首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kabeya D  Sakai S 《Annals of botany》2003,92(4):537-545
Quercus seedlings have hypogeal cotyledons and tap roots, both of which act as storage organs. The importance of the storage function in the two organs may change as the seedling develops. Therefore, changes in carbohydrate reserves in cotyledons and roots of Q. crispula grown under 40 % and 3 % of full light from shoot emergence to the completion of the first leaf flush were monitored. In addition, a shoot-clipping treatment was performed to examine the relative contribution of the cotyledons and tap roots to resprouting. Cotyledons maintained large amounts of nonstructural carbohydrates during shoot development, and carbohydrates were still present in the cotyledons during the final phase of leaf flush. In addition, a notable increase in the amount of carbohydrates was observed in tap roots before leaf flush at both light levels. Since root development occurred before leaf flush, even in plants grown under 3 % light, the carbohydrate found in them presumably originated from seed reserves and was translocated to roots as storage reserves. When shoots were clipped at the leaf flushing stage, the amount of carbohydrate decreased only in the cotyledons after resprouting, suggesting that cotyledons act as the main storage organs during shoot development stages. However, it could be advantageous as a 'risk avoidance strategy' for the seedlings to store reserves in both cotyledons and roots, since cotyledons may be removed by predators during shoot development.  相似文献   

2.
Previous studies suggest that the positive response of transplanted rice (Oryza sativa L.) to nursery fertiliser application was due to increased seedling vigour or possibly to increased nutrient content. This paper presents results of two glasshouse experiments designed to test the hypothesis that seedling vigour was responsible for the response of transplanted seedlings to nursery treatments. The aim of the present study was to explore the concept of seedling vigour of transplanted rice and to determine what plant attributes conferred vigour on the seedlings. Seedling vigour treatments were established by subjecting seedlings to short-term submergence (0, 1 and 2 days/week) in one experiment and to leaf clipping or root pruning and water stress in another to determine their effect on plant growth after transplanting. Submerging seedlings increased plant height but depressed shoot and root dry matter and root:shoot ratio of the seedling at 28 days after sowing. After transplanting these seedlings, prior submergence depressed shoot dry matter at 40 days. Nursery nutrient application increased plant height, increased root and shoot dry matter, but generally decreased root:shoot ratio. Pruning up to 60% of the roots at transplanting decreased shoot and root dry matter, P concentration in leaves at panicle initiation (PI) and straw dry matter and grain yield at maturity. By contrast, pruning 30% of leaves depressed shoot and root dry matter by 30% at PI, and root dry matter and straw and grain yield by 20% at maturity. The combined effects of leaf clipping and root pruning on shoot, root and straw dry matter were largely additive. It is concluded that the response of rice yield to nursery treatments is largely due to increased seedling vigour and can be effected by a range of nutritional as well as non-nutritional treatments of seedlings that increase seedling dry matter, nutrient content, and nutrient concentration. Impairment of leaf growth and to a lesser extent root growth in the nursery depressed seedling vigour after transplanting. However, rather than increasing stress tolerance, seedling vigour was more beneficial when post transplant growth was not limited by nutrient or water stresses.  相似文献   

3.
Many studies have shown that root–shoot imbalance influences vegetative growth and development of cotton (Gossypium hirsutum L.), but few have examined changes in leaf senescence and endogenous hormones due to stem girdling. The objective of this study was to determine the correlation between some endogenous phytohormones, particularly cytokinins and abscisic acid (ABA), and leaf senescence following stem girdling. Field-grown cotton plants were girdled on the main stem 5 days after squaring (DAS), while the non-girdled plants served as control. Plant biomass, seed cotton yield, main-stem leaf photosynthetic (Pn) rate, chlorophyll (Chl) and malondialdehyde (MDA) concentrations, as well as levels of cytokinins and ABA in main-stem leaves and xylem sap were determined after girdling or at harvest. Main-stem girdling decreased the dry root weight and root/shoot ratio from 5 to 70 days after girdling (DAG) and reduced seed cotton yield at harvest. Main-stem leaf Pn and Chl concentration in girdled plants were significantly lower than in control plants. Much higher levels of MDA were observed in main-stem leaves from 5 to 70 DAG, suggesting that stem girdling accelerated leaf senescence. Girdled plants contained less trans-zeatin and its riboside (t-Z + t-ZR), dihydrozeatin and its riboside (DHZ + DHZR), and isopentenyladenine and its riboside (iP + iPA), but more ABA than control plants in both main-stem leaves and xylem sap. These results suggested that main-stem girdling accelerated leaf senescence due to reduced levels of cytokinin and/or increased ABA. Cytokinin and ABA are involved in leaf senescence following main-stem girdling.  相似文献   

