首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.  相似文献   

2.
3.
StAR‐related lipid transfer domain‐3 (STARD3) is a sterol‐binding protein that creates endoplasmic reticulum (ER)–endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill‐defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3‐mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER–endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER‐anchored partner, Vesicle‐associated membrane protein‐associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER–endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.  相似文献   

4.
Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein–lipid and protein–protein interactions. Similarly, membrane lipids and their physico-chemical properties directly affect cholesterol partitioning and thereby contribute to the highly heterogeneous intracellular cholesterol distribution. Movement of cholesterol in cells is mediated by vesicle trafficking along the endocytic and secretory pathways as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol–lipid and sterol–protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics in membranes and explain how such models are related to sterol flux between organelles. An overview of various sterol-transfer proteins is given, and the physico-chemical principles of their function in non-vesicular sterol transport are explained. We also discuss selected experimental approaches for characterization of sterol–protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how specific protein–lipid and protein–protein interactions help overcoming the extremely low water solubility of cholesterol, thereby controlling intracellular cholesterol movement. This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

5.
Cellular cholesterol homeostasis involves sterol sensing at the endoplasmic reticulum (ER) and sterol export from the plasma membrane (PM). Sterol sensing at the ER requires efficient sterol delivery from the PM; however, the macromolecules that facilitate retrograde sterol transport at the PM have not been identified. ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol and phospholipid export to apolipoprotein A-I for the assembly of high density lipoprotein (HDL). Mutations in ABCA1 cause Tangier disease, a familial HDL deficiency. Several lines of clinical and experimental evidence suggest a second function of ABCA1 in cellular cholesterol homeostasis in addition to mediating cholesterol efflux. Here, we report the unexpected finding that ABCA1 also plays a key role in facilitating retrograde sterol transport from the PM to the ER for sterol sensing. Deficiency in ABCA1 delays sterol esterification at the ER and activates the SREBP-2 cleavage pathway. The intrinsic ATPase activity in ABCA1 is required to facilitate retrograde sterol transport. ABCA1 deficiency causes alternation of PM composition and hampers a clathrin-independent endocytic activity that is required for ER sterol sensing. Our finding identifies ABCA1 as a key macromolecule facilitating bidirectional sterol movement at the PM and shows that ABCA1 controls retrograde sterol transport by modulating a certain clathrin-independent endocytic process.  相似文献   

6.
7.
The potential role of liver fatty acid binding protein (L-FABP) in modulating cellular sterol distribution was examined in mouse L-cell fibroblasts transfected with cDNA encoding L-FABP. L-cells were chosen because they contain only a small amount of endogenous FABP which does not bind [3H]cholesterol, does not enhance intermembrane sterol transfer, and whose content is unaltered by the expression of L-FABP. Transfected L-cells expressed 0.34% of cytosolic protein as L-FABP. Transfection alone with low expression of L-FABP (0.008% of cytosolic protein) had no effect on any of the parameters tested. Three aspects of cellular sterol transfer were examined. First, cellular sterol uptake, monitored by [3H]cholesterol and the fluorescent sterol, delta-5,7,9(11),22-ergostatetraen-3 beta-ol, was increased 21.5 +/- 2.6% (p less than 0.001) in L-cells expressing L-FABP. This increase was not accounted for by increased sterol esterification in the cells expressing L-FABP. Inhibition of both cholesterol transfer and esterification with 3-(decyldimethylsilyl)-N-[2-(4-methylphenyl)-1-phenylethyl]propanamide from Sandoz abolished the L-FABP related enhancement of both [3H]cholesterol uptake and esterification. Second, plasma membrane transbilayer distribution of sterol, determined by fluorescence methods indicated that the majority of sterol was in the inner leaflet of the plasma membrane. In transfected cells expressing L-FABP, twice as much sterol (28 +/- 4%) was present in the exofacial leaflet of the plasma membrane as compared to that of control cells (15 +/- 2%). Third, expression of L-FABP enhanced sterol transfer from the plasma membrane to microsomes in intact cells. Treatment of [3H]cholesterol or [3H]oleate-loaded cells with sphingomyelinase resulted in increased formation of radiolabeled cholesterol ester, consistent with enhanced microsomal esterification of plasma membrane derived cholesterol. Concomitantly, plasma membrane [3H]cholesterol became less accessible to oxidation by cholesterol oxidase. Sphingomyelinase-stimulated cholesterol esterification was 21 +/- 3% greater in transfected cells. Concomitantly, accessibility of plasma membrane [3H]cholesterol to cholesterol oxidase was decreased 18 +/- 3% in cells expressing L-FABP. These differences are consistent with the ability of L-FABP to influence sterol transport and plasma membrane transbilayer sterol distribution in intact cells.  相似文献   

