首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop a cost effective process for bioinsecticides production by Photorhabdus temperata, dissolved oxygen (DO) requirements were investigated in both the complex and the optimized media using diluted seawater as a source of micronutrients. By varying DO concentrations, tolerance to hydrogen peroxide was shown to be medium dependant. Indeed, P. temperata cells grown in the complex medium, exhibited higher tolerance than cells grown in the optimized medium (OM). Tolerance to H2O2 was shown to be related to intracellular reactive oxygen species (ROS) accumulation during soya bean meal or glucose assimilation, as shown by flow cytometry analysis. To avoid oxidative stress damages in P. temperata cells cultured in the OM, DO concentration should be constant 50% saturation throughout the fermentation. However, a DO‐shift control strategy was demonstrated to be beneficial for P. temperata bioinsecticide production in the complex medium. By using such a strategy biomass, culturability, and oral toxicity reached 16.5 × 108, 1.15 × 108 cells/mL and 64.2%, respectively, thus was 16.19, 26.37, and 12.2% more than in the cultures carried out at a constant 50% saturation. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

2.
For low-cost production of Photorhabdus temperata ssp. temperata strain K122 bioinsecticide, a cheap complex medium was optimized. Diluted seawater was used as the source of micronutrients, especially sodium chloride, involved in the improvement of cell density, culturability and oral toxicity of the bacterium P. temperata against Ephestia kuehniella larvae. Thus, the new formulated medium was composed only of 10 g/l of soya bean meal, used as the carbon and nitrogen main source, mixed in sevenfold diluted seawater. At such conditions, several limitations of P. temperata bioinsecticide productions were shown to be overcome. The appearance of variants small colony polymorphism was completely avoided. Thus, the strain K122 was maintained at the primary form even after prolonged incubation. Moreover, the viable but nonculturable state was partially overcome, since the ability of P. temperata cells to form colonies on the solid medium was prolonged until 78 h of incubation. In addition, when cultured in the complex medium, P. temperata cells were produced at high cell density of 12 × 108 cells/ml and exhibited 81.48% improvement of oral toxicity compared to those produced in the optimized medium. With such medium, the large-scale bioinsecticides production into 3-l fully controlled fermenter improved the total cell counts, CFU counts and oral toxicity by 20, 5.81 and 16.73%, respectively. This should contribute to a significant reduction of production cost of highly potent P. temperata strain K122 cells, useful as a bioinsecticide.  相似文献   

3.
The growth kinetics, sporulation, and toxicity of Bacillus thuringiensis var. israelensis were evaluated through the analysis of batch cultures with different dissolved oxygen (DO) profiles. Firstly, DO was maintained constant at 5%, 20%, or 50% throughout fermentation in order to identify the most suitable one to improve the main process parameters. Higher biomass concentration, cell productivity, and cell yield based on glucose were obtained with 50% DO. The higher aeration level also resulted in higher spore counts and markedly improved the toxic activity of the fermentation broth, which was 9-fold greater than that obtained with 5% DO (LC50 of 39 and 329 mg/L, respectively). Subsequently, using a two-stage oxygen supply strategy, DO was kept at 50% during the vegetative and transition phases until the maximum cell concentration was achieved. Then, DO was changed to 0%, 5%, 20%, or 100% throughout sporulation and cell lysis phases. The interruption of oxygen supply strongly reduced the spore production and thoroughly repressed the toxin synthesis. On the contrary, when DO was raised to 100% of saturation, toxic activity increased approximately four times (LC50 of 8.2 mg/L) in comparison with the mean values reached with lower DO levels, even though spore counts were lower than that from the 50% DO assay. When pure oxygen was used instead of normal air, it was possible to obtain 70% of the total biomass concentration achieved in the air assays; however, cultures did not sporulate and the toxin synthesis was consequently suppressed.  相似文献   

