首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe novel potent endothelin (ET) antagonists that are highly potent and selective for the ETA receptor (selective to ET-1). Of the synthetic analogs based on ETA antagonist BE-18257A isolated from Streptomyces misakiensis (IC50 value for ETA receptor on porcine aortic smooth muscle cells (VSMCs); 1.4 microM), the compounds BQ-123 and BQ-153 greatly improved the binding affinity of [125I]ET-1 for ETA receptors on VSMCs (IC50; 7.3 and 8.6 nM, respectively), whereas they barely inhibited [125I]ET-1 binding to ETB receptors (nonselective with respect to isopeptides of ET family) in the cerebellar membranes (IC50; 18 and 54 microM, respectively). Associated with the increased affinity for ETA receptors, these peptides antagonized ET-1-induced constriction of isolated porcine coronary artery. However, there was a small amount of ET-1-induced vasoconstriction resistant to these antagonists, which paralleled the incomplete inhibition of [125I]ET-1 binding in the membrane of the aortic smooth muscle layer. These data suggest that the artery has both ETA and ETB receptors responsible for ET-1-induced vasoconstriction. The antagonists shifted the concentration-response curve to the right for ET-1 in the coronary artery, and increased the apparent dissociation constant in the Scatchard analysis of [125I]ET-1 binding on the VSMCs without affecting the binding capacity, indicative of the competitive antagonism for ETA receptor. In conscious rats, pretreatment with the antagonists markedly antagonized ET-1-induced sustained pressor responses in dose-dependent fashion without affecting ET-1-induced transient depressor action, suggesting that the pressor action is mediated by ETA receptors, while the depressor action is mediated by ETB receptors. In addition, pretreatment with the potent antagonists prevented ET-1-induced sudden death in mice. Thus, these potent ETA antagonists should provide a powerful tool for exploring the therapeutic uses of ETA antagonists in putative ET-1-related disorders.  相似文献   

2.
Venous smooth muscle contains vasoconstrictor ETB-like receptors.   总被引:30,自引:0,他引:30  
Two endothelin (ET) receptor subtypes have been identified to date: the ETA receptor which preferentially binds ET-1 over ET-3, and the ETB receptor which is non-selective. This study characterized the ET receptor subtypes present in several vascular smooth muscle preparations using standard in vitro techniques. In all but one of the arteries tested, ET-3 was significantly less potent than ET-1. In contrast, the potency of ET-3 was very similar to that of ET-1 in all of the veins. The selective ETA receptor antagonist BQ-123 blunted the ET-1 contractions in rabbit carotid artery, but not in saphenous vein. The selective ETB receptor ligand sarafotoxin S6c contracted the rabbit saphenous vein, but not the carotid artery. These data suggest that vascular smooth muscle cells express ETA and ETB receptors. Stimulation of either receptor subtype can result in force development.  相似文献   

3.
A linear endothelin (ET) analog, N-acetyl-LeuMetAspLysGluAlaValTyrPheAlaHisLeu-AspIleIleTrp (BQ-3020), is highly selective for ETB receptors. BQ-3020 displaces [125I]ET-1 binding to ETB receptors (nonselective to ET isopeptides) in porcine cerebellar membranes (IC50: 0.2nM) at a concentration 4,700 times lower than that to ETA receptors (selective to ET-1) on aortic vascular smooth muscle cells (VSMC) (IC50: 940nM). BQ-3020 as well as ET-1 and ET-3 elicits vasoconstriction in the rabbit pulmonary artery. The ETA antagonist BQ-123 failed to inhibit this BQ-3020-induced vasoconstriction. Furthermore, BQ-3020 elicits endothelium-dependent vasodilation. These data indicate that BQ-3020 has ETB agonistic activity. The radioligand [125I]BQ-3020 binds to cerebellar membranes at single high affinity sites (Kd = 34.4pM), whereas it scarcely binds to VSMC. [125I]BQ-3020 binding to the cerebellum was displaced by BQ-3020, ET-1 and ET-3 in a nonselective manner (IC50: 0.07-0.17nM). However, the binding of [125I]BQ-3020 was insensitive to the ETA antagonist BQ-123 and other bioactive peptides. Both [125I]ET-1 and [125I]BQ-3020 show slow onset and offset binding kinetics to ETB receptors. These data indicate that the radioligand [125I]BQ-3020 selectively labels ETB receptors and that the slow binding kinetics of ET-1 are dependent on the peptide sequence from Leu6 to Trp21, but not on the structure formed by its two disulfide bridges.  相似文献   