8.
Sterols are essential lipid components of eukaryotic membranes. Here we summarize recent advances in understanding how sterols are transported between different membranes. Baker's yeast is a particularly attractive organism to dissect this lipid transport pathway, because cells can synthesize their own major sterol, ergosterol, in the membrane of the endoplasmic reticulum from where it is then transported to the plasma membrane. However, Saccharomyces cerevisiae is also a facultative anaerobic organism, which becomes sterol auxotroph in the absence of oxygen. Under these conditions, cells take up sterol from the environment and transport the lipid back into the membrane of the endoplasmic reticulum, where the free sterol becomes esterified and is then stored in lipid droplets. Steryl ester formation is thus a reliable readout to assess the back-transport of exogenously provided sterols from the plasma membrane to the endoplasmic reticulum. Structure/function analysis has revealed that the bulk membrane function of the fungal ergosterol can be provided by structurally related sterols, including the mammalian cholesterol. Foreign sterols, however, are subject to a lipid quality control cycle in which the sterol is reversibly acetylated. Because acetylated sterols are efficiently excreted from cells, the substrate specificity of the deacetylating enzymes determines which sterols are retained. Membrane-bound acetylated sterols are excreted by the secretory pathway, more soluble acetylated sterol derivatives such as the steroid precursor pregnenolone, on the other hand, are excreted by a pathway that is independent of vesicle formation and fusion. Further analysis of this lipid quality control cycle is likely to reveal novel insight into the mechanisms that ensure sterol homeostasis in eukaryotic cells. Article from a special issue on Steroids and Microorganisms.  相似文献   

9.
Protein-mediated cholesterol trafficking is central to maintaining cholesterol homeostasis in cells. START (Steroidogenic acute regulatory protein-related lipid transfer) domains constitute a sterol and lipid binding motif and the START domain protein StARD4 typifies a small family of mammalian sterol transport proteins. StARD4 consists of a single START domain and has been reported to act as a general cholesterol transporter in cells. However, the structural basis of cholesterol uptake and transport is not well understood and no cholesterol-bound START domain structures have been reported. We have undertaken the study of cholesterol binding and transport by StARD4 using solution state NMR spectroscopy. To this end, we report nearly complete 1H, 15N, and 13C backbone resonance assignments of an inactive but well behaved mutant (L124D) of StARD4.  相似文献   

10.
Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics.  相似文献   

11.
The STARD1 subfamily of ‘START’ lipid trafficking proteins can reduce macrophage lipid content and inflammatory status (STARD1; StAR), and traffic cholesterol from endosomes (STARD3/MLN64). During macrophage differentiation, STARD1 mRNA and protein increase with sterol content, while the reverse is true for STARD3. Sterol depletion (methyl beta-cyclodextrin) enhances STARD3, and represses STARD1 expression. Agonists of Liver X receptors, peroxisome proliferator activated receptor-gamma and retinoic acid X receptors increase STARD1 expression, while hypocholesterolaemic agent, LY295427, reveals both STARD1 and STARD3 as putative SREBP-target genes. Pathophysiological ‘foam cell’ formation, induced by acetylated or oxidized LDL, significantly reduced both STARD1 and STARD3 gene expression. Differential regulation of STARD1 and D3 reflects their distinct roles in macrophage cholesterol metabolism, and may inform anti-atherogenic strategies.  相似文献   

12.
13.
Huang ZH  Gu D  Lange Y  Mazzone T 《Biochemistry》2003,42(13):3949-3955
Scavenger receptor BI influences multiple aspects of cellular sterol metabolism. In this series of studies, we evaluated the effect of scavenger receptor BI expression on the distribution and movement of sterol between the plasma membrane and the endoplasmic reticulum in macrophages, by comparing control J774 cells to J774 cells in which SR-BI expression was constitutively increased 3-fold. J774 cells with increased expression of SR-BI (J774-SRBI cells) esterified plasma membrane cholesterol more rapidly as compared to control cells. The esterification of endogenously synthesized cholesterol was also more rapid in cells with increased SR-BI expression; this could be partially suppressed by removing cholesterol from the plasma membrane. The increased plasma membrane sterol esterification in J774-SRBI cells was not due to increased acyl-coA:cholesterol acyltransferase activity and was observed even though J774-SRBI cells manifested a smaller free cholesterol pool in the endoplasmic reticulum. Cholesterol ester hydrolysis was also more rapid in J774-SRBI cells. Increased expression of SR-BI also facilitated the clearance of cellular cholesterol ester to HDL(3). This latter observation, combined with the measurement of the smaller ER free cholesterol pool in J774-SRBI cells, suggests that the free cholesterol derived from the hydrolysis of cholesterol ester was rapidly transported back to the plasma membrane. It is concluded that expression of SR-BI in macrophages increases the rate of free cholesterol transport, and modulates free cholesterol distribution between the plasma membrane and the internal membrane compartments in macrophages.  相似文献   