4.
A single-stage continuous fermentation process for the production of 2-keto-l-gulonic acid (2KGA) from l-sorbose using Ketogulonigenium vulgare DSM 4025 was developed. The chemostat culture with the dilution rate that was calculated based on the relationship between the 2KGA production rate and the 2KGA concentration was feasible for production with high concentration of 2KGA. In this system, 112.2 g/L of 2KGA on the average was continuously produced from 114 g/L of l-sorbose. A steady state of the fermentation was maintained for the duration of more than 110 h. The dilution rate was kept in the range of 0.035 and 0.043 h−1, and the 2KGA productivity was 3.90 to 4.80 g/L/h. The average molar conversion yield of 2KGA from l-sorbose was 91.3%. Under the optimal conditions, l-sorbose concentration was kept at 0 g/L. Meanwhile, the dissolved oxygen level was changing in response to the dilution rate and 2KGA concentration. In the dissolved oxygen (DO) range of 16% to 58%, it was revealed that the relationship between DO and D possessed high degree of positive correlation under the l-sorbose limiting condition (complete consumption of l-sorbose). Increasing D closer to the critical value for washing out point of the continuous fermentation, DO value tended to be gradually increased up to 58%. In conclusion, an efficient and reproducible continuous fermentation process for 2KGA production by K. vulgare DSM 4025 could be developed using a medium containing baker’s yeast without using a second helper microorganism.  相似文献   

5.
Photorhabdus temperata and Bacillus thuringiensis are entomopathogenic bacteria exhibiting toxicities against different insect larvae. Vegetative Insecticidal Protein Vip3LB is a Bacillus thuringiensis insecticidal protein secreted during the vegetative growth stage exhibiting lepidopteran specificity. In this study, we focused for the first time on the heterologous expression of vip3LB gene in Photorhabdus temperata strain K122. Firstly, Western blot analyses of whole cultures of recombinant Photorhabdus temperata showed that Vip3LB was produced and appeared lightly proteolysed. Cellular fractionation and proteinase K proteolysis showed that in vitro-cultured recombinant Photorhabdus temperata K122 accumulated Vip3LB in the cell and appeared not to secrete this protein. Oral toxicity of whole cultures of recombinant Photorhabdus temperata K122 strains was assayed on second-instar larvae of Ephestia kuehniella, a laboratory model insect, and the cutworm Spodoptera littoralis, one of the major pests of many important crop plants. Unlike the wild strain K122, which has no effect on the larval growth, the recombinant bacteria expressing vip3LB gene reduced or stopped the larval growth. These results demonstrate that the heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata could be considered as an excellent tool for improving Photorhabdus insecticidal activities.  相似文献   

6.
《Process Biochemistry》2010,45(5):706-713
Photorhabdus temperata ssp. temperata strain K122 represents a promising source of bioinsecticide. When cultured in an optimized medium, P. temperata exhibited restricted survival in terms of colony-forming ability on solid medium, which remained lower than the total cell counts. Membrane integrity assessment by flow cytometry showed that almost 100% of P. temperata cells were viable indicating that this bacterium enters in the viable but nonculturable state (VBNC). According to the double staining results, hydrogen peroxide was demonstrated to be responsible of P. temperata VBNC state. Addition of catalase or sodium pyruvate upon the inoculation of P. temperata on agar plates promoted the recovery of nonculturable cells up to 24 h incubation. Further, growth at high cell density enhanced the VBNC state of this bacterium. This should evidenced extracellular signals accumulation involved in quorum sensing mechanism. Elucidation of this state is interesting for both toxicity study and production of P. temperata useful as bioinsecticide.  相似文献   

7.
Photorhabdus temperata is an entomopathogenic bacterium that is associated with nematodes of the Heterorhabditidae family in a symbiotic relationship. This study investigated the effects of P. temperata infection on the intestinal microbiota of the sugarcane stalk borer Diatraea saccharalis. Histopathology of the infection was also investigated using scanning electron microscopy. Groups of 20 larvae were infected by injection of approximately 50 bacterial cells directly into the hemocoel. After different periods of infection, larvae were dissected and different tissues were used for bacterial cell quantification. P. temperata was highly virulent with an LD50 of 16.2 bacterial cells at 48 h post-infection. Infected larvae started dying as soon as 30 h post-infection with a LT50 value of 33.8 h (confidence limits 32.2–35.6) and an LT90 value of 44.8 h (CL 40.8–51.4). Following death of the larvae, bacteria from the midgut did not invade the hemocoel. In the midgut epithelium, P. temperata occupied the space underneath the basal lamina. The cultivable intestinal bacterial populations decreased as soon as 1 h post-infection and at 48 h post-infection, 90% of the gut microbiota had died. The role of P. temperata in control of the midgut microbiota was discussed.  相似文献   

