首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
REV-ERB ALPHA has been shown to link metabolism with circadian rhythms. We aimed to identify new polymorphisms in the promoter of REV-ERB ALPHA and tested whether these polymorphisms could be associated with obesity in the Spanish population. Of the 1197 subjects included in our study, 779 were obese (BMI 34.38±3.1 kg/m2) and 418 lean (BMI 23.27±1.5 kg/m2). In the obese group, 469 of the 779 had type 2 diabetes. Genomic DNA from all the subjects was obtained from peripheral blood cells and the genotyping in the REV-ERB ALPHA promoter was analyzed by High Resolution Melting. We found six polymorphisms in the REV-ERB ALPHA promoter and identified rs939347 as a SNP with the highest frequency in the total population. We did not find any association between rs939347 and type 2 diabetes (p = 0.101), but rs939347 was associated with obesity (p = 0.036) with the genotype AA exhibiting higher frequency in the obese (5.2% in total obese vs 2.4% in lean). This association was found only in men (p = 0.031; 6.5% AA-carriers in obese men vs 1.9% AA-carriers in lean men), with no association found in the female population (p = 0.505; 4.4% AA-carriers in obese women vs 2.7% AA-carriers in lean women). Our results suggest that the REV-ERB ALPHA rs939347 polymorphism could modulate body fat mass in men. The present work supports the role of REV-ERB ALPHA in the development of obesity as well as a potential target for the treatment of obesity.  相似文献   

2.
Circadian clock genes are critical regulators of energy homeostasis and metabolism. However, whether variation in the circadian genes is associated with metabolic phenotypes in humans remains to be explored. In this study, we systemically genotyped 20 tag single nucleotide polymorphisms (SNPs) in 8 candidate genes involved in circadian clock, including CLOCK, BMAL1(ARNTL), PER1, PER2, CRY1, CRY2, CSNK1E,, and NOC(CCRN4L) in 1,510 non-diabetic Chinese subjects in Taipei and Yunlin populations in Taiwan. Their associations with metabolic phenotypes were analyzed. We found that genetic variation in the NOC gene, rs9684900 was associated with body mass index (BMI) (P = 0.0016, Bonferroni corrected P = 0.032). Another variant, rs135764 in the CSNK1E gene was associated with fasting glucose (P = 0.0023, Bonferroni corrected P = 0.046). These associations were consistent in both Taipei and Yunlin populations. Significant epistatic and joint effects between SNPs on BMI and related phenotypes were observed. Furthermore, NOC mRNA levels in human abdominal adipose tissue were significantly increased in obese subjects compared to non-obese controls.

Conclusion

Genetic variation in the NOC gene is associated with BMI in Chinese subjects.  相似文献   

3.

Aims

to examine firstly whether CLOCK exhibits a circadian expression in human visceral (V) and subcutaneous (S) adipose tissue (AT) in vitro as compared with BMAL1 and PER2, and secondly to investigate the possible effect of the glucocorticoid analogue dexamethasone (DEX) on positive and negative clock genes expression.

Subjects and Methods

VAT and SAT biopsies were obtained from morbid obese women (body mass index≥40 kg/m2) (n = 6). In order to investigate rhythmic expression pattern of clock genes and the effect of DEX on CLOCK, PER2 and BMAL1 expression, control AT (without DEX) and AT explants treated with DEX (2 hours) were cultured during 24 h and gene expression was analyzed at the following times: 10:00 h, 14:00 h, 18:00 h, 22:00 h, 02:00 h and 06:00 h, using qRT-PCR.

Results

CLOCK, BMAL1 and PER2 expression exhibited circadian patterns in both VAT and SAT explants that were adjusted to a typical 24 h sinusoidal curve. PER2 expression (negative element) was in antiphase with respect to CLOCK and in phase with BMAL1 expression (both positive elements) in the SAT (situation not present in VAT). A marked effect of DEX exposure on both positive and negative clock genes expression patterns was observed. Indeed, DEX treatment modified the rhythmicity pattern towards altered patterns with a period lower than 24 hours in all genes and in both tissues.