4.
An increase in coronary perfusion pressure leads to increased cardiac contractility, a phenomenon known as the Gregg effect. Exogenous endothelin (ET)-1 exerts a positive inotropic effect; however, the role of endogenous ET-1 in the contractile response to elevated load is unknown. We characterized here the role of ETA and ETB receptors in regulation of contractility in isolated, perfused mouse hearts subjected to increased coronary flow. Elevation of coronary flow from 2 to 5 ml/min resulted in 80 +/- 10% increase in contractile force (P < 0.001). BQ-788 (ETB receptor antagonist) augmented the load-induced contractile response by 35% (P < 0.05), whereas bosentan (ETA/B receptor antagonist) and BQ-123 (ETA receptor antagonist) attenuated it by 34% and 56%, respectively (P < 0.05). CV-11974 (ANG II type 1 receptor antagonist) did not modify the increase in contractility. These results show that endogenous ET-1 is a key mediator of the Gregg effect in mouse hearts. Moreover, ET-1 has a dual role in the regulation of cardiac contractility: ETA receptor-mediated increase in contractile force is suppressed by ETB receptors.  相似文献   

5.
We have demonstrated the different distribution of two distinct endothelin (ET) receptor subtypes in porcine pulmonary tissues using a radioligand binding assay. The clear differentiation of the subtypes was made possible by the discovery of two compounds, BQ-123 and [Ala1,3,11,15]ET-1 (4AlaET-1), that are highly selective for ETA and ETB receptors, respectively. In the bronchus and lung parenchyma, BQ-123 inhibited 65% and 30% of [125I]ET-1 binding on the sensitive sites, while 4AlaET-1 displaced 25% and 60%, respectively. The combination of the two compounds completely inhibited ET-1 binding in both tissues. An autoradiographic study of [125I]ET-1 binding using BQ-123 and 4AlaET-1 also supported the different localization of two ET receptor subtypes in pulmonary tissues. In particular, the blood vessels and bronchi are rich in ETA, but the lung parenchyma is rich in ETB.  相似文献   

6.
Endothelin (ET) causes contraction of the muscularis mucosae in the guinea pig esophagus, but its role in the human esophagus remains unknown. To investigate effects of ET in the human esophagus, we measured contraction of isolated human esophageal muscularis mucosae strips caused by ET related peptides and binding of 125I-ET-1 to cell membranes prepared from the human esophageal muscularis mucosae. Autoradiography demonstrated specific binding of 125I-ET-1 to the muscularis mucosae and muscularis propria (muscularis externa) of the human esophagus. ET-1 caused tetrodotoxin and atropine-insensitive contraction of muscularis mucosae strips. In terms of the maximal tension of contraction, ET-1 and ET-2 were equal in efficacy. The relative potencies for ET related peptides to cause contraction were ET-1=ET-2>ET-3>sarafotoxin S6c (SX6c), an ETB receptor agonist. ET-1 caused contraction was mildly inhibited by BQ-123, an ETA receptor antagonist, and not by BQ-788, an ETB receptor antagonist. It was moderately inhibited by the combination of both antagonists, indicating synergistic inhibition. Furthermore, desensitization to SX6c with SX6c pretreatment failed to abolish the contractile response to ET-1, which was completely inhibited by BQ-123. These indicate the involvement of both ETA and ETB receptors in the contraction. Binding of 125I-ET-1 to cell membranes of the muscularis mucosae was saturable and specific. Analysis of dose-inhibition curves demonstrated the presence of ETA and ETB receptors. This study demonstrates that, the muscularis mucosae of the human esophagus, similar to that of the guinea pig esophagus, possesses both ETA and ETB receptors mediating muscle contraction.  相似文献   