8.
The gene encoding D-amino acid oxidase (DAAO) from Trigonopsis variabilis CBS 4095 has been cloned and expressed in Escherichia coli BL21 (DE3). Unfortunately, it was observed that the host cell was negatively affected by the expressed DAAO, resulting in a remarkable decrease in cell growth. To overcome this problem, we investigated several factors that affect cell growth rate and DAAO production such as addition time of inducer and dissolved oxygen (DO) concentration. The addition time of lactose, which was used as an inducer, and DO concentration appeared to be critical for the cell growth of E. coli BL21 (DE3)/pET-DAAO. A two-stage DO control strategy was developed, in which the DO concentration was controlled above 50% until specific stage of bacterial growth (OD600 30–40) and then downshifted to 30% by changing the agitation speed and aeration rate, and they remained at these rates until the end of fermentation. With this strategy, the maximum DAAO activity and cell growth reached 18.5 U/mL and OD600 81, respectively. By reproducing these optimized conditions in a 12-m3 fermentor, we were able to produce DAAO at a productivity of 19 U/mL with a cell growth of OD600 80.  相似文献   

9.
A high-density cell culture method was successfully established in P. pastoris with the alcohol oxidase I (AOXI) promoter in order to produce large quantities of recombinant human angiostatin (AS) which has been reported to have antiangiogenic activity. A preliminary study on fermentation conditions in shaking flasks indicated that adequacy of biomass is beneficial to obtain more products. The fermentation was carried out in a 10 l bioreactor with 5 l modified growth medium recommended by Invitrogen at 30°C. The cells were first grown in glycerol-PTM4 trace salts for 24 h. When the cell density reached A600 = 125, methanol-PTM4 trace salts was added to induce the expression of AS. During the fermentation, dissolved oxygen level was maintained at 20–30%, pH was controlled at 5 by the addition of 7 M NH4OH and the biomass was maintained at about A600 = 200. After 60 h of induction, the secreted AS was 153 mg/l. The recombinant AS inhibited the angiogenesis on CAM and suppressed the growth of B16 melanoma in C57BL/6J mice (P < 0.01).  相似文献   

10.
End-product conversion, low product concentration and large volumes of fermentation broth, the requirements for large bioreactors, in addition to the high cost involved in generating the steam required to distil fermentation products from the broth largely contributed to the decline in fermentative products. These considerations have motivated the study of organic extractants as a means to remove the product during fermentation and minimize downstream recovery. The aim of this study is to assess the practical applicability of liquid–liquid extraction in 2,3-butanediol fermentations. Eighteen organic solvents were screened to determine their biocompatibility, and bioavailability for their effects on Klebsiella pneumoniae growth. Candidate solvents at first were screened in shake flasks for toxicity to K. pneumoniae. Cell density and substrate consumption were used as measures of cell toxicity. The possibility of employing oleyl alcohol as an extraction solvent to enhance end product in 2,3-butanediol fermentation was evaluated. Fermentation was carried out at an initial glucose concentration of 80 g/l. Oleyl alcohol did not inhibit the growth of the fermentative organism. 2,3-Butanediol production increased from 17.9 g/l (in conventional fermentation) to 23.01 g/l (in extractive fermentation). Applying oleyl alcohol as the extraction solvent, about 68% of the total 2,3-butanediol produced was extracted. An erratum to this article can be found at  相似文献   

