首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular membranes display a diversity of functions that are conferred by the unique composition and organization of their proteins and lipids. One important aspect of lipid organization is the asymmetric distribution of phospholipids (PLs) across the plasma membrane. The unequal distribution of key PLs between the cytofacial and exofacial leaflets of the bilayer creates physical surface tension that can be used to bend the membrane; and like Ca2+, a chemical gradient that can be used to transduce biochemical signals. PL flippases in the type IV P-type ATPase (P4-ATPase) family are the principle transporters used to set and repair this PL gradient and the asymmetric organization of these membranes are encoded by the substrate specificity of these enzymes. Thus, understanding the mechanisms of P4-ATPase substrate specificity will help reveal their role in membrane organization and cell biology. Further, decoding the structural determinants of substrate specificity provides investigators the opportunity to mutationally tune this specificity to explore the role of particular PL substrates in P4-ATPase cellular functions. This work reviews the role of P4-ATPases in membrane biology, presents our current understanding of P4-ATPase substrate specificity, and discusses how these fundamental aspects of P4-ATPase enzymology may be used to enhance our knowledge of cellular membrane biology.  相似文献   

2.
3.
The structure of F1-ATPase from Saccharomyces cerevisiae inhibited by the yeast IF1 has been determined at 2.5 Å resolution. The inhibitory region of IF1 from residues 1 to 36 is entrapped between the C-terminal domains of the αDP- and βDP-subunits in one of the three catalytic interfaces of the enzyme. Although the structure of the inhibited complex is similar to that of the bovine-inhibited complex, there are significant differences between the structures of the inhibitors and their detailed interactions with F1-ATPase. However, the most significant difference is in the nucleotide occupancy of the catalytic βE-subunits. The nucleotide binding site in βE-subunit in the yeast complex contains an ADP molecule without an accompanying magnesium ion, whereas it is unoccupied in the bovine complex. Thus, the structure provides further evidence of sequential product release, with the phosphate and the magnesium ion released before the ADP molecule.  相似文献   

4.
The addition of ethanolamine or choline to inositol-containing growth medium of Saccharomyces cerevisiae wild-type cells resulted in a reduction of membrane-associated phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activity in cell extracts. The reduction of activity did not occur when inositol was absent from the growth medium. Under the growth conditions where a reduction of enzyme activity occurred, there was a corresponding qualitative reduction of enzyme subunit as determined by immunoblotting with antiserum raised against purified phosphatidylserine synthase. Water-soluble phospholipid precursors did not effect purified phosphatidylserine synthase activity. Phosphatidylserine synthase (activity and enzyme subunit) was not regulated by the availability of water-soluble phospholipid precursors in S. cerevisiae VAL2C(YEp CHO1) and the opi1 mutant. VAL2C(YEp CHO1) is a plasmid-bearing strain that over produces phosphatidylserine synthase activity, and the opi1 mutant is an inositol biosynthesis regulatory mutant. The results of this study suggest that the regulation of phosphatidylserine synthase by the availability of phospholipid precursors occurs at the level of enzyme formation and not at the enzyme activity level. Furthermore, the regulation of phosphatidylserine synthase is coupled to inositol synthesis.  相似文献   

5.
6.
Phosphatidylethanolamine methyltransferase (PEMT) and phospholipid methyltransferase (PLMT), which are encoded by the CHO2 and OPI3 genes, respectively, catalyze the three-step methylation of phosphatidylethanolamine to phosphatidylcholine in Saccharomyces cerevisiae. Regulation of PEMT and PLMT as well as CHO2 mRNA and OPI3 mRNA abundance was examined in S. cerevisiae cells supplemented with phospholipid precursors. The addition of choline to inositol-containing growth medium repressed the levels of CHO2 mRNA and OPI3 mRNA abundance in wild-type cells. The major effect on the levels of the CHO2 mRNA and OPI3 mRNA occurred in response to inositol. Regulation was also examined in cho2 and opi3 mutants, which are defective in PEMT and PLMT activities, respectively. These mutants can synthesize phosphatidylcholine when they are supplemented with choline by the CDP-choline-based pathway but they are not auxotrophic for choline. CHO2 mRNA and OPI3 mRNA were regulated by inositol plus choline in opi3 and cho2 mutants, respectively. However, there was no regulation in response to inositol when the mutants were not supplemented with choline. This analysis showed that the regulation of CHO2 mRNA and OPI3 mRNA abundance by inositol required phosphatidylcholine synthesis by the CDP-choline-based pathway. The regulation of CHO2 mRNA and OPI3 mRNA abundance generally correlated with the activities of PEMT and PLMT, respectively. CDP-diacylglycerol synthase and phosphatidylserine synthase, which are regulated by inositol in wild-type cells, were examined in the cho2 and opi3 mutants. Phosphatidylcholine synthesis was not required for the regulation of CDP-diacylglycerol synthase and phosphatidylserine synthase by inositol.  相似文献   