Conclusions

24 h patterns in CLOCK and BMAL1 (positive clock elements) and PER2 (negative element) mRNA levels were observed in human adipose explants. These patterns were altered by dexamethasone exposure.  相似文献   

4.
5.

Background

Abnormalities in the circadian clockwork often characterize patients with major depressive and bipolar disorders. Circadian clock genes are targets of interest in these patients. CRY2 is a circadian gene that participates in regulation of the evening oscillator. This is of interest in mood disorders where a lack of switch from evening to morning oscillators has been postulated.

Principal Findings

We observed a marked diurnal variation in human CRY2 mRNA levels from peripheral blood mononuclear cells and a significant up-regulation (P = 0.020) following one-night total sleep deprivation, a known antidepressant. In depressed bipolar patients, levels of CRY2 mRNA were decreased (P = 0.029) and a complete lack of increase was observed following sleep deprivation. To investigate a possible genetic contribution, we undertook SNP genotyping of the CRY2 gene in two independent population-based samples from Sweden (118 cases and 1011 controls) and Finland (86 cases and 1096 controls). The CRY2 gene was significantly associated with winter depression in both samples (haplotype analysis in Swedish and Finnish samples: OR = 1.8, P = 0.0059 and OR = 1.8, P = 0.00044, respectively).

Conclusions

We propose that a CRY2 locus is associated with vulnerability for depression, and that mechanisms of action involve dysregulation of CRY2 expression.  相似文献   

6.
7.
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41 ± 11 yrs of age) presenting a wide range of BMI (21.4 to 48.6 kg/m(2)) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p 相似文献   

8.
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41?±?11 yrs of age) presenting a wide range of BMI (21.4 to 48.6?kg/m2) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p?<?.0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBα, which was reduced (p?<?.05) at the PM period in SAT and VAT of both women and men (women: ~53% lower; men: ~78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r?=??.549; p?=?.001) and SATPER2 (r?=??.613; p?=?.0001) and positively with VATCLOCK (r?=?.541; p?=?.001) and VATBMAL1 (r?=?.468; p?=?.007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship. (Author correspondence: )  相似文献   

9.
ABSTRACT

In Cushing’s syndrome, the cortisol rhythm is impaired and can be associated with the disruption in the rhythmic expression of clock genes. In this study, we evaluated the expression of CLOCK, BMAL1, CRY1, CRY2, PER1, PER2, PER3 genes in peripheral blood leukocytes of healthy individuals (n = 13) and Cushing’s disease (CD) patients (n = 12). Participants underwent salivary cortisol measurement at 0900 h and 2300 h. Peripheral blood samples were obtained at 0900 h, 1300 h, 1700 h, and 2300 h for assessing clock gene expression by qPCR. Gene expression circadian variations were evaluated by the Cosinor method. In healthy controls, a circadian variation in the expression of CLOCK, BMAL1, CRY1, PER2, and PER3 was observed, whereas the expression of PER1 and CRY2 followed no specific pattern. The expression of PER2 and PER3 in healthy leukocytes presented a late afternoon acrophase, similarly to CLOCK, whereas CRY1 showed night acrophase, similarly to BMAL1. In CD patients, the circadian variation in the expression of clock genes was lost, along with the abolition of cortisol circadian rhythm. However, CRY2 exhibited a circadian variation with acrophase during the dark phase in patients. In conclusion, our data suggest that Cushing’s disease, which is characterized by hypercortisolism, is associated with abnormalities in the circadian pattern of clock genes. Higher expression of CRY2 at night outlines its putative role in the cortisol circadian rhythm disruption.  相似文献   