11.
The culture protocol of Schizochytrium limacinum SR 21, a known docosahexaenoic acid (DHA) producing marine algae was modified in this study to better fit fermentation parameters, particularly control of dissolved oxygen (DO) to the known reproductive and growth biology of the microorganism. The cultures controlled at 50% DO saturation produced a cell density of 181 million cells/ml, whereas cultures with 10% DO produced only 98.4 million cells/ml. A fixed-agitation rate of 150 rpm resulted in an even lower density of 22.5 million cells/ml. Fifty percent DO saturation level led to a decreased pH, as well as a negative correlation with lipid accumulation, while low oxygen concentration was obligatory for lipid accumulation. This study indicated that high DO was preferred for the cells’ reproduction via release of zoospores. Thus, the culture of S. limacinum SR21 should be best divided into two stages: (1) a cell-number-increasing stage in which cell reproduction and cell number increase with little increase in the size and weight of each cell; and (2) a cell-size-increasing stage in which cells stop reproduction but cell size enlarges due to lipids accumulation. With such a protocol, the production of algae biomass and DHA was improved to levels of 37.9 g/L and 6.56 g/L, respectively. The two-stage culture process could be potentially used not only for omega-3 PUFA production, but also in other single cell oil (SCO)-producing processes, including biodiesel production from algae.  相似文献   

12.
Bacillus thuringiensis var. kurstaki biopesticide was produced in batch and fed-batch fermentation modes using starch industry wastewater as sole substrate. Fed-batch fermentation with two intermittent feeds (at 10 and 20 h) during the fermentation of 72 h gave the maximum delta-endotoxin concentration (1,672.6 mg/L) and entomotoxicity (Tx) (18.5 × 106 SBU/mL) in fermented broth which were significantly higher than maximum delta-endotoxin concentration (511.0 mg/L) and Tx (15.8 × 106 SBU/mL) obtained in batch process. However, fed-batch fermentation with three intermittent feeds (at 10, 20 and 34 h) of the fermentation resulted in the formation of asporogenous variant (Spo−) from 36 h to the end of fermentation (72 h) which resulted in a significant decrease in spore and delta-endotoxin concentration and finally the Tx value. Tx of suspended pellets (27.4 × 106 SBU/mL) obtained in fed-batch fermentation with two feeds was the highest value as compared to other cases.  相似文献   

13.
In the present study, different types of gibberellins (GAs) in the culture filtrate (CF) of Photorhabdus temperata M1021 were quantified. The analysis of CF helped in profiling various bioactive GAs: GA1, GA3, GA4, and GA7. Several physiologically inactive GAs: GA9, GA12, and GA20 were detected as well. Siderophore production was also investigated by growing P. temperata M1021 on chrome azurol-S blue agar plates. Furthermore, the strain was inoculated into ‘Waito-C’ (Oryza sativa L.) rice plants, which significantly (P < 0.05) increased plant growth attributes such as plant length, chlorophyll content, and fresh and dry biomass compared with those in controls. In a separate experiment, canola (Brassica napus L.) seeds treated with CF of M1021 were significantly (P < 0.05) accelerated germination rate as well as biomass production. Findings of the present study suggest that the strain M1021 contributes an important role in the plant growth by synthesizing a wide array of bioactive metabolites.  相似文献   

14.

This study aimed to improve antioxidant effect and hepatoprotective effect of Inula britannica using fermentation. Epigallocatechin gallate (EGCG) in an I. britannica extract was found to be upregulated from 2.06 to 10.28 μg/mg during fermentation (p?<?0.001). After fermentation, DPPH radical-scavenging ABTS radical-scavenging, and superoxide anion-scavenging abilities increased to 92.65%, 694.25 μM Trolox/mL, and 86.38%, respectively, at 500 μg/mL (p?<?0.05). Cupric-ion-reducing capacity with formation of the Cu+-neocuproine complex increased by 5.88%, 6.38%, 3.24%, and 8.55% at 62.5 to 500 μg/mL. Ferric-ion-reducing capacity of the fermented extract increased by 20%, 7.16%, 3.85%, and 5.45% at each concentration (p?<?0.05). Unfermented extracts yielded cell viability of 91.42%, 90.59%, 88.38%, and 79.17%, whereas the fermented extract yielded 100.28%, 99.66%, 96.15%, and 89.90%, respectively, at each concentration in ethanol-damaged HepG2 cells (p?<?0.05). Additionally, the fermented extract decreased alanine transaminase activity from 117.2 to 61.7 U/mL in the ethanol-damaged HepG2 cell line (p?<?0.01). Overall, both antioxidant and hepatoprotective effect increased by fermentation in I. britannica extract. These properties are expected to lead to new antioxidant agents via production of EGCG by fermentation.

