首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 943 毫秒
1.
At the time of Māori settlement, ca. 750 years ago, New Zealand's ecosystems experienced catastrophic change, including the introduction of fire to ignition‐limited ecosystems and the resulting widespread loss of forest. While high‐resolution sediment‐charcoal analyses suggest this forest loss was rapid, Māori populations were small and transient during the Initial Burning Period and there is evidence for widespread fire activity in places where there is little archaeological evidence of human presence. These observations beg the question ‘how did small populations manage to transform large areas so rapidly?’ Using a simulation model, we demonstrate how the relationship between time since fire and flammability in New Zealand's forests drives positive feedbacks that allow for rapid and extensive deforestation. Under ignition scenarios mirroring prehuman conditions, the model did not produce significant deforestation – thus, it is extremely unlikely that deforestation could have occurred without human‐initiated burning. Scenarios where ignition was spatio‐temporally random also failed to result in deforestation. Rapid and widespread forest loss occurred in scenarios incorporating spatio‐temporally savvy selection of ignition locations. Targeting ignitions in flammable vegetation was more important than targeting ignitions in years with favourable climatic conditions. However, targeting in space and time concurrently, such that flammable vegetation was ignited during favourable climatic years was the most efficient strategy of those simulated. Following the Initial Burning Period decadal ignitions would have been sufficient to maintain a deforested shrubland/grassland landscape. New Zealand's Initial Burning Period is one of many that occurred across eastern Polynesia following human settlement, and these events have left long‐term legacy effects that remain evident in contemporary landscapes. Improving understanding of how humans shaped environments in New Zealand in the past has implications for eastern Polynesia as a whole.  相似文献   

2.
Altered fire regimes in the face of climatic and land-use change could potentially transform large areas from forest to shorter-statured or open-canopy vegetation. There is growing concern that once initiated, these nonforested landscapes could be perpetuated almost indefinitely through a suite of positive feedbacks with fire. The rapid deforestation of much of New Zealand following human settlement (ca. 750 years ago) provides a rare opportunity to evaluate the feedback mechanisms that facilitated such extensive transformation and thereby help us to identify factors that confer vulnerability or resilience to similar changes in other regions. Here we evaluate the structure of living and dead vegetation (fuel loading) and microclimate (fuel moisture) in beech (Nothofagaceae) forests and adjacent stands that burned within the last 60–140 years and are dominated by mānuka (Leptospermum scoparium) or kānuka (Kunzea spp.). We show that the burning of beech forests initiates a positive feedback cycle whereby the loss of microclimatic amelioration under the dense forest canopy and the abundant fine fuels that dry readily beneath the sparse mānuka/kānuka canopy enables perpetuation of these stands by facilitating repeated burning. Beech regeneration was limited to a narrow zone along the margin of unburned stands. The high flammability of vegetation that develops after fire and the long time to forest recovery were the primary factors that facilitated extensive deforestation with the introduction of human-ignited fire. Evaluating these two characteristics may be key to determining which regions may be near a tipping point where relatively small land-use- or climatically driven changes to fire regimes could bring about extensive deforestation.  相似文献   

3.
《新西兰生态学杂志》2011,34(3):311-323
Fire has been a major driver of forest loss in New?Zealand. A conceptual model has been proposed in which positive feedbacks between vegetation, fire and soils can arrest regeneration of recurrently burned wet forest landscapes. We used vegetation data collected across three topographically similar landscapes ? Awana, Glenfern and Windy Hill ? on Great Barrier Island to (1) describe current vegetation composition and structure and predict future change in composition and (2) assess evidence for interactions between fire and soils slowing regeneration in these landscapes. Compositional data were analysed via classification and ordination, and we used transition matrix models to explore how vegetation composition may change in the future. The vegetation in the three landscapes spans repeatedly burned scrubland dominated by m?nuka (Leptospermum scoparium) and exotic fire-dependent woody species such as Hakea sericea, to intact mature forest. Scrubland vegetation tends to be found on north-facing upper slopes and ridges ? drier sites where fire has been more frequent and rendered soil conditions (e.g. organic matter and moisture) poor for plant growth. There is a slow reinvasion of forest species into the Leptospermum and Kunzea scrubland from gullies and other remnant patches, with wind-dispersed species preceding fleshy-fruited bird-dispersed ones. In the absence of fire in the next few decades the landscapes will continue to move back towards forest. More fires, however, will further degrade these landscapes by removing remaining fertile topsoils from ridges and slopes and by favouring exotic species adapted to recruit from seed and/or resprout vegetatively after fire.  相似文献   

