首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Many studies have addressed the latitudinal gradients in intraspecific genetic diversity of European taxa generated during postglacial range expansion from southern refugia. Although Asia Minor is known to be a centre of diversity for many taxa, relatively few studies have considered its potential role as a Pleistocene refugium or a potential source for more ancient westward range expansion into Europe. Here we address these issues for an oak gallwasp, Andricus quercustozae (Hymenoptera: Cynipidae), whose distribution extends from Morocco along the northern coast of the Mediterranean through Turkey to Iran. We use sequence data for a fragment of the mitochondrial gene cytochrome b and allele frequency data for 12 polymorphic allozyme loci to answer the following questions: (1) which regions represent current centres of genetic diversity for A. quercustozae? Do eastern populations represent one refuge or several discrete glacial refugia? (2) Can we infer the timescale and sequence of the colonization processes linking current centres of diversity? Our results suggest that A. quercustozae was present in five distinct refugia (Iberia, Italy, the Balkans, southwestern Turkey and northeastern Turkey) with recent genetic exchange between Italy and Hungary. Genetic diversity is greatest in the Turkish refugia, suggesting that European populations are either (a) derived from Asia Minor, or (b) subject to more frequent population bottlenecks. Although Iberian populations show the lowest diversity for putatively selectively neutral markers, they have colonized a new oak host and represent a genetically and biologically discrete entity within the species.  相似文献   

2.
Phylogeographic analyses can help to reveal the refugial structure of plants during and after the ice ages, but the detailed history of regional refugial isolation and differentiation in Central Europe is still poorly understood. A recent study of Meum athamanticum in its total range of occurrences revealed persistence of this temperate montane plant species in Central Europe north of the Alps, without going into details. We therefore aimed to study differentiation and migration processes of this plant species in more detail throughout Central Europe. We used high resolution amplified fragment length polymorphisms (AFLP) markers and analyzed 210 plant individuals of 14 Central European populations with three pairs of primer combinations (128 loci, 111 of which polymorphic). The data show genetic differentiation and varying levels of molecular diversity within populations and groups of populations. Altogether, the studied populations did not show a gradient in molecular variation along presumptive postglacial migration routes across Central Europe. Rather, they reveal a genetic division into seven major groups. Four of them are characterised by high genetic diversity, private fragments and higher than average number of rare and sparse fragments, leading to the assumption that they are descendants of independent populations which survived in glacial refugia. In combination with information from paleoclimate and paleovegetation, it is likely that microclimatically favoured habitats at (i) the eastern flank of the Black Forest, (ii) the southern margin of the Cologne basin, (iii) the foothills of the Erzgebirge, and (iv) the foothills of the Jura Mountains acted as sources for the postglacial recolonisation of this species to the other mountains of Central Europe. As some of the populations analysed show intermixed gene-pools (i.e. including genetic information from different groups) and partly have exceptionally high genetic diversity, but no private and only relatively few rare or sparse fragments, they might represent contact zones. On the other hand, genetic pauperization and isolation of two other populations in connection with extremely small population sizes and unfavourable habitat conditions seem to reflect recent bottlenecks. Consequently, the genetic structure of M. athamanticum in Central Europe is shaped by (i) extra-Mediterranean glacial refugia in situ, (ii) following postglacial hybridization along emerging contact zones and (iii) genetic bottlenecks in thereafter isolated small populations. All results provide evidences for small scale migration of the species between Central European valleys and surrounding highlands. Therefore, our study provides molecular evidence for both climate dependent wide ranging periglacial tabula rasa, but some small refugia in locally buffered areas. We hereby show that the environmental heterogeneity of cold stage landscapes in Central Europe is generally underestimated.  相似文献   

3.
Here, palaeobotanical and genetic data for common beech (Fagus sylvatica) in Europe are used to evaluate the genetic consequences of long-term survival in refuge areas and postglacial spread. Four large datasets are presented, including over 400 fossil-pollen sites, 80 plant-macrofossil sites, and 450 and 600 modern beech populations for chloroplast and nuclear markers, respectively. The largely complementary palaeobotanical and genetic data indicate that: (i) beech survived the last glacial period in multiple refuge areas; (ii) the central European refugia were separated from the Mediterranean refugia; (iii) the Mediterranean refuges did not contribute to the colonization of central and northern Europe; (iv) some populations expanded considerably during the postglacial period, while others experienced only a limited expansion; (v) the mountain chains were not geographical barriers for beech but rather facilitated its diffusion; and (vi) the modern genetic diversity was shaped over multiple glacial-interglacial cycles. This scenario differs from many recent treatments of tree phylogeography in Europe that largely focus on the last ice age and the postglacial period to interpret genetic structure and argue that the southern peninsulas (Iberian, Italian and Balkan) were the main source areas for trees in central and northern Europe.  相似文献   