7.
Angiotensin II and endothelin-1 (ET) are two hormones involved in cardiovascular diseases and well known for their capacity to induce free radical generation in vascular and cardiac tissues. In addition to its prooxidative effect, angiotensin II can increase the synthesis of ET-1 in vascular smooth muscle cells (VSMC). Our objective was to determine whether the ET-1 synthesis in VSMC is involved in angiotensin II-induced superoxide anion production in rats. Our results show that treatments of isolated VSMC with angiotensin II and ET increased superoxide. However, this increase occurred in a bimodal fashion for angiotensin II with a fast transient production (10 min) and a late sustained production (6 h), while ET-1 induced superoxide formation after a delay of 6 h. LU302872 and BQ-123, a nonselective and a selective ETA receptor antagonists, respectively, prevented angiotensin II-induced superoxide anion production only during the late phase. In contrast, BQ-3020, a selective ETB receptor antagonist, had no effect. In vivo, LU302872 reduced the aortic superoxide production induced by angiotensin II administered for 12 days. In conclusion, our results suggest that the superoxide generation induced by chronic angiotensin II infusion may be mediated by ET-1 acting on ETA receptors in VSMC in vitro. Furthermore, this effect appears to contribute to the excess superoxide production during the chronic activation of the renin-angiotensin system in vivo.  相似文献   

8.
Recently, it has been shown that brain topical superfusion of endothelin (ET)-1 at concentrations around 100 nM induces repetitive cortical spreading depressions (CSDs) in vivo. It has remained unclear whether this effect of ET-1 is related to a primary neuronal/astroglial effect, such as an increase in neuronal excitability or induction of interastroglial calcium waves, or a penumbra-like condition after vasoconstriction. In vitro, ET-1 regulates interastroglial communication via combined activation of ET(A) and ET(B) receptors, whereas it induces vasoconstriction via single activation of ET(A) receptors. We have determined the ET receptor profile and intracellular signaling pathway of ET-1-induced CSDs in vivo. In contrast to the ET(B) receptor antagonist BQ-788 and concentration dependently, the ET(A) receptor antagonist BQ-123 completely blocked the occurrence of ET-1-induced CSDs. The ET(B) receptor antagonist did not increase the efficacy of the ET(A) receptor antagonist. Direct stimulation of ET(B) receptors with the selective ET(B) agonist BQ-3020 did not trigger CSDs. The phospholipase C (PLC) antagonist U-73122 inhibited CSD occurrence in contrast to the protein kinase C inhibitor G?-6983. Our findings indicate that ET-1 induces CSDs through ET(A) receptor and PLC activation. We conclude that the induction of interastroglial calcium waves is unlikely the primary cause of ET-1-induced CSDs. On the basis of the receptor profile, likely primary targets of ET-1 mediating CSD are either neurons or vascular smooth muscle cells.  相似文献   

9.
Endothelin-1 (ET-1) is a 21-amino acid residue (ET-1[1-21]) hypertensive peptide, which together with its receptor subtypes A and B (ETA and ETB) is expressed in the rat adrenal cortex, where it stimulates steroid-hormone (aldosterone and corticosterone) secretion through the ETB receptor and the growth (proliferative activity) of the zona glomerulosa (ZG) through the ETA receptor. ET-1[1-21] is generated from bigET-1 by the endothelin-converting enzyme (ECE-1). However, recent evidence indicates the existence of an alternative chymase-mediated biosynthetic pathway leading to the production of an ET-1[1-31] peptide, which was found to reproduce the ETA receptor-mediated vascular effects of ET-1[1-21]. We found that ET-1[1-21], but not ET-1[1-31], concentration-dependently raised steroid secretion from dispersed rat adrenocortical cells, its effect being blocked by the ETB-receptor selective antagonist BQ-788. Both ET-1s concentration-dependently increased the number of "S-phase" cells (as detected by the 5-bromo-2'-deoxyuridine immunocytochemical method) in capsule-ZG strips within a 240 min incubation. The ZG proliferogenic action of both ET-1s was blocked by the ETA-receptor antagonist BQ-123, and ET-1[1-31] was found to be significantly more potent than ET-1[1-21]. Autoradiography showed that in the rat adrenal ET-1[1-21] displaced the binding of selective ligands to both ETA ([125I]PD-151242) and ETB receptors ([125I]BQ-3020), while ET-1[1-31] eliminates only the binding to ETA receptors. Collectively, our findings provide strong evidence that ET-1[1-31] acts in the rat adrenal glands as a selective ETA-receptor agonist, mainly involved in the stimulation of ZG proliferative activity.  相似文献   