4.
《新西兰生态学杂志》2011,29(2):165-184
New Zealand bracken (Pteridium esculentum) belongs to a group of closely related fern species of near global extent. Pteridium species worldwide are aggressive, highly productive, seral plants, functionally more akin to shrubs than ferns. Their deeply buried starch-rich rhizomes allow them to survive repeated fire and their efficient nutrient uptake permits exploitation of a wide range of soils. They are limited by cool annual temperatures, frost, wind, and shallow, poorly drained and acidic soils. Bracken stands accumulate large amounts of inflammable dead fronds and deep litter and often persist by facilitating fire that removes woody competitors. Bracken was present but not abundant in New Zealand before the arrival of humans. Occasional fire or other disturbances created transient opportunities for it. Rhyolitic volcanic eruptions led to short-lived expansions of bracken, and it briefly became dominant over ash-affected areas of the central North Island after the large AD 186 Taupo Tephra eruption. Andesitic eruptions had limited effects. Bracken became one of the most abundant plants in the country after the arrival of Maori in the 13th century, when massive deforestation affected most of the lowland landscape. The bracken-dominated vegetation that formed in most places immediately after burning gave way with time to fire-maintained mosaics in which bracken dominated on deeper soils and under moist, mild climates. Although Maori relied on bracken rhizome starch as a major element of their diet, food-quality rhizomes were obtained only on deep, moderately fertile soils. The dominance of bracken over very large areas was mainly a result of burning to create open landscapes for access and ease of travel. Bracken remained a troublesome weed through the European pastoral period and well into the 20th century. Bracken has a problematical role in conservation as it can form a persistent, fire-prone, low-diversity cover in drier regions. However, it is an indigenous plant that is effective in preventing erosion and, in wetter areas, it will easily suppress exotic grasses and facilitate regeneration to forest. It should be considered an essential component of landscapes conserved for their historical significance to Maori.  相似文献   

5.
Aim To determine the geographical variation in serotiny in a common New Zealand shrub as a contemporary indicator of past fire regimes. The distribution of serotiny could then be used to explore factors limiting the spread of fire‐dependent vegetation. Location South Island, New Zealand. Methods Serotiny was assessed as the proportion of closed capsules on a shoot of standard stem diameter for 5–35 plants in 45 widely scattered populations of Leptospermum scoparium. Site characteristics, including locality, altitude, rainfall, habitat type and minimum burnable area were recorded at sampling sites. Results Serotiny was distributed bimodally within and among populations with capsules either mostly closed or mostly open. There was considerable geographical variation in capsule behaviour, most of which we attribute to variation in fire history. In wetlands and other sites unsuitable for forest growth, populations were all serotinous above a minimum area of 30 km2 and nonserotinous below this threshold. In grassy habitats in the drier eastern areas, most populations were serotinous. The nonserotinous exceptions occurred in areas thought to have been cleared of forests by Polynesian settlers before the arrival of Europeans or in areas with numerous barriers to fire in the form of large rivers, floodplains, glaciers and barren mountain tops. Conclusions We suggest that serotiny in L. scoparium is a reflection of a long history of fire in the South Island. As such, it provides a contemporary signature of a past fire regime. Landscape barriers to the spread of fire were major obstacles limiting the spread of serotiny and associated fire‐dependent vegetation. Rivers, lakes, glaciers, and sparsely vegetated floodplains prevented the spread of fire in high rainfall regions more than the lack of dry weather. People, by igniting fires in small open areas seldom struck by lightning, could radically increase the importance of fire on islands.  相似文献   

6.
The south-eastern Amazon rainforest is subject to ongoing deforestation and is expected to become drier due to climate change. Recent analyses of the distribution of tree cover in the tropics show three modes that have been interpreted as representing alternative stable states: forest, savanna and treeless states. This situation implies that a change in environmental conditions, such as in the climate, could cause critical transitions from a forest towards a savanna ecosystem. Shifts to savanna might also occur if perturbations such as deforestation exceed a critical threshold. Recovering the forest would be difficult as the savanna will be stabilized by a feedback between tree cover and fire. Here we explore how environmental changes and perturbations affect the forest by using a simple model with alternative tree-cover states. We focus on the synergistic effects of precipitation reduction and deforestation on the probability of regime shifts in the south-eastern Amazon rainforest. The analysis indicated that in a large part of the south-eastern Amazon basin rainforest and savanna could be two alternative states, although massive forest dieback caused by mean-precipitation reduction alone is unlikely. However, combinations of deforestation and climate change triggered up to 6.6 times as many local regime shifts than the two did separately, causing large permanent forest losses in the studied region. The results emphasize the importance of reducing deforestation rates in order to prevent a climate-induced dieback of the south-eastern Amazon rainforest.  相似文献   