4.
Understanding the impact of postglacial recolonization on genetic diversity is essential in explaining current patterns of genetic variation. The central–marginal hypothesis (CMH) predicts a reduction in genetic diversity from the core of the distribution to peripheral populations, as well as reduced connectivity between peripheral populations. While the CMH has received considerable empirical support, its broad applicability is still debated and alternative hypotheses predict different spatial patterns of genetic diversity. Using microsatellite markers, we analysed the genetic diversity of the adder (Vipera berus) in western Europe to reconstruct postglacial recolonization. Approximate Bayesian Computation (ABC) analyses suggested a postglacial recolonization from two routes: a western route from the Atlantic Coast up to Belgium and a central route from the Massif Central to the Alps. This cold‐adapted species likely used two isolated glacial refugia in southern France, in permafrost‐free areas during the last glacial maximum. Adder populations further from putative glacial refugia had lower genetic diversity and reduced connectivity; therefore, our results support the predictions of the CMH. Our study also illustrates the utility of highly variable nuclear markers, such as microsatellites, and ABC to test competing recolonization hypotheses.  相似文献   

5.
Quaternary glaciations have played a major role in shaping the genetic diversity and distribution of plant species. Strong palaeoecological and genetic evidence supports a postglacial recolonization of most plant species to northern Europe from southern, eastern and even western glacial refugia. Although highly controversial, the existence of small in situ glacial refugia in northern Europe has recently gained molecular support. We used genomic analyses to examine the phylogeography of a species that is critical in this debate. Carex scirpoidea Michx subsp. scirpoidea is a dioecious, amphi‐Atlantic arctic–alpine sedge that is widely distributed in North America, but absent from most of Eurasia, apart from three extremely disjunct populations in Norway, all well within the limits of the Weichselian ice sheet. Range‐wide population sampling and variation at 5,307 single nucleotide polymorphisms show that the three Norwegian populations comprise unique evolutionary lineages divergent from Greenland with high between‐population divergence. The Norwegian populations have low within‐population genetic diversity consistent with having experienced genetic bottlenecks in glacial refugia, and host private alleles that probably accumulated in long‐term isolated populations. Demographic analyses support a single, pre‐Weichselian colonization into Norway from East Greenland, and subsequent divergence of the three populations in separate refugia. Other refugial areas are identified in North‐east Greenland, Minnesota/Michigan, Colorado and Alaska. Admixed populations in British Columbia and West Greenland indicate postglacial contact. Taken together, evidence from this study strongly indicates in situ glacial survival in Scandinavia.  相似文献   

6.
The polymerase chain reaction (PCR)-based amplified fragment length polymorphism (AFLP) technique was applied to elucidate the glacial history of the alpine cushion plant Saponaria pumila in the European Alps. Special emphasis was given to a dense sampling of populations. Our data support a survival of S. pumila during the last ice age in at least three refugia, which are characterized by unique marker sets. Patterns of genetic diversity and divergence can be explained by survival in peripheral refugia and additional in situ survival within the ice sheet on peripheral nunataks. A nunatak survival in interior parts of the Alps needs not be postulated to explain our results. The level of genetic diversity is dramatically different between populations (Shannon's diversity index: 0.87-19.86). Some peripheral populations are characterized by a high number of rare fragments indicating long isolation, but not necessarily by a high level of genetic diversity. Parts of the present distributional area were recolonized via recent long-distance dispersal, leading to severely bottlenecked populations lacking private or rare fragments. The combination of our data with palaeogeological and palaeoclimatological evidence allows us to confine Pleistocene refugia to certain regions and to draw a detailed scenario of the glacial and postglacial history of S. pumila.  相似文献   

7.
The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid‐Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter‐specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.  相似文献   