7.
Ribonuclease P (RNase P) is involved in regulation of noncoding RNA (ncRNA) expression in Saccharomyces cerevisiae. A hidden-in-reading-frame antisense-1 (HRA1) RNA in S. cerevisiae, which belongs to a class of ncRNAs located in the antisense strand to verified protein coding regions, was cloned for further use in RNase P assays. Escherichia coli RNase P assays in vitro of HRA1 RNA show two cleavage sites, one major and one minor in terms of rates. The same result was observed with a partially purified S. cerevisiae RNase P activity, both at 30 degrees C and 37 degrees C. These latter cells are normally grown at 30 degrees C. Predictions of the secondary structure of HRA1 RNA in silico show the cleavage sites are canonical RNase P recognition sites. A relatively small amount of endogenous HRA1 RNA was identified by RT-PCR in yeast cells. The endogenous HRA1 RNA is increased in amount in strains that are deficient in RNase P activity. A deletion of 10 nucleotides in the HRA1 gene that does not overlap with the gene coding for a protein (DRS2) in the sense strand shows no defective growth in galactose or glucose. These data indicate that HRA1 RNA is a substrate for RNase P and does not appear as a direct consequence of separate regulatory effects of the enzyme on ncRNAs.  相似文献   

8.
9.
The yeast Saccharomyces cerevisiae takes up adenine, guanine, hypoxanthine, and cytosine via a common energy-dependent transport system. The apparent affinity of the transport system to these and other purines and pyrimidines is correlated with their capability to be protonated to the positively charged form. Further organic molecules are competitive inhibitors when they are cationic, e.g. guanidine and octylguanidine in contrast to urea, or hexadecyltrimethylammonium in contrast to dodecylsulfate and Triton X-100. The influence of the pH on the kinetic constants of hypoxanthine transport points to a stoichiometry of one proton being associated to the transport system together with one substrate molecule. The pKa values of two ionizable groups that are involved in substrate binding are revealed; one of which (pKa = 1.8) may be attributed to the substrate, the other (pKa = 5.1) to an amino acid residue in the recognition site of the transport system. Studies with group-specific inhibitors indicate that this amino acid residue contains a carboxyl group. The results are in accordance with the assumption that a carboxyl group of the transport system, a proton and a substrate molecule arrange to an uncharged ternary complex.  相似文献   

10.
The yeast Saccharomyces cerevisiae F1F0-ATPase epsilon-subunit (61 residues) was synthesized by the solid-phase peptide approach under both acidic and basic strategies. Only the latter strategy allowed us to obtain a pure epsilon-subunit. The strong propensity of the protein to produce few soluble dimeric species depending on pH has been proved by size-exclusion chromatography, electrophoresis and mass spectrometry. A circular dichroism study showed that an aqueous solution containing 30% trifluoroethanol or 200 mM sodium dodecyl sulphate is required for helical folding. In both solvents at acidic pH, the epsilon-subunit is soluble and monomeric.  相似文献   