4.
The growth of the shoot and roots of seedling plants of cocoa (Theobroma cacao L.) under constant glasshouse conditions showed a rhythmic cycle, with the maximum growth stages of each alternating in a regular sequence. When the growth cycle of the shoot was upset by removing all new leaves immediately after unfolding, the roots showed a high constant growth rate during this period, suggesting that normally the rapidly expanding leaves exert an inhibitory influence on the roots. Conversely removal of portions of the root delayed the production of new leaves in the shoot. The level of soluble and starch carbohydrate in the mature leaves, roots and stem declined during the period of expansion of the flush leaves, but accumulated again at the end of the leaf expansion stage. It is likely that this reserve carbohydrate was remobilised and translocated to the flush leaves during their period of expansion. A large proportion of newly formed photoassimilate, as shown by the distribution of 14C radioactivity from different source leaves, was also translocated to the young leaves during expansion. The large sink created by these leaves may cause photoassimilate and reserve carbohydrate to be diverted from the roots, thereby inhibiting root growth during the stage of leaf expansion. It is suggested that the rhythmic leaf production at the apex may control the growth cycle of the roots.  相似文献   

5.
In laboratory and greenhouse experiments with potted plants, shoots and roots are exposed to temperature regimes throughout a 24 h (diel) cycle that can differ strongly from the regime under which these plants have evolved. In the field, roots are often exposed to lower temperatures than shoots. When the root‐zone temperature in Ricinus communis was decreased below a threshold value, leaf growth occurred preferentially at night and was strongly inhibited during the day. Overall, leaf expansion, shoot biomass growth, root elongation and ramification decreased rapidly, carbon fluxes from shoot to root were diminished and carbohydrate contents of both root and shoot increased. Further, transpiration rate was not affected, yet hydrostatic tensions in shoot xylem increased. When root temperature was increased again, xylem tension reduced, leaf growth recovered rapidly, carbon fluxes from shoot to root increased, and carbohydrate pools were depleted. We hypothesize that the decreased uptake of water in cool roots diminishes the growth potential of the entire plant – especially diurnally, when the growing leaf loses water via transpiration. As a consequence, leaf growth and metabolite concentrations can vary enormously, depending on root‐zone temperature and its heterogeneity inside pots.  相似文献   

6.
Summary Stomatal conductance of unstrossed, soil drought, and previously drought (predrought) Gmelina arborea seedlings increased in the morning and decreased before or immediately after midday. In the unstressed and predrought seedlings, leaf water potential decreased with increases in transpiration. In soil drought seedlings, there was some evidence of decreased hydraulic conductivity from soil to the plant, as indicated by the shape in the slope of the water potential/transpiration relationship. Root growth of drought plants was greater than in their unstressed counterparts at the lowest soil segment of a pot. The partial recovery of predrought seedlings was attributed to this subtantial root growth in the lowest soil segment.In the second experiment, Gmelina arborea seedlings were partially waterlogged, by flooding the polyethylene bag to half its length, for a period of 23 days. Waterlogging induced stomatal closure and reduction in leaf water potential but there was some evidence of tolerance to waterlogging towards the end of treatment. Root growth, shoot and root dry weights were slightly reduced below those of controls. After 9 days of waterlogging, adventitious roots began to form which correlated with depletion of soluble sugars in the shoot but with an increase in the roots.It is suggested that the tolerance of Gmelina plants to either soil drought or waterlogging may partly be due to partitioning of the soluble sugars from shoot to roots for production of roots and formation of adventitious roots respectively which are likely to enhance the flow of water from the soils to the plant. Therefore the plant response is very similar under conditions of increased deficits and surplus of soil water.  相似文献   