8.
Norway spruce (Picea abies [L.] Karst.) is a broadly distributed European conifer tree whose history has been intensively studied by means of fossil records to infer the location of full‐glacial refugia and the main routes of postglacial colonization. Here we use recently compiled fossil pollen data as a template to examine how past demographic events have influenced the species’ modern genetic diversity. Variation was assessed in the mitochondrial nad1 gene containing two minisatellite regions. Among the 369 populations (4876 trees) assayed, 28 mitochondrial variants were identified. The patterns of population subdivision superimposed on interpolated fossil pollen distributions indicate that survival in separate refugia and postglacial colonization has led to significant structuring of genetic variation in the southern range of the species. The populations in the northern range, on the other hand, showed a shallow genetic structure consistent with the fossil pollen data, suggesting that the vast northern range was colonized from a single refugium. Although the genetic diversity decreased away from the putative refugia, there were large differences between different colonization routes. In the Alps, the diversity decreased over short distances, probably as a result of population bottlenecks caused by the presence of competing tree species. In northern Europe, the diversity was maintained across large areas, corroborating fossil pollen data in suggesting that colonization took place at high population densities. The genetic diversity increased north of the Carpathians, probably as a result of admixture of expanding populations from two separate refugia.  相似文献   

9.
Since the last glacial maximum (LGM), many plant and animal taxa have expanded their ranges by migration from glacial refugia. Weeds of cultivation may have followed this trend or spread globally following the expansion of agriculture or ruderal habitats associated with human‐mediated disturbance. We tested whether the range expansion of the weed Silene vulgaris across Europe fit the classical model of postglacial expansion from southern refugia, or followed known routes of the expansion of human agricultural practices. We used species distribution modeling to predict spatial patterns of postglacial expansion and contrasted these with the patterns of human agricultural expansion. A population genetic analysis using microsatellite loci was then used to test which scenario was better supported by spatial patterns of genetic diversity and structure. Genetic diversity was highest in southern Europe and declined with increasing latitude. Locations of ancestral demes from genetic cluster analysis were consistent with areas of predicted refugia. Species distribution models showed the most suitable habitat in the LGM on the southern coasts of Europe. These results support the typical postglacial northward colonization from southern refugia while refuting the east‐to‐west agricultural spread as the main mode of expansion for S. vulgaris. We know that S. vulgaris has recently colonized many regions (including North America and other continents) through human‐mediated dispersal, but there is no evidence for a direct link between the Neolithic expansion of agriculture and current patterns of genetic diversity of S. vulgaris in Europe. Therefore, the history of range expansion of S. vulgaris likely began with postglacial expansion after the LGM, followed by more recent global dispersal by humans.  相似文献   

10.
Quaternary climatic oscillations profoundly impacted temperate biodiversity. For many diverse yet undersampled areas, however, the consequences of this impact are still poorly known. In Europe, particular uncertainty surrounds the role of Balkans, a major hotspot of European diversity, in postglacial recolonization of more northerly areas, and the Carpathians, a debatable candidate for a northern ‘cryptic’ glacial refugium. Using genome‐wide SNPs and microsatellites, we examined how the interplay of historical processes and niche shifts structured genetic diversity of diploid Arabidopsis arenosa, a little‐known member of the plant model genus that occupies a wide niche range from sea level to alpine peaks across eastern temperate Europe. While the northern Balkans hosted one isolated endemic lineage, most of the genetic diversity was concentrated further north in the Pannonian Basin and the Carpathians, where it likely survived the last glaciation in northern refugia. Finally, a distinct postglacial environment in northern Europe was colonized by populations of admixed origin from the two Carpathian lineages. Niche differentiation along altitude‐related bioclimatic gradients was the main trend in the phylogeny of A. arenosa. The most prominent niche shifts, however, characterized genetically only slightly divergent populations that expanded into narrowly defined alpine and northern coastal postglacial environments. Our study highlights the role of eastern central European mountains not only as refugia for unique temperate diversity but also sources for postglacial expansion into novel high‐altitude and high‐latitude niches. Knowledge of distinct genetic substructure of diploid A. arenosa also opens new opportunities for follow‐up studies of this emerging model of evolutionary biology.  相似文献   