7.
Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15–26 Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends.  相似文献   

8.
In the context of ongoing climatic warming, certain landscapes could be near a tipping point where relatively small changes to their fire regimes or their postfire forest recovery dynamics could bring about extensive forest loss, with associated effects on biodiversity and carbon‐cycle feedbacks to climate change. Such concerns are particularly valid in the Klamath Region of northern California and southwestern Oregon, where severe fire initially converts montane conifer forests to systems dominated by broadleaf trees and shrubs. Conifers eventually overtop the competing vegetation, but until they do, these systems could be perpetuated by a cycle of reburning. To assess the vulnerability of conifer forests to increased fire activity and altered forest recovery dynamics in a warmer, drier climate, we characterized vegetation dynamics following severe fire in nine fire years over the last three decades across the climatic aridity gradient of montane conifer forests. Postfire conifer recruitment was limited to a narrow window, with 89% of recruitment in the first 4 years, and height growth tended to decrease as the lag between the fire year and the recruitment year increased. Growth reductions at longer lags were more pronounced at drier sites, where conifers comprised a smaller portion of live woody biomass. An interaction between seed‐source availability and climatic aridity drove substantial variation in the density of regenerating conifers. With increasing climatic water deficit, higher propagule pressure (i.e., smaller patch sizes for high‐severity fire) was needed to support a given conifer seedling density, which implies that projected future increases in aridity could limit postfire regeneration across a growing portion of the landscape. Under a more severe prospective warming scenario, by the end of the century more than half of the area currently capable of supporting montane conifer forest could become subject to minimal conifer regeneration in even moderate‐sized (10s of ha) high‐severity patches.  相似文献   

9.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

10.
Flammability dynamics in the Australian Alps   总被引:1,自引:0,他引:1       下载免费PDF全文
Forests of the Australian Alps (SE Australia) are considered some of the most vulnerable to climate change in the country, with ecosystem collapse considered likely for some due to frequent fire. It is not yet known, however, whether increasing fire frequency may stabilize due to reductions in flammability related to reduced time for fuel accumulation, show no trend, or increase due to positive feedbacks related to vegetation changes. To determine what these trends have been historically, dynamics were measured for 58 years of mapped fire history. The 1.4 million ha forested area was divided into broad formations based on structure and dominant canopy trees, and dynamics were measured for each using flammability ratio, a modification of probability of ignition at a point. Crown fire likelihood was measured for each formation, based on satellite‐derived measurements of the 2003 fire effects across a large part of the area. Contrary to popular perception but consistent with mechanistic expectations, all forests exhibited pronounced positive feedbacks. The strongest response was observed in tall, wet forests dominated by Ash‐type eucalypts, where, despite a short period of low flammability following fire, post‐disturbance stands have been more than eight times as likely to burn than have mature stands. The weakest feedbacks occurred in open forest, although post‐disturbance forests were still 1.5 times as likely to burn as mature forests. Apart from low, dry open woodland where there was insufficient data to detect a trend, all forests were most likely to experience crown fire during their period of regeneration. The implications of this are significant for the Alps, as increasing fire frequency has the potential to accelerate by producing an increasingly flammable landscape. These effects may be semi‐permanent in tall, wet forest, where frequent fire promotes ecosystem collapse into either the more flammable open forest formation, or to heathland.  相似文献   

11.
Bone-seed, Chrysanthemoides monilifera ssp. monilifera (L.), is an environmental weed of coastal vegetation communities scattered throughout New Zealand. To assess the long-term implications for native forest regeneration in sites where bone-seed is present, we selected four study sites around Wellington, New Zealand, where bone-seed was abundant. We compared seed bank composition in bone-seed-invaded sites with nearby native forest patches, and monitored bone-seed and native seedling recruitment with and without control of mature bone-seed plants. We also tested the potential effects of fire on bone-seed recruitment in these communities by heating seeds prior to germination. Bone-seed, gorse (Ulex europaeus), and native species emerged from seed bank samples taken from bone-seed-invaded sites, but only native species and (less) gorse emerged from seed bank samples taken from native forest patches. Gorse germination was strongly promoted by heat but bone-seed germination was less affected by heat. Bone-seed seedling abundance increased dramatically following canopy removal, whereas native seedling abundance decreased dramatically. This suggests that disturbance of any form is likely to favour recruitment of bone-seed (and gorse) over native species, although in the long term, native seedlings can establish beneath the canopy of mature bone-seed plants. It is not yet known if, in the absence of further disturbance, regenerating native vegetation will eventually replace bone-seed in New Zealand.  相似文献   