7.
Mutants and transformants of tobacco (Nicotiania tabacum L. cv Gatersleben 1) with decreased expression of nitrate reductase have been used to investigate whether nitrate accumulation in the shoot acts as a signal to alter allocation between shoot and root growth. (a) Transformants with very low (1–3% of wild-type levels) nitrate reductase activity had growth rates, and protein, amino acid and glutamine levels similar to or slightly lower than a nitrate-limited wild-type, but accumulated large amounts of nitrate. These plants should resemble a nitrate-limited wild-type, except in responses where nitrate acts as a signal. (b) Whereas the shoot:root ratio decreases from about 3.5 in a well-fertilized wild-type to about 2 in a nitrate-limited wild-type, the transformants had a very high shoot:root ratio (8–10) when they were grown on high nitrate. When they were grown on lower nitrate concentrations their shoot:root ratio declined progressively to a value similar to that in nitrate-limited wild-types. Mutants with a moderate (30–50%) decrease of nitrate reductase also had a small but highly significant increase of their shoot:root ratio, compared to the wild-type. The increased shoot:root ratio in the mutants and transformants was due to a stimulation of shoot growth and an inhibition of root growth. (c) There was a highly significant correlation between leaf nitrate content and the shoot:root ratio for eight genotypes growing at a wide range of nitrate supply. (d) A similar increase of the shoot:root ratio in nitrate reductase-deficient plants, and correlation between leaf nitrate content and the shoot:root ratio, was found in plants growing on ammonium nitrate. (f) Split-root experiments, in which the transformants were grown with part of their root system in high nitrate and the other part in low nitrate, showed that root growth is inhibited by the accumulation of nitrate in the shoot. High concentrations of nitrate in the rooting medium actually stimulate local root growth. (g) The inhibition of root growth in the transformants was relieved when the transformants were grown on limiting phosphate, even though the nitrate content of the root remained high. This shows that the nitrate-dependent changes in allocation can be overridden by other signals that increase allocation to root growth. (h) The reasons for the changed allocation were investigated in transformants growing normally, and in split-root culture. Accumulation of nitrate in the shoot did not lead to decreased levels of amino acids or protein in the roots. However, it did lead to a strong inhibition of starch synthesis and turnover in the leaves, and to decreased levels of sugars in the root. The rate of root growth was correlated with the root sugar content. It is concluded that these changes of carbon allocation could contribute to the changes in shoot and root growth.  相似文献   

8.
A rhizosphere fungus was isolated from roots of chilli plants and identified as Aspergillus spp. PPA1. The fungus was tested for its ability to promote the growth of cucumber plants in a pot experiment. Cucumber seeds were sown in sterilised field soil amended with wheat grain inoculum (WGI) of PPA 1 at the rate of 0.5, 1 and 1.5% w/w, and plants were grown for 21 days in a net house. The treatment with PPA1 significantly increased shoot length, shoot fresh weight, shoot dry weight, root length, root fresh weight, root dry weight, plant length, leaf area and leaf chlorophyll content of cucumber plants compared to non-treated control. The growth promotion rate increased with the increasing concentration of inoculum of PPA1 applied to the soil. The fungus was re-isolated from the roots of cucumber plants at higher frequencies. These results suggest that Aspergillus spp. PPA1 is a root colonising plant-growth promoting fungus for cucumber.  相似文献   

9.
The levels of indol-3yl-acetic acid and gibberellins were determined in shoots and storage roots of radish (Raphanus sativus L.) at various times during the vegetative growth cycle of control plants and plants in which the root to shoot ratio was modified by daminozide treatment. In control plants the onset of storage organ growth was preceded by a change in the hormone root to shoot ratio to favour the root. There was a general reduction in hormone levels in daminozide-treated plants but the pattern of their distribution in roots and shoots was very similar to that in control plants. Thus the effects of daminozide on increased storage root growth cannot be explained in terms of altered root to shoot hormone ratios.  相似文献   