11.
A recent circumpolar survey of chloroplast DNA (cpDNA) haplotypes identified Pleistocene glacial refugia for the Arctic-Alpine Saxifraga oppositifolia in the Arctic and, potentially, at more southern latitudes. However, evidence for glacial refugia within the ice sheet covering northern Europe during the last glacial period was not detected either with cpDNA or in another study of S. oppositifolia that surveyed random amplified polymorphic DNA (RAPD) variation. If any genotypes survived in such refugia, they must have been swamped by massive postglacial immigration of periglacial genotypes. The present study tested whether it is possible to reconstruct the Pleistocene history of S. oppositifolia in the European Alps using molecular methods. Restriction fragment length polymorphism (RFLP) analysis of cpDNA of S. oppositifolia, partly sampled from potential nunatak areas, detected two common European haplotypes throughout the Alps, while three populations harboured two additional, rare haplotypes. RAPD analysis confirmed the results of former studies on S. oppositifolia; high within, but low among population genetic variation and no particular geographical patterning. Some Alpine populations were not perfectly nested in this common gene pool and contained private RAPD markers, high molecular variance or rare cpDNA haplotypes, indicating that the species could possibly have survived on ice-free mountain tops (nunataks) in some parts of the Alps during the last glaciation. However, the overall lack of a geographical genetic pattern suggests that there was massive immigration of cpDNA and RAPD genotypes by seed and pollen flow during postglacial times. Thus, the glacial history of S. oppositifolia in the Alps appears to resemble closely that suggested previously for the species in northern Europe.  相似文献   

12.
The level of genetic differentiation within and between evolutionary lineages of the common vole (Microtus arvalis) in Europe was examined by analyzing mitochondrial sequences from the control region (mtDNA) and 12 nuclear microsatellite loci (nucDNA) for 338 voles from 18 populations. The distribution of evolutionary lineages and the affinity of populations to lineages were determined with additional sequence data from the mitochondrial cytochrome b gene. Our analyses demonstrated very high levels of differentiation between populations (overall FST: mtDNA 70%; nucDNA 17%). The affinity of populations to evolutionary lineages was strongly reflected in mtDNA but not in nucDNA variation. Patterns of genetic structure for both markers visualized in synthetic genetic maps suggest a postglacial range expansion of the species into the Alps, as well as a potentially more ancient colonization from the northeast to the southwest of Europe. This expansion is supported by estimates for the divergence times between evolutionary lineages and within the western European lineage, which predate the last glacial maximum (LGM). Furthermore, all measures of genetic diversity within populations increased significantly with longitude and showed a trend toward increase with latitude. We conclude that the detected patterns are difficult to explain only by range expansions from separate LGM refugia close to the Mediterranean. This suggests that some M. arvalis populations persisted during the LGM in suitable habitat further north and that the gradients in genetic diversity may represent traces of a more ancient colonization of Europe by the species.  相似文献   

13.
Geographically peripheral populations often experience a reduction of genetic diversity and divergence from the core populations. Habitat geometry and quality can induce a local genetic diversity pattern, which overlies the regional variability issued from the range-wide phylogeography. We evaluated the genetic variation and genetic divergence of Saponaria bellidifolia Sm. on limestone outcrops within peripheral island-like populations from the Southeastern Carpathians, using RAPD markers. We also determined the degree of isolation related to other European populations, using AFLP. The Romanian populations had a decreased overall genetic diversity shared among populations, with lower level in small populations. Potential habitat size had a positive effect on genetic diversity estimates. Fisher’s exact tests of genetic differentiation revealed significant divergences only between the geographically most distant populations. Romanian populations were genetically pauperised as compared to Bulgarian and Italian populations and our results suggest that they might have originated from a recent range expansion from southern glacial refugia.  相似文献   

14.
We used chloroplast polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) and chloroplast microsatellites to assess the structure of genetic variation and postglacial history across the entire natural range of the common ash (Fraxinus excelsior L.), a broad-leaved wind-pollinated and wind-dispersed European forest tree. A low level of polymorphism was observed, with only 12 haplotypes at four polymorphic microsatellites in 201 populations, and two PCR-RFLP haplotypes in a subset of 62 populations. The clear geographical pattern displayed by the five most common haplotypes was in agreement with glacial refugia for ash being located in Iberia, Italy, the eastern Alps and the Balkan Peninsula, as had been suggested from fossil pollen data. A low chloroplast DNA mutation rate, a low effective population size in glacial refugia related to ash's life history traits, as well as features of postglacial expansion were put forward to explain the low level of polymorphism. Differentiation among populations was high (GST= 0.89), reflecting poor mixing among recolonizing lineages. Therefore, the responsible factor for the highly homogeneous genetic pattern previously identified at nuclear microsatellites throughout western and central Europe (Heuertz et al. 2004) must have been efficient postglacial pollen flow. Further comparison of variation patterns at both marker systems revealed that nuclear microsatellites identified complex differentiation patterns in south-eastern Europe which remained undetected with chloroplast microsatellites. The results suggest that data from different markers should be combined in order to capture the most important genetic patterns in a species.  相似文献   

