首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
BackgroundHepatocellular carcinoma (HCC) is the most common type of liver cancer with high mortality and poor prognosis. Mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signaling pathways have been implicated in promoting tumor cell proliferation and invasion of HCC cells.MethodsAs a potential inhibitor of tumor metastasis, the role of Raf kinase inhibitor protein (RKIP) in HCC development and the functional relevance with MAPK and NF-κB signaling pathways were investigated. The levels of RKIP expression were examined in human HCC tissues and correlated with tumor stages and metastatic status. Function of RKIP in cellular proliferation, migration, invasion and apoptosis was investigated in HCC cell lines by either overexpressing or knocking down RKIP expression. Mouse xenograft model was established to assess the effect of RKIP expression on tumor growth.ResultsOur results demonstrated decreased RKIP expression in HCC tissues and a strong correlation with tumor grade and distant metastasis. Manipulation of RKIP expression in HCCLM3 and HepG2 cells indicated that RKIP functioned to inhibit HCC cell motility and invasiveness, and contributed to tumor growth inhibition in vivo. Mechanistic studies showed that the function of RKIP was mediated through MAPK and NF-κB signaling pathways. However, cell type-dependent RKIP regulation on these two pathways was also suggested, indicating the complex nature of signaling network.ConclusionOur study provides a better understanding on the molecular mechanisms of HCC metastasis and sets the foundation for the development of targeted therapeutics for HCC.  相似文献   

3.
The metastasis of colorectal cancer is one of the most common causes of death in the world. In this investigation, we used the human colon cancer cell lines LOVO and HT29 as model systems to determine the role of the chloride intracellular channel 1 (CLIC1) in the metastasis of colonic cancer. In the present study, we found that regulatory volume decrease (RVD) capacity was markedly up-regulated in LOVO cells, which are characterized by a high metastatic potential. Functionally suppressing CLIC1 using the specific chloride intracellular channel 1 blocker Indanyloxyacetic acid 94 inhibited RVD and decreased the migration and invasion of colon cancer cells. Moreover, these effects occurred in a dose-dependent manner. The migration and invasion abilities in two cell lines also were inhibited by the knockdown of CLIC1 using small interfering RNA transfection. The mRNA and protein expression of CLIC1 is up-regulated in LOVO cells. In human colon cancer cells, CLIC1 is primarily located in the plasma membrane, where it functions as a chloride channel. Taken together, the results suggest that CLIC1 modulates the metastasis of colon cancer through its RVD-mediating chloride channel function. This study demonstrates, for the first time, that CLIC1 regulates the migration and invasion of colon cancer.  相似文献   

4.
The aim of this study was to investigate the expression of ZEB1 in gastric carcinoma, its correlation with the clinicopathology of gastric carcinoma, and the role of ZEB1 in invasion and metastasis in gastric carcinoma. ZEB1 expression was analyzed by immunohistochemistry and Western blot in 45 gastric carcinoma tissue samples that contained the adjacent gastric mucosa. The correlation between ZEB1 expression, the occurrence and development of gastric cancer, and clinical pathology was investigated. ZEB1 expression in the human gastric carcinoma cell line AGS was downregulated by RNA interference, and changes in ZEB1 expression corresponded with changes in the invasive and metastatic ability of AGS cells. Immunohistochemistry revealed that ZEB1 protein expression in gastric carcinoma tissues was significantly higher than in normal gastric mucosa tissues (p < 0.001). A lower degree of differentiation of gastric cancer (p = 0.009), a higher TNM (tumor, node, and metastasis) stage (p = 0.010), and a larger scope of invasion were correlated with higher expression of ZEB1 (p = 0.041, 0.002). However, the expression of ZEB1 in gastric carcinoma tissue was independent of gender, age, and tumor size (p > 0.05). Western blot results also showed that ZEB1 protein expression was significantly higher in gastric carcinoma tissue than in the adjacent normal gastric mucosa tissue (p = 0.008). A lower degree of differentiation of the gastric carcinoma correlated with a higher TNM stage, and a larger scope of invasion correlated with increased ZEB1 expression (p = 0.023). Transfection of ZEB1 siRNA in AGS cells significantly decreased the expression level of ZEB1 protein (p = 0.035). Furthermore, the number of cells that could pass through the Transwell chamber was significantly lower in the transfected group than in the non-transfected control group (p = 0.039), indicating that the suppression of ZEB1 expression could significantly reduce the invasive and metastatic ability of AGS cells (p = 0.005). Concluding, in gastric carcinoma tissue, overexpression of ZEB1 may be related to the occurrence and development as well as invasion and metastasis of gastric carcinoma.  相似文献   

