kim SJ 《Biochemical and biophysical research communications》2011,(4):1806-774
Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0–2, D0–D2), intermediate (days 2–4, D2–D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0–D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2–D4) and late stages (D4–D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes. 相似文献
14.
By a cell-based glucose uptake screening assay, a chalcone derivative, 3-nitro-2'-benzyloxychalcone (compound 1) was identified. Compound 1 stimulated glucose uptake and potentiated insulin-stimulated glucose uptake in a concentration-dependent manner in 3T3-L1 adipocytes. When cells were treated with various concentrations of insulin in the presence of compound 1, marked enhancement of insulin-stimulated glucose uptake was observed at each concentration, suggesting that the compound might function as an insulin sensitizer. Preliminary study on the structure-activity relationships revealed that two aromatic benzene rings tolerated several substituents, but substitution by acidic or highly polar groups abolished the activity. Among several chalcone derivatives, 4-chloro-2'-benzyloxychalcone (compound 8) showed the highest level of activity. Compound 8-stimulated glucose uptake was almost completely inhibited by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). These results suggest that the action of chalcone derivatives is mediated via a pathway involving PI3K. 相似文献
15.
Molero JC Whitehead JP Meerloo T James DE 《The Journal of biological chemistry》2001,276(47):43829-43835
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 microm nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 microm nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 microm) significantly inhibited basal and insulin-stimulated glucose uptake in adipocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 microm nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 microm nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degrees C. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects. 相似文献
16.
Duxbury MS Ashley SW Whang EE 《Biochemical and biophysical research communications》2004,313(4):992-997
Blebbistatin is a novel 1-phenyl-2-pyrrolidinone derivative capable of inhibiting non-muscle myosin II activity with a high degree of specificity. We examined the effects of blebbistatin on pancreatic adenocarcinoma cellular migration, invasion, adhesion, and spreading. Blebbistatin dose-dependently inhibited cellular migration and invasiveness, quantified by modified Boyden chamber assay. Matrix metalloproteinase 2 and 9 activities were unaffected by blebbistatin and cellular proliferation was inhibited only by concentrations of blebbistatin exceeding those required to inhibit myosin II activity and to interfere with migration and invasion. While blebbistatin treatment did not affect cell adhesion to the extracellular matrix component fibronectin, it markedly impaired cell spreading on this substrate. Cell surface expression of the archetypal fibronectin receptor (alpha(5)beta(1) integrin) was unaffected by blebbistatin. Our observations illustrate the critical role of non-muscle myosin II in pancreatic adenocarcinoma cellular invasiveness and extracellular matrix interaction and suggest that therapeutic strategies targeting myosin II warrant further investigation. 相似文献
17.
Yang JY Della-Fera MA Baile CA 《Apoptosis : an international journal on programmed cell death》2006,11(8):1371-1378
Adipose tissue mass is determined by the volume and the number of adipocytes and is subjected to homeostatic regulation involving
cell death mechanisms. We investigated the effects of esculetin, a coumarin compound, on apoptotic signaling in 3T3-L1 adipocytes.
Esculetin treatment induced an increase in expression of Bax with a concomitant decrease of Bcl-2 in a time-dependent manner.
Esculetin treatment also resulted in translocation of cytochrome c from mitochondria to cytosol and cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP)-1, resulting in the accumulation
of an 85 kDa cleavage product in a caspase-dependent manner. Furthermore, esculetin selectively altered the phosphorylation
state of members of the MAPK superfamily, causing dephosphorylation of extracellular signal-regulating kinase 1/2 (ERK1/2)
and hyperphosphorylation of c-Jun-N-terminal kinase (JNK). In addition, an inhibitor of the JNK MAP kinase pathway, SP600125,
reduced esculetin-induced cytochrome c release. These results indicate that esculetin mediated adipocyte apoptosis involves the mitochondrial pathway. Esculetin
thus decreases adipocyte number by initiating this apoptotic process in 3T3-L1 adipocytes.