  相似文献   

15.
The production of cyclic adenosine monophosphate (cAMP) by Arthrobacter sp. A302 was studied in a 5 L stirred tank fermentor under a range of pH values (6.5–8.0) and glucose feeding rates. In batch fermentation under a controlled pH, the optimum pH for cell growth was 7.5 with dry cell density (X) of 11.43 g L, and the optimum pH for cAMP accumulation was 7.0 with cAMP concentration of 7.41 g L. In order to achieve the high X and cAMP yield simultaneously, a pH-shift control strategy was proposed based on kinetic analysis of specific cell growth rate (μ) and specific cAMP formation rate (q s ). In this method, pH was controlled to 7.0 for the first 30 h of fermentation, and then subsequently shifted to 7.5 and maintained until the end of the process. Application of this approach significantly enhanced the cAMP concentration. Thereafter, cAMP production was further improved by combining the above-mentioned pH-control system and fed-batch process with glucose at a constant feeding rate of 1.0 g L−1 h−1. Under optimum conditions, the final cAMP production was 10.87 g L, which is 110.0, 46.7, and 27.7% higher than that of the pH-uncontrolled, pH-controlled, and pH-shift controlled methods, respectively.  相似文献   

16.
Lentinus squarrosulus Mont., a high temperature tolerant white rot fungus that is found across sub-Saharan Africa and many parts of Asia, is attracting attention due to its rapid mycelia growth and potential for use in food and biodegradation. A solid state fermentation (SSF) experiment with L. squarrosulus (strain MBFBL 201) on cornstalks was conducted. The study evaluated lignocellulolytic enzymes activity, loss of organic matter (LOM), exopolysaccharide content, and the release of water soluble sugars from degraded substrate. The results showed that L. squarrosulus was able to degrade cornstalks significantly, with 58.8% LOM after 30 days of SSF. Maximum lignocellulolytic enzyme activities were obtained on day 6 of cultivation: laccase = 154.5 U/L, MnP = 13 U/L, peroxidase = 27.4 U/L, CMCase = 6.0 U/mL and xylanase = 14.5 U/mL. L. squarrosulus is a good producer of exopolysaccharides (3.0–5.13 mg/mL). Glucose and galactose were the most abundant sugars detected in the substrate during SSF, while fructose, xylose and trehalose, although detected on day zero of the experiment, were absent in treated substrates. The preference for hemicellulose over cellulose, combined with the high temperature tolerance and the very fast growth rate characteristics of L. squarrosulus could make it an ideal candidate for application in industrial pretreatment and biodelignification of lignocellulosic biomass.  相似文献   

17.
The entomopathogenic fungus Isaria fumosorosea is capable of dimorphic growth (hyphal or yeast-like) in submerged culture. Using 250-mL baffled flasks, culture volumes of 50, 100, 150, and 200 mL were grown in a shaker incubator at 350 rpm and 28°C. Dissolved oxygen (DO) was continuously monitored using a non-invasive oxygen monitoring system. Culture volumes of 50 mL maintained DO concentrations above 10% throughout the 3-day growth period and accumulated biomass and produced blastospores more rapidly (1.2×109 blastospores mL?1 in 2 days) than the other culture volumes tested. Dissolved oxygen was depleted in culture volumes of 100, 150, and 200 mL after 20.5, 16.8, and 13.5 h, respectively. The DO in 150 and 200 mL cultures remained exhausted (<3%) throughout the growth period resulting in significantly lower blastospore yields and increased hyphal growth. These results were used to establish oxygen levels (>20% DO) for I. fumosorosea growth in 100-L bioreactors resulting in blastospore production (1.1×109 blastospores mL?1 in 2 days) comparable to highly aerated, low volume shake flask cultures. In addition, maintaining higher DO levels resulted in increased blastospore production by cultures of I. fumosorosea grown on low-cost nitrogen sources (cottonseed meal and soy flour) that previously elicited excessive hyphal growth. These studies showed that oxygen availability is essential for significant yeast-like growth by I. fumosorosea cultures and that continuous monitoring of oxygen concentrations in shake flask cultures can be used to establish aeration conditions for bioreactors.  相似文献   