10.
Populations of sugarbeet (Beta vulgaris L.) plants that differed in taproot/leaf weight ratio and in photosynthate partitioning between taproots and fibrous roots did not differ in root/shoot ratio as indicated by relative dry weight distribution. Based on the hypothesis that dry weight distribution is influenced by the metabolism of imported sucrose, we examined the relationships between the activity of the enzymes of sucrose metabolism and dry weight distribution as a function of genotype and ontogeny. A decreased specific activity of acid invertase in taproots was associated with increased taproot/fibrous root weight ratio at 21 and at 28 days post-emergence. Alkaline invertase activity was negatively correlated with taproot/fibrous root weight ratio at 28 days. Sucrose synthetase specific activities of taproots were not correlated with dry matter distribution. Acid invertase may influence photosynthate partitioning between the taproot and fibrous roots via regulation of sucrose levels in the region of fibrous root initiation.  相似文献   

11.
Influence of soil water deficits on root growth of cotton seedlings   总被引:5,自引:0,他引:5  
Summary Cotton (Gossypium hirsutum L. cv. H14) seedlings were raised in soil of differing soil water content in specially designed pots in which the roots had access to freely available water and nutrients located 2.5 cm below the base of the soil core. The time for root emergence from the soil core and the rate of root growth were measured daily from sowing to harvest. The root and shoot dry weight and leaf water potential were measured at the final harvest 16 days after sowing. As soil water content decreased, the root emerged from the soil earlier and the initial rate of root elongation was faster. In spite of the availability of freely available water, the plants in the soil at low water contents had significantly lower leaf water potentials than those in soil at high water contents. The root: shoot ratio increased as the soil water content decreased. This arose from an absolute increase in root weight, with shoot weight not being significantly affected.  相似文献   

12.
Cytokinin oxidase plays an important role in the cytokinin regulatory processes. We have cloned a novel putative cytokinin oxidase, DSCKX1 (D endrobium Sonia cytokinin oxidase), by mRNA differential display from shoot apices of Dendrobium Sonia cultured in the presence of BA. The DSCKX1 gene appears to have three alternative splicing forms and its expression of DSCKX1 was induced in a tissue-specific manner by cytokinins. In transgenic orchid plants overexpressing DSCKX1, the elevated level of cytokinin oxidase activity was accompanied by a reduction of cytokinin content. These plants exhibited slow shoot growth with numerous and long roots in vitro. Their calli also showed decreased capability of shoot formation. Conversly, antisense transgenic plants showed rapid proliferation of shoots and inhibition of root growth combined with a higher endogenous cytokinin content than wild-type plants. Thus DSCKX1 appears to play an important role on cytokinin metabolism and the related developmental programmes in orchid.  相似文献   

13.
Relations between cytokinin concentrations and effects of P and vesicular-arbuscular mycorrhizal (VAM) infection were investigated in Plantago major L. ssp. pleiosperma Pilger. Both mycorrhizal infection by Glomus fasciculatum (Thaxt. sensu Gerdemann) Gerdemann and Trappe and P addition increased the shoot to root ratio, specific leaf area (SLA), and P concentrations of shoot and roots, and decreased the percentage of dry matter in the shoot during the experiment. In general, P concentration in the shoot and roots of each treatment correlated positively with the shoot to root ratio and specific leaf area, and negatively with the percentage of dry matter in the shoot. Cytokinin concentrations in the tissue of shoots and roots were determined using an enzyme-linked immunosorbent assay. Concentrations of zeatin and zeatin-ribosides in the free base and nucleotide fractions had increased more after P addition than in the case of mycorrhizal infection in both shoot and roots, whereas the P concentrations had increased less. It is suggested that zeatin and zeatin-ribosides are not the primary growth-substances involved in mediating VAM effects.  相似文献   