5.
Glioma-associated oncogene homolog-1 (Gli-1) is considered a marker of Hedgehog pathway activation and is associated with the progression of several cancers. We have previously reported that Gli-1 was correlated with invasion and metastasis in hepatocellular carcinoma (HCC). However, the exact roles and mechanisms of Gli-1 in HCC invasion are unclear. In this study, we found that small interfering RNA mediated down-regulation of Gli-1 expression significantly suppressed adhesion, motility, migration, and invasion of both SMMC-7721 and SK-Hep1 cells. Furthermore, down-regulation of Gli-1 significantly reduced expressions and activities of both matrix metalloproteinase (MMP)-2 and MMP-9. In addition, we found that down-regulation of Gli-1 resulted in up-regulation of E-cadherin and concomitant down-regulation of Snail and Vimentin, consistent with inhibition of epithelial-mesenchymal transition (EMT). Taken together, our results suggest that down-regulation of Gli-1 suppresses HCC cell migration and invasion likely through inhibiting expressions and activations of MMP-2, 9 and blocking EMT.  相似文献   

6.
CC chemokine receptor 1 (CCR1) has an important role in the recruitment of leukocytes to the site of inflammation. The migration and metastasis of tumor cells shares many similarities with leukocyte trafficking, which is mainly regulated by chemokine receptor-ligand interactions. CCR1 is highly expressed in hepatocellular carcinoma (HCC) cells and tissues with unknown functions. In this study, we silenced CCR1 expression in the human HCC cell line HCCLM3 using artificial microRNA (miRNA)-mediated RNA interference (RNAi) and examined the invasiveness and proliferation of CCR1-silenced HCCLM3 cells and the matrix metalloproteinase (MMP) activity. The miRNA-mediated knockdown expression of CCR1 significantly inhibited the invasive ability of HCCLM3 cells, but had only a minor effect on the cellular proliferation rate. Moreover, CCR1 knockdown significantly reduced the secretion of MMP-2. Together, these findings indicate that CCR1 has an important role in HCCLM3 invasion and that CCR1 might be a new target of HCC treatment.  相似文献   

7.
Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.  相似文献   

8.
9.
Invasion and metastasis are key features of human hepatocellular carcinoma (HCC). Heparanase is an endoglycosidase that can degrade extracellular matrix by cleaving heparan sulfate chains of heparan sulfate proteoglycan, thus playing important roles in the invasion and metastasis of human cancers. Heparanase has been detected in various human cancers and regarded as a prospective target in human cancer treatments. However, the effects of inhibiting the expression of heparanase on human HCC have not been fully evaluated. In this article we show that downregulating the expression of heparanase either by antisense oligodeoxynucleotide or by RNA interferencing can significantly reduce the expression of heparanase in SMMC7721 human HCC cells, leading to inhibition of the invasiveness, metastasis, and angiogenesis of HCC cells both in vitro and in vivo. Our results suggest that genetic downregulation of the expression of heparanase may serve as an efficient cancer therapeutic for human HCC.  相似文献   

10.
G2 and S phase-expressed-1 (GTSE1) was recently reported to upregulate in several types of human cancer, based on negatively regulate p53 expression. However, its expression and functional roles in hepatocellular carcinoma (HCC) remain unknown. In this study, GTSE1 was observed to be highly expressed in HCC specimens and cell lines both at messenger RNA (mRNA) and protein levels. Furthermore, high GTSE1 expression was positively associated with tumor size, venous invasion, advanced tumor stage, and short overall survival. Moreover, we generated stable GTSE1 knockdown HCC cell lines to explore the effects of GTSE1 silencing on the growth and invasion of HCC in vitro. In determining the pathway through which GTSE1 regulated cell proliferation and invasion, GTSE1 silencing was found to inhibit AKT phosphorylation and downregulated cell cycle-related protein. In addition, GTSE1 downregulation decreased the growth of xenografts. In conclusion, these results indicated for the first time that overexpression of GTSE1 was involved in the progress of HCC, enhancing proliferation and promoting cell invasion in HCC cells.  相似文献   