10.
11.
Recently it was demonstrated that treatment with a nonselective endothelin (ET) receptor antagonist significantly reduces myocardial infarct size, which suggests a major role for ET in tissue repair following myocardial infarction (MI). Tissue repair and remodeling found at the site of MI are mainly attributed to myofibroblasts (myoFbs), which are phenotypically transformed fibroblasts that express alpha-smooth muscle actin. It is unclear whether myoFbs generate ET peptides and consequentially regulate pathophysiological functions de novo through expression of the ET-1 precursor (prepro-ET-1), ET-converting enzyme-1 (ECE-1), a metalloprotease that is required to convert Big ET-1 to ET-1 and ET receptors. To address these intriguing questions, we used cultured myoFbs isolated from 4-wk-old MI scar tissue. In cultured cells, we found: 1) expression of mRNA for ET precursor gene (ppET1), ECE-1, and ETA and ETB receptors by semiquantitative RT-PCR; 2) phosphoramidon-sensitive ECE-1 activity, which converts Big ET-1 to biologically active peptide ET-1; 3) expression of ETA and ETB receptors; 4) elaboration of Big ET-1 and ET-1 peptides in myoFb culture media; and 5) upregulation of type I collagen gene expression and synthesis by ET, which was blocked by bosentan (a nonselective ETA- and ETB receptor blocker). These studies clearly indicated that myoFbs express and generate ET-1 and receptor-mediated modulation of type I collagen expression by ET-1. Locally generated ET-1 may contribute to tissue repair of the infarcted heart in an autocrine/paracrine manner.  相似文献   

12.
Huang SC 《Regulatory peptides》2003,113(1-3):131-138
Endothelin (ET) causes contraction of the gallbladder. To investigate effects of ET in the common bile duct, we measured contraction of longitudinal muscle strips from guinea pig common bile ducts induced by ET-related peptides and binding of 125I-ET-1 to cell membranes prepared from the common bile duct. Visualization of 125I-ET-1 binding sites in tissue was performed by autoradiography. ET-1 caused tetrodotoxin and atropine-insensitive contraction. In terms of maximal tension of contraction, ET-1, ET-2 and ET-3 were equal in efficacy. However, sarafotoxin S6c, a selective ET(B) receptor agonist, caused only a negligible contraction. The relative potencies for ET isopeptides to cause contraction were ET-1=ET-2>ET-3. The ET-1-induced contraction was inhibited by BQ-123, an ET(A)-receptor-selective antagonist, but not by BQ-788, an ET(B)-receptor-selective antagonist. In addition, the combination of both antagonists, BQ-123 and BQ-788, inhibited ET-1 induced contraction but did not potentiate the inhibition caused by BQ-123 alone. These indicate that ET(A) but not ET(B) receptors mediate the contraction. Autoradiography localized 125I-ET-1 binding to the smooth muscle layer. Binding of 125I-ET-1 to the smooth muscle cell membranes was saturable and specific. Analysis of dose-inhibition curves indicated the presence of ET(A) and ET(B) receptors. These results demonstrate that ET causes contraction of longitudinal muscle of the common bile duct. Different from the gallbladder, which possesses both ET(A) and ET(B) receptors cooperating to mediate muscle contraction, the common bile duct possesses two classes of ET receptors, but only the ET(A) receptor mediates the contraction.  相似文献   

13.
S Eguchi  Y Hirata  M Ihara  M Yano  F Marumo 《FEBS letters》1992,302(3):243-246
The effects of a novel cyclic pentapeptide (BQ-123), an endothelin (ET) antagonist selective for the ETA receptor subtype, on phosphoinositide breakdown and DNA synthesis stimulated by ET-1 were studied in cultured rat vascular smooth muscle cells (VSMC). BQ-123 competitively inhibited the binding of [125I]ET-1 to VSMC with the apparent Ki of 4 x 10(-9) M. BQ-123 dose-dependently inhibited formation of inositol-1,4,5-trisphosphate and [3H]thymidine uptake stimulated by ET-1. These data suggest that the ET-1-induced DNA synthesis in VSMC is mainly mediated by ETA receptor subtype.  相似文献   