This work was supported by the Georgia Research Alliance, AptoTec, Inc., and by the Georgia Research Alliance Eminent Scholar
endowment held by CAB. 相似文献
18.
S F Hausdorff D C Fingar K Morioka L A Garza E L Whiteman S A Summers M J Birnbaum 《The Journal of biological chemistry》1999,274(35):24677-24684
The current studies investigated the contribution of phosphatidylinositol 3-kinase (PI3-kinase) isoforms to insulin-stimulated glucose uptake and glucose transporter 4 (GLUT4) translocation. Experiments involving the microinjection of antibodies specific for the p110 catalytic subunit of class I PI3-kinases demonstrated an absolute requirement for this form of the enzyme in GLUT4 translocation. This finding was confirmed by the demonstration that the PI3-kinase antagonist wortmannin inhibits GLUT4 and insulin-responsive aminopeptidase translocation with a dose response identical to that required to inhibit another class I PI3-kinase-dependent event, activation of pp70 S6-kinase. Interestingly, wortmannin inhibited insulin-stimulated glucose uptake at much lower doses, suggesting the existence of a second, higher affinity target of the drug. Subsequent removal of wortmannin from the media shifted this dose-response curve to one resembling that for GLUT4 translocation and pp70 S6-kinase. This is consistent with the lower affinity target being p110, which is irreversibly inhibited by wortmannin. Wortmannin did not reduce glucose uptake in cells stably expressing Myr-Akt, which constitutively induced GLUT4 translocation to the plasma membrane; this demonstrates that wortmannin does not inhibit the transporters directly. In addition to elucidating a second wortmannin-sensitive pathway in 3T3-L1 adipocytes, these studies suggest that the presence of GLUT4 on the plasma membrane is not sufficient for activation of glucose uptake. 相似文献
19.
Kovacic PB Chowdhury HH Velebit J Kreft M Jensen J Zorec R 《The Journal of biological chemistry》2011,286(15):13370-13381
Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose. 相似文献
20.
Hickson GR Chamberlain LH Maier VH Gould GW 《Biochemical and biophysical research communications》2000,270(3):841-845
Insulin-stimulates glucose transport in peripheral tissues by stimulating the movement ('translocation') of a pool of intracellular vesicles containing the glucose transporter Glut4 to the cell surface. The fusion of these vesicles with the plasma membrane results in a large increase in the numbers of Glut4 molecules at the cell surface and a concomitant enhancement of glucose uptake. It is well established that proteins of the VAMP- (synaptobrevin) and syntaxin-families play a fundamental role in the insulin-stimulated fusion of Glut4-containing vesicles with the plasma membrane. Studies have identified key roles for vesicle associated membrane protein-2 (VAMP2) and syntaxin-4 in this event, and more recently have also implicated SNAP-23 and Munc18c in this process. In this study, we have quantified the absolute levels of expression of these proteins in murine 3T3-L1 adipocytes, with the objective of determining the stoichiometry of these proteins both relative to each other and also in comparison with previous estimates of Glut4 levels within these cells. To achieve this, we performed quantitative immunoblot analysis of these proteins in 3T3-L1 membranes compared to known amounts of purified recombinant proteins. Such analyses suggest that in 3T3-L1 adipocytes there are approximately 374,000 copies of syntaxin 4, 1.15 x 10(6) copies of SNAP23, 495,000 copies of VAMP2, 4.3 x 10(6) copies of cellubrevin and 452,000 copies of Munc18c per cell, compared to previous estimates of 280,000 copies of Glut4. Thus, the main SNARE proteins involved in insulin-stimulated Glut4 exocytosis (syntaxin 4 and VAMP2) are expressed in approximately equimolar amounts in adipocytes, whereas by contrast the endosomal v-SNARE cellubrevin is present at approximately 10-fold higher levels and the t-SNARE SNAP-23 is also present in an approximately 3-fold molar excess. The implications of this quantification for the mechanism of insulin-stimulated Glut4 translocation are discussed. 相似文献