14.
Large and high nitrogen (N) concentration seedlings frequently have higher survival and growth in Mediterranean forest plantations than seedlings with the opposite traits, which has been linked to the production of deeper and larger root systems in the former type of seedlings. This study assessed the influence of seedling size and N concentration on root growth dynamics and its relation to shoot elongation in Aleppo pine (Pinus halepensis Mill.) seedlings. We cultivated seedlings that differed in size and tissue N concentration that were subsequently transplanted into transparent methacrylate tubes in the field. The number of roots, root depth, and the root and shoot elongation rate (length increase per unit time) were periodically measured for 10 weeks. At the end of the study, we also measured the twig water potential (ψ) and the mass of plant organs. New root mass at the end of the study increased with seedling size, which was linked to the production of a greater number of new roots of lower specific length rather than to higher elongation rate of individual roots. Neither plant size nor N concentration affected root depth. New root mass per leaf mass unit, shoot elongation rate, and pre-dawn ψ were reduced with reduction in seedling size, while mid-day ψ and the root relative growth rate were not affected by seedling size. N concentration had an additive effect on plant size on root growth but its overall effect was less important than seedling size. Shoot and roots had an antagonistic elongation pattern through time in small seedlings, indicating that the growth of both organs depressed each other and that they competed for the same resources. Antagonism between shoot and root elongation decreased with plant size, disappearing in large and medium seedlings, and it was independent of seedling N concentration. We conclude that root and shoot growth but not rooting depth increased with plant size and tissue N concentration in Aleppo pine seedlings. Since production of new roots is critical for the establishment of planted seedlings, higher absolute root growth in large seedlings may increase their transplanting performance relative to small seedlings. The lack of antagonism between root and shoot growth in large seedlings suggests that these plants can provide resources to sustain simultaneous growth of both organs.  相似文献   

15.
Maize seedlings were grown for 10 to 20 days in either nutrient solution or in soils with or without fertilizer supply. Air temperature was kept uniform for all treatments, while root zone temperature (RZT) was varied between 12 and 24°C. In some treatments the basal part of the shoot (with apical shoot meristem and zone of leaf elongation) was lifted up to separate the indirect effects of root zone temperature on shoot growth from the direct effects of temperature on the shoot meristem.Shoot and root growth were decreased by low RZT to a similar extent irrespective of the growth medium (i.e. nutrient solution, fertilized or unfertilized soil). In all culture media Ca concentration was similar or even higher in plants grown at 12 as compared to 24°. At lower RZT concentrations of N, P and K in the shoot dry matter decreased in unfertilized soil, whereas in nutrient solution and fertilized soil only the K concentration decreased.When direct temperature effects on the shoot meristem were reduced by lifting the basal part of the shoot above the temperature-controlled root zone, shoot growth at low RZT was significantly increased in nutrient solution and fertilized soil, but not in unfertilized soil. In fertilized soil and nutrient solution at low RZT the uptake of K increased to a similar extent as plant growth, and thus shoot K concentration was not reduced by increasing shoot growth rates. In contrast, uptake of N and P was not increased, resulting in significantly decreased shoot concentrations.It is concluded that shoot growth at suboptimal RZT was limited both by a direct temperature effect on shoot activity and by a reduced nutrient supply through the roots. Nutrient concentrations in the shoot tissue at low RZT were not only influenced by availability in the substrate and dilution by growth, but also by the internal demand for growth.  相似文献   

16.
A rhizosphere fungus was isolated from roots of bermudagrass (Cynodon dactylon) and identified as Fusarium spp. PPF1. A pot experiment was conducted to test its ability to promote the vegetative growth of Indian spinach seedlings (Basella alba). Indian spinach seeds were sown in sterilised field soil amended with wheat grain inoculum of PPF1 at the rate of 0.5 and 1.0% w/w, and plants were grown for 21?days in a net house. Significantly, higher germination percentage and vigour index were observed due to application of PPF1 in the potting soil. Treatment with PPF1 also significantly increased shoot length, shoot fresh weight, shoot dry weight, root length, root fresh weight, root dry weight, leaf area and leaf chlorophyll content of cucumber plants compared to non-treated control. The growth promotion rate increased with the increasing concentration of inoculum of PPF1 applied to the soil. The fungus was re-isolated from the roots of cucumber plants at higher frequencies, while a positive co-relation was found between the root colonisation ability and the plant growth enhancement by the isolate. These results suggest that growth promotion effect of Fusarium spp. PPF1 on Indian spinach (B. alba) are linked to root colonisation ability of the fungus.  相似文献   