15.
Brito PH 《Molecular ecology》2007,16(16):3423-3437
A recent study of mitochondrial phylogeography of tawny owls (Strix aluco) in western Europe suggested that this species survived the Pleistocene glaciations in three allopatric refugia located in Iberia, Italy, and the Balkans, and the latter was likely the predominant source of postglacial colonization of northern Europe. New data from seven microsatellite loci from 184 individual owls distributed among 14 populations were used to assess the genetic congruence between nuclear and mitochondrial DNA (mtDNA) markers. Microsatellites corroborated the major phylogeographical conclusions reached on the basis of the mtDNA sequences, but also showed important differences leading to novel inferences. Microsatellites corroborated the three major refugia and supported the Balkan origin of northern populations. When corrected for differences in effective population size, microsatellites and mtDNA yielded generally congruent overall estimates of population structure (N*ST=0.12 vs. RST=0.16); however, there was substantial heterogeneity in the RST among the seven nuclear loci that was not correlated with heterozygosity. Populations representing the Balkans postglacial expansion interact with populations from the other two refugia forming two clines near the Alps and the Pyrenees. In both cases, the apparent position of the contact zones differed substantially between markers due to the genetic composition of populations sampled in northern Italy and Madrid. Microsatellite data did not corroborate the lower genetic diversity of northern, recently populated regions as was found with mtDNA; this discrepancy was taken as evidence for a recent bottleneck recovery. Finally, this study suggests that congruence among genetic markers should be more likely in cases of range expansion into new areas than when populations interact across contact zones.  相似文献   

16.
Aim Late Pleistocene glacial changes had a major impact on many boreal and temperate taxa, and this impact can still be detected in the present‐day phylogeographic structure of these taxa. However, only minor effects are expected in species with generalist habitat requirements and high dispersal capability. One such species is the white‐tailed eagle, Haliaeetus albicilla, and we therefore tested for the expected weak population structure at a continental level in this species. This also allowed us to describe phylogeographic patterns, and to deduce Ice Age refugia and patterns of postglacial recolonization of Eurasia. Location Breeding populations from the easternmost Nearctic (Greenland) and across the Palaearctic (Iceland, continental Europe, central and eastern Asia, and Japan). Methods Sequencing of a 500 base‐pair fragment of the mitochondrial DNA control region in 237 samples from throughout the distribution range. Results Our analysis revealed pronounced phylogeographic structure. Overall, low genetic variability was observed across the entire range. Haplotypes clustered in two distinct haplogroups with a predominantly eastern or western distribution, and extensive overlap in Europe. These two major lineages diverged during the late Pleistocene. The eastern haplogroup showed a pattern of rapid population expansion and colonization of Eurasia around the end of the Pleistocene. The western haplogroup had lower diversity and was absent from the populations in eastern Asia. These results suggest survival during the last glaciation in two refugia, probably located in central and western Eurasia, followed by postglacial population expansion and admixture. Relatively high genetic diversity was observed in northern regions that were ice‐covered during the last glacial maximum. This, and phylogenetic relationships between haplotypes encountered in the north, indicates substantial population expansion at high latitudes. Areas of glacial meltwater runoff and proglacial lakes could have provided suitable habitats for such population growth. Main conclusions This study shows that glacial climate fluctuations had a substantial impact on white‐tailed eagles, both in terms of distribution and demography. These results suggest that even species with large dispersal capabilities and relatively broad habitat requirements were strongly affected by the Pleistocene climatic shifts.  相似文献   

17.
Brito PH 《Molecular ecology》2005,14(10):3077-3094
The glacial refugia hypothesis indicates that during the height of the Pleistocene glaciations the temperate species that are today widespread in western Europe must have survived in small and climatically favourable areas located in the southern peninsulas of Iberia, Italy and Balkans. One such species is the tawny owl, a relatively sedentary, nonmigratory bird presently distributed throughout Europe. It is a tree-nesting species closely associated with deciduous and mixed coniferous woodlands. In this study I used control region mtDNA sequences from 187 individuals distributed among 14 populations to determine whether current genetic patterns in tawny owl populations were consistent with postglacial expansion from peninsular refugia. European, North African and Asian tawny owls were found to represent three distinct lineages, where North Africa is the sister clade to all European owls. Within Europe, I found three well-supported clades that correspond to each of the three allopatric refugia. Expansion patterns indicate that owls from the Balkan refugium repopulated most of northern Europe, while expansion out of Iberia and Italy had only regional effects leading to admixture in France. Estimates of population divergence times between refugia populations are roughly similar, but one order of magnitude smaller between Greece and northern Europe. Based on a wide range of mutation rates and generation times, divergence between refugia appears to date to the Pleistocene.  相似文献   