14.
Changes in gastric mucosal and hepatic tissue blood flow were simultaneously determined using a laser-Doppler blood flow meter in rats given i.v. injection of endothelin-1 (ET-1) and endothelin-3 (ET-3), both at 2 nmol/kg. Gastric mucosal blood flow decreased significantly after administration of ET-1 compared to after administration of ET-3. Decreases in blood flow due to ET-1 were reversed by pre-treatment with 10 mg/kg of BQ-123 (sodium salt), an ETA receptor antagonist, to levels comparable to those induced by ET-3, but BQ-123 had no effects on decreases in blood flow due to ET-3. On the other hand, decreases in hepatic tissue blood flow by ET-3 were significant compared to those by ET-1. Decreases in hepatic tissue blood flow due to ET-1 were slightly inhibited by pre-treatment with 10 mg/kg of BQ-123, but it had no effect at all on decreases due to ET-3. These findings indicate that decreases in gastric mucosal blood flow are mainly caused by ET-1 via ETA receptors inhibited by BQ-123, while decreases in hepatic tissue blood flow are caused mainly by ET-3 via non-ETA receptors not inhibited by BQ-123. The fact that ET-3 decreases blood flow more significantly than ET-1 suggests the involvement of ET-3 selective receptors (ETc). The findings obtained in the present study indicate that complex mechanisms are involved in the regulation of tissue blood flow by ET, with different receptor subtypes and ET family peptides being involved according to the type of tissue.  相似文献   

15.
Endothelin-A (ET(A)) and endothelin-B (ET(B)) receptors have been demonstrated in intact heart and cardiac membranes. ET(A) receptors have been demonstrated on adult ventricular myocytes. The aim of the present study was to determine the presence of ET(B) and the relative contribution of this receptor subtype to total endothelin-1 (ET-1) binding on adult ventricular myocytes. Saturation binding experiments indicated that ET-1 bound to a single population of receptors (Kd = 0.52 +/- 0.13 nM, n = 4) with an apparent maximum binding (Bmax) of 2.10 +/- 0.25 sites (x 10(5))/cell (n = 4). Competition experiments using 40 pM [125I]ET-1 and nonradioactive ET-1 revealed a Ki of 660 +/- 71 pM (n = 10) and a Hill coefficient (nH) of 0.99 +/- 0.10 (n = 10). A selective ET(A) antagonist, BQ610, displaced 80% of the bound [125I]ET-1. No displacement was observed by concentrations of an ET(B)-selective antagonist, BQ788, up to 1.0 microM. However, in the presence of 1.0 microM BQ610, BQ788 inhibited the remaining [125I]ET-1 binding. Similarly, in the presence of 1.0 microM BQ788, BQ610 inhibited the remaining specific [125I]ET-1 binding. Binding of an ET(B1)-selective agonist, [125I]IRL-1620, confirmed the presence of ET(B). ET(B) bound to ET-1 irreversibly, whereas binding to ET(A) demonstrated both reversible and irreversible components, and BQ610 and BQ788 bound reversibly. Reducing the incubation temperature to 0 degrees C did not alter the irreversible component of ET-1 binding. Hence, both ET(A) and ET(B) receptors are present on intact adult rat ventricular myocytes, and the ratio of ET(A):ET(B) binding sites is 4:1. Both receptor subtypes bind to ET-1 by a two-step association involving the formation of a tight receptor-ligand complex; however, the kinetics of ET-1 binding to ET(A) versus ET(B) differ.  相似文献   