11.
Jin H  Pan Y  He L  Zhai H  Li X  Zhao L  Sun L  Liu J  Hong L  Song J  Xie H  Gao J  Han S  Li Y  Fan D 《Molecular cancer research : MCR》2007,5(5):423-433
The p75 neurotrophin receptor (p75NTR) is a focus for study at present. However, its function in gastric cancer was not elucidated. Here, we investigated its relation with metastasis of gastric cancer. By immunohistochemistry, we found that the positive rate of p75NTR expression in metastatic gastric cancer was 15.09% (16 of 106), which was lower compared with nonmetastatic gastric cancer (64.15%; 68 of 106). The average staining score in nonmetastatic gastric cancer was significantly higher than in metastatic gastric cancer (1.21 +/- 0.35 versus 0.23 +/- 0.18; P<0.01). p75NTR protein level was also lowly expressed in the highly liver-metastatic gastric cancer cell line XGC9811-L compared with other gastric cancer cell lines by Western blotting. It could also significantly inhibit the in vitro adhesive, invasive, and migratory and in vivo metastatic abilities of gastric cancer cell lines SGC7901 and MKN45 by reducing urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 proteins and by increasing tissue inhibitor of matrix metalloproteinase (TIMP)-1 protein. Further studies showed that p75NTR could suppress the nuclear factor-kappaB (NF-kappaB) signal. SN50, a specific inhibitor of NF-kappaB, which could inhibit in vitro invasive and migratory abilities of gastric cancer cells, reduced expression of uPA and MMP9 proteins and increased expression of TIMP1 protein. Taken together, p75NTR had the function of inhibiting the invasive and metastatic abilities of gastric cancer cells, which was mediated, at least partially, by down-regulation of uPA and MMP9 proteins and up-regulation of TIMP1 protein via the NF-kappaB signal transduction pathway. Our studies suggested that p75NTR may be used as a new potential therapeutic target in metastatic gastric cancer.  相似文献   

12.
13.
14.
The growth factor heregulin-β1 (HRG-β1), which is expressed in breast cancer, activates the HER-2 signaling pathway through induction of heterodimeric complexes of HER-2 with HER-3 or HER-4. It has been shown in many studies that HRG-β1 induces the tumorigenicity and metastasis of breast cancer cells. Matrix metalloproteinase (MMP) 9 is a key enzyme in the degradation of extracellular matrices, and its expression may be dysregulated in breast cancer invasion and metastasis. Resveratrol, a major component in grape, exhibited potential anticarcinogenic activities in both in vitro and in vivo studies. However, the inhibitory effect of resveratrol on HER-2-mediated expression of MMP-9 has not been demonstrated yet.

In the present study, we investigated the anti-invasive mechanism of resveratrol in human breast cancer cells. Human breast cancer MCF-7 cells were exposed to resveratrol (2, 5 and 10 μM). The expression activity of MMP-9 was measured by zymogram analysis. Phosphorylated levels of HER-2 and mitogen-activated protein kinase (MAPK)/ERK were measured by Western blot analysis. Total actin was used as internal control for protein expression. HRG-β1 induced the phosphorylation of HER-2/neu receptor and MMP-9 expression in human breast cancer MCF-7 cells. Resveratrol significantly inhibited HRG-β1-mediated MMP-9 expression in human breast cancer cells. MEK inhibitor induced a marked reduction in MMP-9 expression, and it suggested that ERK1/2 cascade could play an important role in HRG-β1-mediated MMP-9 expression. Furthermore, resveratrol significantly suppressed HRG-β1-mediated phosphorylation of ERK1/2 and invasion of breast cancer cells. However, resveratrol had negligible effects on either HRG-β1-mediated phosphorylation of HER-2 receptor or expression of the tissue inhibitor of MMP, tissue inhibitor metalloproteinase protein 1.

Taken together, our results suggest that resveratrol inhibited MMP-9 expression in human breast cancer cells. The inhibitory effects of resveratrol on MMP-9 expression and invasion of breast cancer cells are, in part, associated with the down-regulation of the MAPK/ERK signaling pathway.  相似文献   


15.
ICAM-1 and MHC-I proteins play fundamental roles in antigen presentation, activation of T lymphocytes, and immune responses against tumor cells. Both of them participate in the formation of lipid raft-associated membrane protein clusters. We found significant colocalization between ICAM-1 and MHC-I at the level of large-scale associations. We combined RNA interference and fluorescence resonance energy transfer studies to show that ICAM-1 promotes the partial disassembly of MHC-I homoclusters on LS-174T colon carcinoma cells. Interferon-gamma (IFN-gamma) treatment induced an increase in the expression of MHC-I and ICAM-1 resulting in decreased MHC-I homoassociation. Small interfering RNAs directed against ICAM-1 restored the homoassociation of MHC-I without influencing the expression level of MHC-I by eliminating ICAM-1 molecules interspersed in MHC-I clusters. We conclude that the composition of membrane protein clusters is dynamically altered in response to both physiological and experimentally elicited changes in antigen expression levels.  相似文献   