11.
12.
Homoisocitrate dehydrogenase (HIcDH, 3-carboxy-2-hydroxyadipate dehydrogenase) catalyzes the fourth reaction of the alpha-aminoadipate pathway for lysine biosynthesis, the conversion of homoisocitrate to alpha-ketoadipate using NAD as an oxidizing agent. A chemical mechanism for HIcDH is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. According to the pH-rate profiles, two enzyme groups act as acid-base catalysts in the reaction. A group with a p K a of approximately 6.5-7 acts as a general base accepting a proton as the beta-hydroxy acid is oxidized to the beta-keto acid, and this residue participates in all three of the chemical steps, acting to shuttle a proton between the C2 hydroxyl and itself. The second group acts as a general acid with a p K a of 9.5 and likely catalyzes the tautomerization step by donating a proton to the enol to give the final product. The general acid is observed in only the V pH-rate profile with homoisocitrate as a substrate, but not with isocitrate as a substrate, because the oxidative decarboxylation portion of the isocitrate reaction is limiting overall. With isocitrate as the substrate, the observed primary deuterium and (13)C isotope effects indicate that hydride transfer and decarboxylation steps contribute to rate limitation, and that the decarboxylation step is the more rate-limiting of the two. The multiple-substrate deuterium/ (13)C isotope effects suggest a stepwise mechanism with hydride transfer preceding decarboxylation. With homoisocitrate as the substrate, no primary deuterium isotope effect was observed, and a small (13)C kinetic isotope effect (1.0057) indicates that the decarboxylation step contributes only slightly to rate limitation. Thus, the chemical steps do not contribute significantly to rate limitation with the native substrate. On the basis of data from solvent deuterium kinetic isotope effects, viscosity effects, and multiple-solvent deuterium/ (13)C kinetic isotope effects, the proton transfer step(s) is slow and likely reflects a conformational change prior to catalysis.  相似文献   

13.
14.
Xu H  West AH  Cook PF 《Biochemistry》2007,46(25):7625-7636
A survey of NADH, alpha-Kg, and lysine analogues has been undertaken in an attempt to define the substrate specificity of saccharopine dehydrogenase and to identify functional groups on all substrates and dinucleotides important for substrate binding. A number of NAD analogues, including NADP, 3-acetylpyridine adenine dinucleotide (3-APAD), 3-pyridinealdehyde adenine dinucleotide (3-PAAD), and thionicotinamide adenine dinucleotide (thio-NAD), can serve as a substrate in the oxidative deamination reaction, as can a number of alpha-keto analogues, including glyoxylate, pyruvate, alpha-ketobutyrate, alpha-ketovalerate, alpha-ketomalonate, and alpha-ketoadipate. Inhibition studies using nucleotide analogues suggest that the majority of the binding energy of the dinucleotides comes from the AMP portion and that distinctly different conformations are generated upon binding of the oxidized and reduced dinucleotides. Addition of the 2'-phosphate as in NADPH causes poor binding of subsequent substrates but has little effect on coenzyme binding and catalysis. In addition, the 10-fold decrease in affinity of 3-APAD in comparison to NAD suggests that the nicotinamide ring binding pocket is hydrophilic. Extensive inhibition studies using aliphatic and aromatic keto acid analogues have been carried out to gain insight into the keto acid binding pocket. Data suggest that a side chain with three carbons (from the alpha-keto group up to and including the side chain carboxylate) is optimal. In addition, the distance between the C1-C2 unit and the C5 carboxylate of the alpha-keto acid is also important for binding; the alpha-oxo group contributes a factor of 10 to affinity. The keto acid binding pocket is relatively large and flexible and can accommodate the bulky aromatic ring of a pyridine dicarboxylic acid and a negative charge at the C3 but not the C4 position. However, the amino acid binding site is hydrophobic, and the optimal length of the hydrophobic portion of the amino acid carbon side chain is three or four carbons. In addition, the amino acid binding pocket can accommodate a branch at the gamma-carbon, but not at the beta-carbon.  相似文献   

15.
The addition of L-serine to inositol-containing growth medium repressed membrane-associated CDPdiacylglycerol synthase (CTP:phosphatidate cytidylyltransferase, EC 2.7.7.41) and phosphatidylserine synthase (CDPdiacylglycerol:L-serine O-phosphatidyltransferase, EC 2.7.8.8) activities and subunit levels in wild-type Saccharomyces cerevisiae. Enzyme activities and subunit levels were not repressed when inositol was absent from the growth medium. The addition of L-serine to the growth medium did not affect the phospholipid composition of wild-type cells. CDPdiacylglycerol synthase and phosphatidylserine synthase were not regulated in the S. cerevisiae inositol biosynthesis ino2, ino4, and opi1 regulatory mutants, suggesting that regulation by inositol plus L-serine is coupled to inositol synthesis. Inositol and L-serine did not affect the activities of purified CDPdiacylglycerol synthase and phosphatidylserine synthase. The addition of compounds structurally related to L-serine to the growth medium of wild-type cells also resulted in a repression of CDPdiacylglycerol synthase and phosphatidylserine synthase but only in the presence of inositol. Phosphatidylinositol synthase (CDPdiacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) was not regulated by inositol plus L-serine.  相似文献   