16.
Cold temperatures have adverse effects on the human cardiovascular system. Endothelin (ET)-1 is a potent vasoconstrictor. We hypothesized that cold exposure increases ET-1 production and upregulates ET type A (ETA) receptors. The aim of this study was to determine the effect of cold exposure on regulation of the ET system. Four groups of rats (6-7 rats/group) were used: three groups were exposed to moderate cold (6.7 +/- 2 degrees C) for 1, 3, and 5 wk, respectively, and the remaining group was maintained at room temperature (25 degrees C) and served as control. Cold exposure significantly increased ET-1 levels in the heart, mesenteric arteries, renal cortex, and renal medulla. Cold exposure increased ETA receptor protein expression in the heart and renal cortex. ET type B (ETB) receptor expression, however, was decreased significantly in the heart and renal medulla of cold-exposed rats. Cold exposure significantly increased the ratio of ETA to ETB receptors in the heart. An additional four groups of rats (3 rats/group) were used to localize changes in ETA and ETB receptors at 1, 3, and 5 wk of cold exposure. Immunohistochemical analysis showed an increase in ETA, but a decrease in ETB, receptor immunoreactivity in cardiomyocytes of cold-exposed rats. Increased ETA receptor immunoreactivity was also found in vascular smooth muscle cells of cold-exposed rats. Cold exposure increased ETA receptor immunoreactivity in tubule epithelial cells in the renal cortex but decreased ETB receptor immunoreactivity in tubule epithelial cells in the renal medulla. Therefore, cold exposure increased ET-1 production, upregulated ETA receptors, and downregulated ETB receptors.  相似文献   

17.
We have reported that eucapnic intermittent hypoxia (E-IH) causes systemic hypertension, elevates plasma endothelin 1 (ET-1) levels, and augments vascular reactivity to ET-1 and that a nonspecific ET-1 receptor antagonist acutely lowers blood pressure in E-IH-exposed rats. However, the effect of chronic ET-1 receptor inhibition has not been evaluated, and the ET receptor subtype mediating the vascular effects has not been established. We hypothesized that E-IH causes systemic hypertension through the increased ET-1 activation of vascular ET type A (ET(A)) receptors. We found that mean arterial pressure (MAP) increased after 14 days of 7 h/day E-IH exposure (109 +/- 2 to 137 +/- 4 mmHg; P < 0.005) but did not change in sham-exposed rats. The ET(A) receptor antagonist BQ-123 (10 to 1,000 nmol/kg iv) acutely decreased MAP dose dependently in conscious E-IH but not sham rats, and continuous infusion of BQ-123 (100 nmol.kg(-1).day(-1) sc for 14 days) prevented E-IH-induced increases in MAP. ET-1-induced constriction was augmented in small mesenteric arteries from rats exposed 14 days to E-IH compared with those from sham rats. Constriction was blocked by the ET(A) receptor antagonist BQ-123 (10 microM) but not by the ET type B (ET(B)) receptor antagonist BQ-788 (100 microM). ET(A) receptor mRNA content was greater in renal medulla and coronary arteries from E-IH rats. ET(B) receptor mRNA was not different in any tissues examined, whereas ET-1 mRNA was increased in the heart and in the renal medulla. Thus augmented ET-1-dependent vasoconstriction via vascular ET(A) receptors appears to elevate blood pressure in E-IH-exposed rats.  相似文献   

18.
In the vascular system, endothelin (ET) type B (ET(B)) receptors for ET-1 are located on endothelial and on venous and arterial smooth muscle cells. In the present study, we investigated the hemodynamic effects of chronic ET(B) receptor blockade at low and high doses in the Syrian Golden hamster. After 16 days of gavage with A-192621 (0.5 or 30 mg.kg(-1).day(-1)), a selective ET(B) receptor antagonist, hamsters were anesthetized with a mixture of ketamine and xylazine (87 and 13 mg/kg im, respectively), and basal mean arterial blood pressure (MAP) and pressor responses to exogenous ET-1 were evaluated. The lower dose of A-192621 (0.5 mg.kg(-1).day(-1)) did not modify basal MAP, whereas the higher dose (30 mg.kg(-1).day(-1)) increased MAP and plasma ET levels. Radio-telemetry recordings confirmed the increase in MAP induced by the higher dose of A-192621 in conscious hamsters. On the other hand, although the lower dose of A-192621 was devoid of intrinsic pressor effects, it markedly reduced the transient hypotensive phase induced by intravenously injected IRL-1620, a selective ET(B) receptor agonist. Finally, A-192621 (0.5 mg.kg(-1).day(-1)) alone or A-192621 (30 mg.kg(-1).day(-1)) + atrasentan (6 mg.kg(-1).day(-1)), a selective ET(A) receptor antagonist, potentiated the pressor response to exogenous ET-1. Our results suggest that, in the hamster, ET(B) receptors on vascular smooth muscle cells are importantly involved in the clearance of endogenous ET-1, whereas the same receptor type on the endothelium is solely involved in the vasodilatory responses to the pressor peptide. Blockade of endothelial and vascular smooth muscle cell ET(B) receptors triggers a marked potentiation of ET(A)-dependent increases in systemic resistance.  相似文献   