16.
Hepatocyte growth factor (HGF) is known to have a number of biological properties including promoting tumor progression of human carcinomas. Metastasis involves a number of events that are attributed to induction by paracrine factors such as HGF. Identification of natural inhibitors of these events would allow better control of tumor progression. Recently we demonstrated that interleukin 4 (IL-4) can regulate proliferation of various human carcinoma cell lines. In the present study, we used established human colon carcinoma cell lines and primary colon carcinoma cell cultures to determine if IL-4 could regulate HGF-induced cell proliferation and other events of tumor progression such as MMP (matrix metalloproteinases)-1, -2, and -9 production, cell migration and cell-matrix invasive activity. All colon carcinoma cell lines expressed HGF and IL-4 receptors. IL-4 significantly inhibited HGF-induced proliferation of one cell line. Cell-matrix invasion was significantly enhanced by HGF (0.1–10 ng/ml); IL-4 (1–10 U/ml) significantly inhibited HGF-induced invasion in a dose-dependent manner. IL-4 also inhibited HGF-induced cell-matrix invasion of metastatic colon carcinoma cells and HGF-induced cell migration. HGF enhanced MMP-1, -2, and -9 production by cell lines. This effect could be inhibited by IL-4. These findings indicate that IL-4 is a potent inhibitor of HGF-induced invasion and metastasis-related functions of human colon carcinoma cells. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
Cervical cancer (CC) is a common gynecological cancer and a leading cause of cancer-related deaths in women globally. Therefore, this study explores the action of microRNA-205 (miR-205) in the invasion, migration, and angiogenesis of CC through binding to tumor suppressor lung cancer 1 (TSLC1). Initially, the microarray analysis was used to select the candidate gene and the regulatory microRNA. Then, the target relationship between miR-205 and TSLC1 as well as the expression of miR-205, TSLC1, and p-Akt/total Akt in CC cells were determined. Afterwards, CC cell invasion and migration were detected after the treatment of miR-205 mimics/inhibitors and short hairpin RNA against TSLC1. After coculture of cancer cells and vascular endothelial cells, cell proliferation, tube formation, and microvessel density (MVD) were detected to determine the roles of miR-205 in angiogenesis. Finally, tumor growth in nude mice was measured in vivo. TSLC1 was determined as the candidate gene, which was found to be targeted and negatively regulated by miR-205. Then, downregulated miR-205 or forced TSLC1 expression inhibited invasion, migration, and angiogenesis in CC, corresponding to suppressed cell proliferation, tube formation, and expression of IL-8, VEGF, and bFGF, as well as the inhibited activation of the Akt signaling pathway. Furthermore, downregulation of miR-205 was found to exert an inhibitory role in tumor formation and MVD by elevating TSLC1 in CC in vivo. This study demonstrated that downregulated miR-205 inhibited cell invasion, migration, and angiogenesis in CC by inactivating the Akt signaling pathway via TSLC1 upregulation.  相似文献   

19.
Aberrant activation of Wnt/β-catenin signaling is common in most sporadic and inherited colorectal cancer (CRC) cells leading to elevated β-catenin/TCF transactivation. We previously identified the neural cell adhesion molecule L1 as a target gene of β-catenin/TCF in CRC cells. Forced expression of L1 confers increased cell motility, invasion, and tumorigenesis, and the induction of human CRC cell metastasis to the liver. In human CRC tissue, L1 is exclusively localized at the invasive front of such tumors in a subpopulation of cells displaying nuclear β-catenin. We determined whether L1 expression confers metastatic capacities by inducing an epithelial to mesenchymal transition (EMT) and whether L1 cosegregates with cancer stem cell (CSC) markers. We found that changes in L1 levels do not affect the organization or expression of E-cadherin in cell lines, or in invading CRC tissue cells, and no changes in other epithelial or mesenchymal markers were detected after L1 transfection. The introduction of major EMT regulators (Slug and Twist) into CRC cell lines reduced the levels of E-cadherin and induced fibronectin and vimentin, but unlike L1, Slug and Twist expression was insufficient for conferring metastasis. In CRC cells L1 did not specifically cosegregate with CSC markers including CD133, CD44, and EpCAM. L1-mediated metastasis required NF-κB signaling in cells harboring either high or low levels of endogenous E-cadherin. The results suggest that L1-mediated metastasis of CRC cells does not require changes in EMT and CSC markers and operates by activating NF-κβ signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号