16.
The mechanism of cerium uptake by Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
  相似文献   

17.
S Ulaszewski  F Hilger  A Goffeau 《FEBS letters》1989,245(1-2):131-136
The thermosensitive G1-arrested cdc35-10 mutant from Saccharomyces cerevisiae, defective in adenylate cyclase activity, was shifted to restrictive temperature. After 1 h incubation at this temperature, the plasma membrane H+-ATPase activity of cdc35-10 was reduced to 50%, whereas that in mitochondria doubled. Similar data were obtained with cdc25, another thermosensitive G1-arrested mutant modified in the cAMP pathway. In contrast, the ATPase activities of the G1-arrested mutant cdc19, defective in pyruvate kinase, were not affected after 2 h incubation at restrictive temperature. In the double mutants cdc35-10 cas1 and cdc25 cas1, addition of extracellular cAMP prevented the modifications of ATPase activities observed in the single mutants cdc35-10 and cdc25. These data indicate that cAMP acts as a positive effector on the H+-ATPase activity of plasma membranes and as a negative effector on that of mitochondria.  相似文献   

18.
Diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase has been isolated previously using classical protein isolation techniques [A. Guranowski and S. Blanquet (1985) J. Biol. Chem. 260, 3542-3547]. A protein A-Sepharose immunoaffinity column was prepared to simplify the purification procedure. The immunoaffinity column was prepared using specific polyclonal antibodies to Ap4A phosphorylase covalently coupled to protein A-Sepharose with dimethyl pimelimidate by a modification of the procedure of C. Schneider et al. [(1982) J. Biol. Chem. 257, 10,766-10,769]. The specific activity of the immunoaffinity-purified enzyme showed an increase equivalent to the specific activity obtained by chromatography on DEAE-cellulose and hydroxyapatite columns.  相似文献   

19.
20.
Xu H  West AH  Cook PF 《Biochemistry》2006,45(39):12156-12166
Kinetic data have been measured for the histidine-tagged saccharopine dehydrogenase from Saccharomyces cerevisiae, suggesting the ordered addition of nicotinamide adenine dinucleotide (NAD) followed by saccharopine in the physiologic reaction direction. In the opposite direction, the reduced nicotinamide adenine dinucleotide (NADH) adds to the enzyme first, while there is no preference for the order of binding of alpha-ketoglutarate (alpha-Kg) and lysine. In the direction of saccharopine formation, data also suggest that, at high concentrations, lysine inhibits the reaction by binding to free enzyme. In addition, uncompetitive substrate inhibition by alpha-Kg and double inhibition by NAD and alpha-Kg suggest the existence of an abortive E:NAD:alpha-Kg complex. Product inhibition by saccharopine is uncompetitive versus NADH, suggesting a practical irreversibility of the reaction at pH 7.0 in agreement with the overall K(eq). Saccharopine is noncompetitive versus lysine or alpha-Kg, suggesting the existence of both E:NADH:saccharopine and E:NAD:saccharopine complexes. NAD is competitive versus NADH, and noncompetitive versus lysine and alpha-Kg, indicating the combination of the dinucleotides with free enzyme. Dead-end inhibition studies are also consistent with the random addition of alpha-Kg and lysine. Leucine and oxalylglycine serve as lysine and alpha-Kg dead-end analogues, respectively, and are uncompetitive against NADH and noncompetitive against alpha-Kg and lysine, respectively. Oxaloacetate (OAA), pyruvate, and glutarate behave as dead-end analogues of lysine, which suggests that the lysine-binding site has a higher affinity for keto acid analogues than does the alpha-Kg site or that dicarboxylic acids have more than one binding mode on the enzyme. In addition, OAA and glutarate also bind to free enzyme as does lysine at high concentrations. Glutarate gives S-parabolic noncompetitive inhibition versus NADH, indicating the formation of a E:(glutarate)2 complex as a result of occupying both the lysine- and alpha-Kg-binding sites. Pyruvate, a slow alternative keto acid substrate, exhibits competitive inhibition versus both lysine and alpha-Kg, suggesting the combination to the E:NADH:alpha-Kg and E:NADH:lysine enzyme forms. The equilibrium constant for the reaction has been measured at pH 7.0 as 3.9 x 10(-7) M by monitoring the change in NADH upon the addition of the enzyme. The Haldane relationship is in very good agreement with the directly measured value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号