14.
Although sterol carrier protein-2 (SCP-2) binds, transfers, and/or enhances the metabolism of many membrane lipid species (fatty acids, cholesterol, phospholipids), it is not known if SCP-2 expression actually alters the membrane distribution of lipids in living cells or tissues. As shown herein for the first time, expression of SCP-2 in transfected L-cell fibroblasts reduced the plasma membrane levels of lipid species known to traffic through the HDL-receptor-mediated efflux pathway: cholesterol, cholesteryl esters, and phospholipids. While the ratio of cholesterol/phospholipid in plasma membranes of intact cells was not changed by SCP-2 expression, phosphatidylinositol, a molecule important to intracellular signaling and vesicular trafficking, and anionic phospholipids were selectively retained. Only modest alterations in plasma membrane phospholipid percent fatty acid composition but no overall change in the proportion of saturated, unsaturated, monounsaturated, or polyunsaturated fatty acids were observed. The reduced plasma membrane content of cholesterol was not due to SCP-2 inhibition of sterol transfer from the lysosomes to the plasma membranes. SCP-2 dramatically enhanced sterol transfer from isolated lysosomal membranes to plasma membranes by eliciting detectable sterol transfer within 30 s, decreasing the t(1/2) for sterol transfer 364-fold from >4 days to 7-15 min, and inducing formation of rapidly transferable sterol domains. In summary, data obtained with intact transfected cells and in vitro sterol transfer assays showed that SCP-2 expression (i) selectively modulated plasma membrane lipid composition and (ii) decreased the plasma membrane content cholesterol, an effect potentially due to more rapid SCP-2-mediated cholesterol transfer from versus to the plasma membrane.  相似文献   

15.
Transport of the fluorescent cholesterol analog dehydroergosterol (DHE) from the plasma membrane was studied in J774 macrophages (Mphis) with normal and elevated cholesterol content. Cells were labeled with DHE bound to methyl-beta-cyclodextrin. In J774, Mphis with normal cholesterol, intracellular DHE became enriched in recycling endosomes, but was not highly concentrated in the trans-Golgi network or late endosomes and lysosomes. After raising cellular cholesterol by incubation with acetylated low-density lipoprotein (AcLDL), DHE was transported to lipid droplets, and less sterol was found in recycling endosomes. Transport of DHE to droplets was very rapid (t1/2 = 1.5 min after photobleaching) and did not require metabolic energy. In cholesterol-loaded J774 Mphis, the initial fraction of DHE in the plasma membrane was reduced, and rapid DHE efflux from the plasma membrane to intracellular organelles was observed. This rapid sterol transport was not related to plasma membrane vesiculation, as DHE did not become enriched in endocytic vesicles formed after sphingomyelinase C treatment of cells. When cells were incubated with DHE ester incorporated into AcLDL, fluorescence of the sterol was first found in punctate endosomes. After a chase, this DHE colocalized with transferrin in a distribution similar to cells labeled with DHE delivered by methyl-beta-cyclodextrin. Our results indicate that elevation of sterol levels in Mphis enhances transport of sterol from the plasma membrane by a non-vesicular pathway.  相似文献   

16.
Steroidogenic acute regulatory (StAR)—related lipid transfer proteins possess a START (steroidogenic acute regulatory-related lipid transfer) domain. START domains are conserved protein modules involved in the non-vesicular intracellular transport of lipids and cholesterol in mammals. Fifteen mammalian proteins, divided in five subfamilies, are reported to possess a START domain. Members of the STARD4 subfamily, i.e. STARD4, 5 and 6 are essentially single START domains and are thought to be involved in the intracellular transport of cholesterol. No structure of a cholesterol-bound START domain from this family has been resolved yet. The determination of the structure of such a complex would contribute to a better understanding of the mechanism of ligand binding and transport by START domains, two unresolved aspects of their structural biology. In this context, we have undertaken the structure determination of a ligand-bound form of STARD5 by NMR. Here, we report the 1H, 13C and 15N backbone resonance assignments of the ligand-free STARD5.  相似文献   