17.
Leaf net CO2 uptake and leaf photosynthetic capacity were investigated in micropropagated 41B grapevine rootstock (Vitis vinifera‘Chasselas’×Vitis berlandieri, Mill. De Gr.) plants grown in the presence of four sucrose concentrations (6.25, 12.5, 25.0 or 37.5 g l?1). Sucrose concentration in the medium during growth in vitro did not affect the leaf photosynthetic performance of plants neither before nor after transplantation. The maximum photosynthetic rate, measured as CO2-dependent O2 evolution, was 7.3 µmol m?2 s?1 before transplanting and 15.4 µmol m?2 s?1 one month after transplantation. The maximum quantum yield of O2 evolution (on the basis of incident light) was about 0.07 for all sucrose treatments both before and after transplantation. Dry biomass before transplanting was highest in plants grown with 25.0 or 37.5 g l?1 sucrose in the medium. One month after transplantation the highest dry biomass was also observed for the same treatments. Survival of plants was 100% for all treatments. Leaf conductance to water vapour was always higher in plants before than after transplantation. Both before and after transplanting it increased with increasing light intensity and decreased slightly with increasing CO2 molar ratio in in vitro plants. Stomata of plants before transplantation were unresponsive to vapour pressure deficit. In vitro plants experience an acute water stress when they are maintained with the whole root system in water and exposed to ambient controlled conditions in a growth chamber. However, there was no wilting of the leaves when similar plants with roots cut off were left in the same conditions. Hydraulic conductivity was low at both root and shoot-root connection levels. It is likely that water supply could be limiting during transplantation because of the low root and root-stem connection conductivity. Water uptake by roots rather than water loss from the shoots would be of primary importance for the maintenance of water balance during acclimatisation.  相似文献   

18.
Root pruning of wheat seedlings resulted in 2–10 foldincrease in the concentration of IAA in roots ascompared to the control level, which might beresponsible for the observed initiation of lateralroot growth. Cytokinin concentration in xylem sap wasdecreased initially by 60% by pruning in accordancewith the reduction in the hormone-producing organ.Nevertheless cytokinin content in the shoots remainedhigh, which might be due to a decrease in cytokinindecay registered in vitro. A subsequent increasein the export of cytokinins from roots up to thecontrol level demonstrated an elevated ability of thepruned organ to synthesise the hormone. The highcytokinin content in the shoots correlated with theability of the plants to maintain their transpirationand growth at the level of intact plants. Both IAA andcytokinins seem to be important in the restoration ofthe shoot/root balance disturbed by root pruning.  相似文献   

19.
In experiments with rooted cuttings of aspen (Populus tremula L). with a small leaf area, it was found that the roots grew well as long as there was no shoot growth. The onset of shoot growth was followed by a period of decreased root growth. When the leaf area had increased sufficiently, root growth recovered. Decreasing the shoot growth by removal of growth points in the shoot or by short day treatment increased the fraction of photosynthesis products used for root growth, leading to increased root/shoot ratios. Competition between growing shoots and roots for carbohydrates formed in photosynthesis is considered to cause the effects noted and to be of importance for maintaining the balance between the root and shoot systems.  相似文献   

20.
The role of roots in the enhancement of cytokinin content and leaf growth of Phaseolus vulgaris plants after decapitation and partial defoliation was investigated. Partial excision of the roots of plants which were decapitated above the primary leaf node resulted in a reduction of leaf growth and soluble proteins accumulation in the primary leaves. Roots excision was done at time of decapitation and repeated 8 days later. Endogenous cytokinins, known to be involved in enhancing shoot growth, accumulated in the leaves and stems of decapitated and partially defoliated plants. Lower levels of cytokinins were detected in the leaves of decapitated plants with only a partial root system. The level of cytokinins in the roots of decapitated plants was reduced by partial root excision. The growth and accumulation of cytokinins in leaves were, however, not totally suppressed by removing a large proportion of the roots. At the commencement of the experiment the stem had a higher cytokinin content than both the leaves and roots. This suggests that the stem could be an alternative source of cytokinins to the leaves. The cytokinin complement in the leaves of decapitated plants is not identical to that in the roots. It appears that cytokinins supplied by the roots are metabolized in the leaves, or that alternatively certain cytokinins are synthesized in the leaves themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号