12.
Future changes in climate are widely anticipated to increase fire frequency, particularly in boreal forests where extreme warming is expected to occur. Feedbacks between vegetation and fire may modify the direct effects of warming on fire activity and shape ecological responses to changing fire frequency. We investigate these interactions using extensive field data from the Boreal Shield of Saskatchewan, Canada, a region where >40% of the forest has burned in the past 30 years. We use geospatial and field data to assess the resistance and resilience of eight common vegetation states to frequent fire by quantifying the occurrence of short‐interval fires and their effect on recovery to a similar vegetation state. These empirical relationships are combined with data from published literature to parameterize a spatially explicit, state‐and‐transition simulation model of fire and forest succession. We use this model to ask if and how: (a) feedbacks between vegetation and wildfire may modify fire activity on the landscape, and (b) more frequent fire may affect landscape forest composition and age structure. Both field and GIS data suggest the probability of fire is low in the initial decades after fire, supporting the hypothesis that fuel accumulation may exert a negative feedback on fire frequency. Field observations of pre‐ and postfire composition indicate that switches in forest state are more likely in conifer stands that burn at a young age, supporting the hypothesis that resilience is lower in immature stands. Stands dominated by deciduous trees or jack pine were generally resilient to fire, while mixed conifer and well‐drained spruce forests were less resilient. However, simulation modeling suggests increased fire activity may result in large changes in forest age structure and composition, despite the feedbacks between vegetation–fire likely to occur with increased fire activity.  相似文献   

13.
Forest vegetation has the ability to warm Recent climate by its effects on albedo and atmospheric water vapour, but the role of vegetation in warming climates of the geologic past is poorly understood. This study evaluates the role of forest vegetation in maintaining warm climates of the Late Cretaceous by (1) reconstructing global palaeovegetation for the latest Cretaceous (Maastrichtian); (2) modelling latest Cretaceous climate under unvegetated conditions and different distributions of palaeovegetation; and (3) comparing model output with a global database of palaeoclimatic indicators. Simulation of Maastrichtian climate with the land surface coded as bare soil produces high-latitude temperatures that are too cold to explain the documented palaeogeographic distribution of forest and woodland vegetation. In contrast, simulations that include forest vegetation at high latitudes show significantly warmer temperatures that are sufficient to explain the widespread geographic distribution of high-latitude deciduous forests. These warmer temperatures result from decreased albedo and feedbacks between the land surface and adjacent oceans. Prescribing a realistic distribution of palaeovegetation in model simulations produces the best agreement between simulated climate and the geologic record of palaeoclimatic indicators. Positive feedbacks between high-latitude forests, the atmosphere, and ocean contributed significantly to high-latitude warming during the latest Cretaceous, and imply that high-latitude forest vegetation was an important source of polar warmth during other warm periods of geologic history.  相似文献   

14.
Landuse changes, including deforestation, agriculture, and urbanization, have coincided with an increase in vector-borne diseases worldwide. Landuse changes may alter mosquito populations by modifying the characteristics of aquatic larval habitats, but we still poorly understand the physical, chemical, and biological factors involved. We examined a total of 81 mosquito larval habitats for immature mosquitoes and 17 environmental variables in native forest, pastureland, and urbanland, at three locations in the Kapiti region, New Zealand. Significantly higher immature mosquito densities, predominantly of the endemic species Cx. pervigilans, were collected from urbanland and pastureland compared to native forest. Urbanland and pastureland habitats were mostly artificial containers compared to ground pools in native forest. Generalized linear modeling (GLM) revealed nine environmental variables that were significantly different between landuses. Of these variables, mosquito density was significantly (positively) correlated with bacteria and dissolved organic carbon. When location and date were controlled for in GLM, mosquito density was (negatively) related to the presence of vegetation and combined predators. The findings of this study support those from prior surveys in warmer climates suggesting greater mosquito-borne disease risk in anthropogenically-modified environments because of ecosystem disruption. Unlike most previous field-based work, this study suggests that in addition to habitat type, the presence of vegetation, water quality, and predators are also associated with mosquito density and may be involved in causal mechanisms. Urban containers and stock drinking troughs had high mosquito densities, suggesting that an initial step in directing control operations should be to focus on these habitats.  相似文献   