17.
To gain insight into the transport of sterol from lysosomes to the plasma membrane, we studied the efflux of lysosomal free cholesterol from intact Fu5AH rat hepatoma cells to high density lipoprotein (HDL) and other extracellular acceptors that promote sterol desorption from the plasma membrane. The procedures involved pulsing cells at 15 degrees C with low density lipoprotein that had been reconstituted with [3H]cholesteryl oleate and then incubating the cells at 37 degrees C in the presence of a sterol acceptor, while monitoring both the hydrolysis of [3H]cholesteryl oleate in lysosomes and the efflux of the resulting [3H]free cholesterol to the acceptor. After warming cells to 37 degrees C, rapid hydrolysis of [3H]cholesteryl oleate began after 10-20 min, and the lysosomally generated [3H]free cholesterol became available for efflux after an additional delay of 40-50 min. The kinetics of hydrolysis and the delay between hydrolysis and efflux were unchanged over a wide range of HDL3 concentrations (10-1000 micrograms of protein/ml), and with acceptors that do not interact with HDL-specific cell surface binding sites (phospholipid vesicles, dimethyl suberimidate cross-linked HDL). In addition, the delivery of lysosomal cholesterol to the plasma membrane was unaffected when cellular cholesterol content was elevated 2.6-fold above the normal control level, or when the activity of cellular acyl-coenzyme A/cholesterol acyltransferase (ACAT) was stimulated with exogenous oleic acid. We conclude that in the Fu5AH cell, a maximum of 40-50 min is required for the transport of cholesterol from lysosomes to the plasma membrane and that this transport is not regulated in response to either specific extracellular acceptors or the content of sterol in cells. The lack of effect of increased ACAT activity implies that the pathway for this transport does not involve passage of sterol through the rough endoplasmic reticulum, the subcellular location of ACAT.  相似文献   

18.
Intramembrane‐cleaving peptidases of the rhomboid family regulate diverse cellular processes that are critical for development and cell survival. The function of the rhomboid protease PARL in the mitochondrial inner membrane has been linked to mitophagy and apoptosis, but other regulatory functions are likely to exist. Here, we identify the START domain‐containing protein STARD7 as an intramitochondrial lipid transfer protein for phosphatidylcholine. We demonstrate that PARL‐mediated cleavage during mitochondrial import partitions STARD7 to the cytosol and the mitochondrial intermembrane space. Negatively charged amino acids in STARD7 serve as a sorting signal allowing mitochondrial release of mature STARD7 upon cleavage by PARL. On the other hand, membrane insertion of STARD7 mediated by the TIM23 complex promotes mitochondrial localization of mature STARD7. Mitochondrial STARD7 is necessary and sufficient for the accumulation of phosphatidylcholine in the inner membrane and for the maintenance of respiration and cristae morphogenesis. Thus, PARL preserves mitochondrial membrane homeostasis via STARD7 processing and is emerging as a critical regulator of protein localization between mitochondria and the cytosol.  相似文献   

19.
Steroidogenic acute regulatory-related lipid transfer (START) domain proteins are involved in the nonvesicular intracellular transport of lipids and sterols. The STARD1 (STARD1 and STARD3) and STARD4 subfamilies (STARD4–6) have an internal cavity large enough to accommodate sterols. To provide a deeper understanding on the structural biology of this domain, the binding of sterols to STARD5, a member of the STARD4 subfamily, was monitored. The SAR by NMR [1H-15N heteronuclear single-quantum coherence (HSQC)] approach, complemented by circular dichroism (CD) and isothermal titration calorimetry (ITC), was used. Titration of STARD5 with cholic (CA) and chenodeoxycholic acid (CDCA), ligands of the farnesoid X receptor (FXR), leads to drastic perturbation of the 1H-15N HSQC spectra and the identification of the residues in contact with those ligands. The most perturbed residues in presence of ligands are lining the internal cavity of the protein. Ka values of 1.8·10−4 M−1 and 6.3·104 M−1 were measured for CA and CDCA, respectively. This is the first report of a START domain protein in complex with a sterol ligand. Our original findings indicate that STARD5 may be involved in the transport of bile acids rather than cholesterol.  相似文献   

20.
In this review, we summarize our studies of membrane lipid transport in sphingolipid storage disease (SLSD) fibroblasts. We recently showed that several fluorescent SL analogs were internalized from the plasma membrane predominantly to the Golgi complex of normal cells, while in ten different SLSD cell types, these lipids accumulated in endosomes and lysosomes (The Lancet 1999;354: 901-905). Additional studies showed that cholesterol homeostasis is perturbed in multiple SLSDs secondary to SL accumulation and that mistargeting of SL analogs was regulated by cholesterol (Nature Cell Biol 1999;1: 386-388). Based on these findings, we hypothesize that endogenous sphingolipids, which accumulate in SLSD cells due to primary defects in lipid catabolism, result in an altered intracellular distribution of cholesterol, and that this alteration in membrane composition then results in defective sorting and transport of SLs. The importance of SL/cholesterol interactions and potential mechanisms underlying the regulation of lipid transport and targeting are also discussed. These studies suggest a new paradigm for regulation of membrane lipid traffic along the endocytic pathway and could have important implications for future studies of protein trafficking as well as lipid transport. This work may also lead to important future clinical developments (e.g. screening tests for SLSD, new methodology for screening drugs which abrogate lipid storage, and possible therapeutic approaches to SLSD).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号