19.
Blockade of central endothelin ET(B) receptors inhibits fever induced by LPS in conscious rats. The contribution of ET(B) receptor-mediated mechanisms to fever triggered by intracerebroventricular IL-6, PGE2, PGF(2alpha), corticotropin-releasing factor (CRF), and preformed pyrogenic factor derived from LPS-stimulated macrophages (PFPF) was examined. The influence of natural IL-1 receptor antagonist or soluble TNF receptor I on endothelin (ET)-1-induced fever was also assessed. The selective ET(B) receptor antagonist BQ-788 (3 pmol icv) abolished fever induced by intracerebroventricular ET-1 (1 pmol) or PFPF (200 ng) and reduced that caused by ICV CRF (1 nmol) but not by IL-6 (14.6 pmol), PGE2 (1.4 nmol), or PGF(2alpha) (2 nmol). CRF-induced fever was also attenuated by bosentan (dual ET(A)/ET(B) receptor antagonist; 10 mg/kg iv) but unaffected by BQ-123 (selective ET(A) receptor antagonist; 3 pmol icv). alpha-Helical CRF(9-41) (dual CRF1/CRF2 receptor antagonist; 6.5 nmol icv) attenuated fever induced by CRF but not by ET-1. Human IL-1 receptor antagonist (9.1 pmol) markedly reduced fever to IL-1beta (180 fmol) or ET-1 and attenuated that caused by PFPF or CRF. Murine soluble TNF receptor I (23.8 pmol) reduced fever to TNF-alpha (14.7 pmol) but not to ET-1. The results of the present study suggest that PFPF and CRF recruit the brain ET system to cause ET(B) receptor-mediated IL-1-dependent fever.  相似文献   

20.
Vascular dysfunction, which presents either as an increased response to vasoconstrictors or an impaired relaxation to dilator agents, results in worsened cardiovascular outcomes in diabetes. We have established that the mesenteric circulation in Type 2 diabetes is hyperreactive to the potent vasoconstrictor endothelin-1 (ET-1) and displays increased nitric oxide-dependent vasodilation. The current study examined the individual and/or the relative roles of the ET receptors governing vascular function in the Goto-Kakizaki rat, a mildly hyperglycemic, normotensive, and nonobese model of Type 2 diabetes. Diabetic and control rats received an antagonist to either the ET type A (ETA; atrasentan; 5 mg x kg(-1) x day(-1)) or type B (ET(B); A-192621; 15 or 30 mg x kg(-1) x day(-1)) receptors for 4 wk. Third-order mesenteric arteries were isolated, and vascular function was assessed with a wire myograph. Maximum response to ET-1 was increased in diabetes and attenuated by ETA antagonism. ETB blockade with 15 mg/kg A-192621 augmented vasoconstriction in controls, whereas it had no further effect on ET-1 hyperreactivity in diabetes. The higher dose of A-192621 showed an ETA-like effect and decreased vasoconstriction in diabetes. Maximum relaxation to acetylcholine (ACh) was similar across groups and treatments. ETB antagonism at either dose had no effect on vasorelaxation in control rats, whereas in diabetes the dose-response curve to ACh was shifted to the right, indicating a decreased relaxation at 15 mg/kg A-192621. These results suggest that ETA receptor blockade attenuates vascular dysfunction and that ETB receptor antagonism exhibits differential effects depending on the dose of the antagonists and the disease state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号