15.
Tropical forests are global epicentres of biodiversity and important modulators of the rate of climate change. Recent research on deforestation rates and ecological changes within intact forests, both areas of recent research and debate, are reviewed, and the implications for biodiversity (species loss) and climate change (via the global carbon cycle) addressed. Recent impacts have most likely been: (i) a large source of carbon to the atmosphere, and major loss of species, from deforestation and (ii) a large carbon sink within remaining intact forest, accompanied by accelerating forest dynamism and widespread biodiversity changes. Finally, I look to the future, suggesting that the current carbon sink in intact forests is unlikely to continue, and that the tropical forest biome may even become a large net source of carbon, via one or more of four plausible routes: changing photosynthesis and respiration rates, biodiversity changes in intact forest, widespread forest collapse via drought, and widespread forest collapse via fire. Each of these scenarios risks potentially dangerous positive feedbacks with the climate system that could dramatically accelerate and intensify climate change. Given that continued land-use change alone is already thought to be causing the sixth mass extinction event in Earth's history, should such feedbacks occur, the resulting biodiversity and societal consequences would be even more severe.  相似文献   

16.
The dynamic relationship between vegetation and climate is now widely acknowledged. Climate influences the distribution of vegetation; and through a number of feedback mechanisms vegetation affects climate. This implies that land-use changes such as deforestation will have climatic consequences. However, the spatial scales at which such feedbacks occur remain largely unknown. Here, we use a large database of precipitation and tree cover records for an area of the biodiversity-rich Atlantic forest region in south eastern Brazil to investigate the forest-rainfall feedback at a range of spatial scales from ca 10(1)-10(4) km2. We show that the strength of the feedback increases up to scales of at least 10(3) km2, with the climate at a particular locality influenced by the pattern of landcover extending over a large area. Thus, smaller forest fragments, even if well protected, may suffer degradation due to the climate responding to land-use change in the surrounding area. Atlantic forest vertebrate taxa also require large areas of forest to support viable populations. Areas of forest of ca 10(3) km2 would be large enough to support such populations at the same time as minimizing the risk of climatic feedbacks resulting from deforestation.  相似文献   

17.
In the Rio Ranchería watershed of the Sierra Nevada de Santa Marta, between 500 and 1500 m, savanna vegetation is interspersed with moist forests. The savannas are composed of native savanna grasses like Aristida adscensionis L., Arundinella sp., Panicum olyroides Kunth, and Schyzachyrium microstachyum (Desv.) Roseng., Arrill & Izag and the African Melinis minutiflora P. Beauv. There is also Curatella americana L. and Byrsonima crassifolia (L.) H.B.K., two typical tree species of the neotropical savannas. Although moist forest patches occur more often on lower slopes and narrow valley bottoms, they can also be found on mid- and upper-slopes and less often on ridges. Thus, these forest patches are not gallery forests as are found throughout the neotropics, but the result of deforestation and fractionation of a continuous forest. A comparison of soil profiles between the savannas and remnant forest patches on the same slope, showed the disappearance of the A and B horizons (approx. 50 cm) under savanna vegetation. The sharp difference between the savanna and forest soils at the Rio Ranchería does not appear to be due to a change in soil water status along a toposequence or differences in the underlying bedrock. We hypothesize that the savannas of the Rio Ranchería watershed, are the result of deforestation and land practices on infertile soils derived from granite. The savannization process was likely initiated by Amerindians by means of the frequent use of fire or clearing lands for the cultivation of maize. The introduction of cattle by Spaniards (c. 1530) and the frequent use of fire to maintain grazing fields, contributed to further degradation of the habitat. While some tropical landscapes recovered their forest cover when human pressure was removed approximately 500 years ago, areas such as the Rio Ranchería watershed have suffered permanent damage. The savannas of this region are likely to remain unless fire is suppressed and soil restoration practices implemented.  相似文献   