18.
The effects of progressive hypoxia and re-oxygenation on cardiac function, white muscle perfusion and haemoglobin saturation were investigated in anaesthetised snapper (Pagrus auratus). White muscle perfusion and haemoglobin saturation were recorded in real time using fibre optic methodology. A marked fall in heart rate (HR) was evoked when the water bath dissolved oxygen (DO) concentration decreased below 1.5 mg L−1. This bradycardia deepened over the subsequent 20 min of progressive hypoxia and noticeable arrhythmias occurred, suggesting that hypoxia had direct and severe effects on the cardiac myocytes. Perfusion to the white muscle decreased below a DO concentration of 3 mg L−1, and oxyhaemoglobin concentration decreased once the DO fell below ca. 2 mg L−1. During re-oxygenation, heart rate and white muscle perfusion increased as the DO concentration exceeded 1.9 ± 0.1 mg L−1, whereas haemoglobin saturation increased once the external DO concentration reached 2.9 mg L−1. These changes occurred in anaesthetised fish, in which sensory function must be impaired, if not abolished. As white muscle perfusion both fell and increased prior to changes in white muscle oxyhaemoglobin saturation, a local hypoxia is more likely to be the consequence than the cause of the reduced blood delivery, and changes upstream from the tail vasculature must be responsible. HR and tissue haemoglobin concentrations did increase simultaneously on re-oxygenation suggesting an increased cardiac output as the cause.  相似文献   

19.
In large-scale bioreactors, there is often insufficient mixing and as a consequence, cells experience uneven substrate and oxygen levels that influence product formation. In this study, the influence of dissolved oxygen (DO) gradients on the primary and secondary metabolism of a high producing industrial strain of Penicillium chrysogenum was investigated. Within a wide range of DO concentrations, obtained under chemostat conditions, we observed different responses from P. chrysogenum: (i) no influence on growth or penicillin production (>0.025 mmol L−1); (ii) reduced penicillin production, but no growth limitation (0.013–0.025 mmol L−1); and (iii) growth and penicillin production limitations (<0.013 mmol L−1). In addition, scale down experiments were performed by oscillating the DO concentration in the bioreactor. We found that during DO oscillation, the penicillin production rate decreased below the value observed when a constant DO equal to the average oscillating DO value was used. To understand and predict the influence of oxygen levels on primary metabolism and penicillin production, we developed a black box model that was linked to a detailed kinetic model of the penicillin pathway. The model simulations represented the experimental data during the step experiments; however, during the oscillation experiments the predictions deviated, indicating the involvement of the central metabolism in penicillin production.  相似文献   

20.
Optimization of culture conditions such as the dissolved O2 (DO) concentration, temperature and pH was attempted regarding both cell growth and the production of tissue plasminogen activator (TPA) in a microcarrier cell culture of human embryo lung cells. The growth rate was suppressed at a DO concentration below 30% saturation. From the pH range 7.2–7.6, both the specific growth rate and maximal cell concentration decreased. At a lower temperature than 37°C, although both the specific growth rate and the maximal cell concentration decreased, the cell concentration was maintained for a longer time during the production period, high TPA productivity being maintained. As the optimal conditions for culture growth, a DO concentration of 30% saturation or over, temperature of 37°C and pH of 7.4 are recommended. However, for TPA production after cell culture growth, the DO concentration should be in the range 20–30% O2 saturation, and the temperature and pH should be lowered to 33°C and 6.8, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号