18.
Recent studies highlighted the potential role of cryptic glacial refugia for temperate taxa in Europe beyond the Mediterranean peninsulas. To further investigate phylogeographic features of the European pine marten (Martes martes) in previously identified cryptic refugia located in central–western Europe, we analysed the hyper-variable diagnostic fragment of the mitochondrial control region in a total of 134 specimens, allowing for reliable comparisons with previous genetic studies of the species. We included samples from eight different European countries in central–western Europe (Belgium, France, Luxembourg and the Netherlands), in south–western Europe (Spain), in north–central Europe (Denmark) and in central Europe (Germany and Poland). The sequences collapsed in 17 haplotypes, which allowed us to determine the genetic composition of the pine marten populations throughout central–western Europe. Overall, our results showed that the population genetic variation, estimated by the standardised haplotype diversity, was high (0.400?≤?Hs?≤?0.762), and it was considerably higher in Germany (0.762) and the Netherlands (0.722) compared to the other countries. The nucleotide diversity was relatively low (0.002?≤?π?≤?0.016) even in Germany and the Netherlands (0.016 and 0.014, respectively), suggesting relatively small, long-term effective population sizes or severe bottlenecks. Out of the 17 haplotypes found in our study area, 13 were unique and limited to a single country: one in Denmark, one in Spain, four in Poland and seven in the Netherlands. The pairwise genetic distance ranged from 0.001 to 0.032 and did not show any evident correlation with the geographic distances between the populations. A genealogical relationship network was constructed, which provided evidence for a recent origin of many of the unique haplotypes. Approximately 82 % of the samples analysed in this study belonged to haplotypes grouped into a previously identified central–northern European phylogroup of the species. Our results support previous findings, indicating low contribution of southern refugial populations to the postglacial recolonization of central–western Europe and a predominant contribution of pine marten populations that survived the Last Glacial Maxima in cryptic northern refugia.  相似文献   

19.
Mediterranean mountain ranges harbour highly endemic biota in islandlike habitats. Their topographic diversity offered the opportunity for mountain species to persist in refugial areas during episodes of major climatic change. We investigate the role of Quaternary climatic oscillations in shaping the demographic history and distribution ranges in the spider Harpactocrates ravastellus, endemic to the Pyrenees. Gene trees and multispecies coalescent analyses on mitochondrial and nuclear DNA sequences unveiled two distinct lineages with a hybrid zone around the northwestern area of the Catalan Pyrenees. The lineages were further supported by morphological differences. Climatic niche‐based species distribution models (SDMs) identified two lowland refugia at the western and eastern extremes of the mountain range, which would suggest secondary contact following postglacial expansion of populations from both refugia. Neutrality test and approximate Bayesian computation (ABC) analyses indicated that several local populations underwent severe bottlenecks followed by population expansions, which in combination with the deep population differentiation provided evidence for population survival during glacial periods in microrefugia across the mountain range, in addition to the main Atlantic and Mediterranean (western and eastern) refugia. This study sheds light on the complexities of Quaternary climatic oscillations in building up genetic diversity and local endemicity in the southern Europe mountain ranges.  相似文献   

20.
The extant taxa of central and northern Europe are commonly believed to derive from Pleistocene ancestors, who moved to the north from three separate glacial refugia: the Iberian and Italian peninsulae, as well as the southern Balkans. The issue of postglacial dispersal patterns was addressed through the investigation of population structure and phylogeography of the European roe deer, Capreolus capreolus . The genetic diversity in 376 individuals representing 14 allegedly native populations across their European range was assessed, using ten autosomal microsatellite loci and restriction fragment length polymorphisms of the mitochondrial D-loop and NADH dehydrogenase 1 gene segments. Our results suggest the existence of three major genetic lineages of roe deer in Europe. One comprises populations in the south-western limit of the species' distribution (i.e. Iberia), where an internal substructure splits a northern from a southern sublineage. A second lineage includes populations of southern and eastern Europe, as well as a separate sublineage sampled in central-southern Italy, where the existence of the subspecies Capreolus c. italicus was supported. In central-northern Europe, a third lineage is present, which appeared genetically rather homogeneous, although admixed, and equally divergent from both the eastern and western lineages. Current patterns of intraspecific genetic variation suggest that postglacial recolonization routes of this cervid to northern Europe could be due to range expansion from one or more refugia in central-eastern Europe, rather than proceeding from the Mediterranean areas.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 85–100.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号