18.
Forestry management worldwide has become increasingly effective at obtaining high timber yields from productive forests. In New Zealand, a focus on improving an increasingly successful and largely Pinus radiata plantation forestry model over the last 150 years has resulted in some of the most productive timber forests in the temperate zone. In contrast to this success, the full range of forested landscapes across New Zealand, including native forests, are impacted by an array of pressures from introduced pests, diseases, and a changing climate, presenting a collective risk of losses in biological, social and economic value. As the national government policies incentivise reforestation and afforestation, the social acceptability of some forms of newly planted forests is also being challenged. Here, we review relevant literature in the area of integrated forest landscape management to optimise forests as nature-based solutions, presenting ‘transitional forestry’ as a model design and management paradigm appropriate to a range of forest types, where forest purpose is placed at the heart of decision making. We use New Zealand as a case study region, describing how this purpose-led transitional forestry model can benefit a cross section of forest types, from industrialised forest plantations to dedicated conservation forests and a range of multiple-purpose forests in between. Transitional forestry is an ongoing multi-decade process of change from current ‘business-as-usual’ forest management to future systems of forest management, embedded across a continuum of forest types. This holistic framework incorporates elements to enhance efficiencies of timber production, improve overall forest landscape resilience, and reduce some potential negative environmental impacts of commercial plantation forestry, while allowing the ecosystem functioning of commercial and non-commercial forests to be maximised, with increased public and biodiversity conservation value. Implementation of transitional forestry addresses tensions that arise between meeting climate mitigation targets and improving biodiversity criteria through afforestation, alongside increasing demand for forest biomass feedstocks to meet the demands of near-term bioenergy and bioeconomy goals. As ambitious government international targets are set for reforestation and afforestation using both native and exotic species, there is an increasing opportunity to make such transitions via integrated thinking that optimises forest values across a continuum of forest types, while embracing the diversity of ways in which such targets can be reached.  相似文献   

19.
Aims Australia is among one of the world's wealthiest nations; yet, its relatively small human population (22.5 million) has been responsible for extensive deforestation and forest degradation since European settlement in the late 18th century. Despite most (~75%) of Australia's 7.6 million-km 2 area being covered in inhospitable deserts or arid lands generally unsuitable to forest growth, the coastal periphery has witnessed a rapid decline in forest cover and quality, especially over the last 60 years. Here I document the rates of forest loss and degradation in Australia based on a thorough review of existing literature and unpublished data.Important findings Overall, Australia has lost nearly 40% of its forests, but much of the remaining native vegetation is highly fragmented. As European colonists expanded in the late 18th and the early 19th centuries, deforestation occurred mainly on the most fertile soils nearest to the coast. In the 1950s, southwestern Western Australia was largely cleared for wheat production, subsequently leading to its designation as a Global Biodiversity Hotspot given its high number of endemic plant species and rapid clearing rates. Since the 1970s, the greatest rates of forest clearance have been in southeastern Queensland and northern New South Wales, although Victoria is the most cleared state. Today, degradation is occurring in the largely forested tropical north due to rapidly expanding invasive weed species and altered fire regimes. Without clear policies to regenerate degraded forests and protect existing tracts at a massive scale, Australia stands to lose a large proportion of its remaining endemic biodiversity. The most important implications of the degree to which Australian forests have disappeared or been degraded are that management must emphasize the maintenance of existing primary forest patches, as well as focus on the regeneration of matrix areas between fragments to increase native habitat area, connectivity and ecosystem functions.  相似文献   

20.
Question: Is the diverse mosaic of forest/grassland (Campos) vegetation on the hills in the Porto Alegre region natural or of anthropogenic origin? What are the best approaches to management and conservation of forest/grassland mosaics in southern Brazil? Location: 280 m a.s.l., Rio Grande do Sul State (30°04′32″S; 51°06′05″W, southern Brazil. Methods: A 50-cm long radiocarbon dated sediment core from a swamp on Morro Santana was analysed for pollen and charcoal, and multivariate data analysis was used to reconstruct past vegetation and fire dynamics. Results: The formation of swamp deposits is related to a change to wetter climatic conditions since 1230 cal yr BP. The diverse forest/grassland mosaic existed already at that time and can be seen as natural in origin as it has been also shown from other studies in southern Brazil. Since 580 cal yr BP, forests expanded continuously. The marked higher occurrence of the pioneer Myrsine during the last 70 years, indicates a change in the disturbance regime. In the past, vegetation has been influenced by mostly anthropogenic fire, set first by Amerindians and later by European settlers. Conclusions: Management for conservation of forest/grassland mosaics should take into account, first, that grasslands are remnants of earlier drier Holocene periods and not a result of deforestation and, second, the history of disturbance by grazing and fire. Suppression of grazing and burning has likely resulted in a trend towards more woody vegetation under modern wet climatic conditions. If management for conservation excludes fire, the present grassland patches will tend to disappear due to forest expansion under the modern humid climate. Maintaining or reintroducing cattle grazing in conservation areas could be an alternative to fire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号