10.
11.
The suprachiasmatic nucleus (SCN) plays a major role in photoperiodic regulation of seasonal functions by modulating the melatonin signal. To date no report exists regarding the role of the ambient photoperiod in the regulation of melatonin receptor MT1 and clock gene (PER1 and CRY1) expression in the SCN of any tropical rodent that experiences the least variation in the photoperiod. We noted the expression of MT1, PER1 and CRY1 in the SCN of a tropical squirrel, Funambulus pennanti, along with the plasma level of melatonin over 24 h during the reproductively active (summer) and inactive (winter) phases. The seasonal day length affected the peripheral melatonin, which was inversely related with the MT1 expression in the SCN. The timing for peak expression of PER1 was the same in both phases, while the decline in PER1 expression was delayed by 4 h during the inactive phase. The CRY1 peak advanced by 4 h during the active phase, while the interval between the peak and decline of CRY1 remained the same in both phases. It can be suggested that seasonally changing melatonin levels modulate MT1 expression dynamics in the SCN, altering its functional state, and gate SCN molecular “clock” gene profiles through changes in PER/CRY expression. Such a regulation is important for photo-physiological adaptation (reproduction/immunity) in seasonal breeders.  相似文献   

12.

Background

Bipolar disorder patients often display abnormalities in circadian rhythm, and they are sensitive to irregular diurnal rhythms. CRY2 participates in the core clock that generates circadian rhythms. CRY2 mRNA expression in blood mononuclear cells was recently shown to display a marked diurnal variation and to respond to total sleep deprivation in healthy human volunteers. It was also shown that bipolar patients in a depressive state had lower CRY2 mRNA levels, nonresponsive to total sleep deprivation, compared to healthy controls, and that CRY2 gene variation was associated with winter depression in both Swedish and Finnish cohorts.

Principal Findings

Four CRY2 SNPs spanning from intron 2 to downstream 3′UTR were analyzed for association to bipolar disorder type 1 (n = 497), bipolar disorder type 2 (n = 60) and bipolar disorder with the feature rapid cycling (n = 155) versus blood donors (n = 1044) in Sweden. Also, the rapid cycling cases were compared with bipolar disorder cases without rapid cycling (n = 422). The haplotype GGAC was underrepresented among rapid cycling cases versus controls and versus bipolar disorder cases without rapid cycling (OR = 0.7, P = 0.006−0.02), whereas overrepresentation among rapid cycling cases was seen for AAAC (OR = 1.3−1.4, P = 0.03−0.04) and AGGA (OR = 1.5, P = 0.05). The risk and protective CRY2 haplotypes and their effect sizes were similar to those recently suggested to be associated with winter depression in Swedes.

Conclusions

We propose that the circadian gene CRY2 is associated with rapid cycling in bipolar disorder. This is the first time a clock gene is implicated in rapid cycling, and one of few findings showing a molecular discrimination between rapid cycling and other forms of bipolar disorder.  相似文献   

13.
14.
15.

Background

Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR).

Methods and Principal Findings

VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT.

Conclusions

Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.  相似文献   

16.
17.
18.

Objective

Zinc-α2 glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR).

Methods

mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed.

Results

The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL.

Conclusions

ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.  相似文献   

19.

Objective

De novo lipogenesis is involved in fatty acid biosynthesis and could be involved in the regulation of the triglyceride storage capacity of adipose tissue. However, the association between lipogenic and lipolytic genes and the evolution of morbidly obese subjects after bariatric surgery remains unknown. In this prospective study we analyze the association between the improvement in the morbidly obese patients as a result of bariatric surgery and the basal expression of lipogenic and lipolytic genes.

Methods

We study 23 non diabetic morbidly obese patients who were studied before and 7 months after bariatric surgery. Also, we analyze the relative basal mRNA expression levels of lipogenic and lipolytic genes in epiploic visceral adipose tissue (VAT) and abdominal subcutaneous adipose tissue (SAT).

Results

When the basal acetyl-CoA carboxylase 1 (ACC1), acetyl-CoA synthetase 2 (ACSS2) and ATP citrate lyase (ACL) expression in SAT was below percentile-50, there was a greater decrease in weight (P = 0.006, P = 0.034, P = 0.026), body mass index (P = 0.008, P = 0.033, P = 0.034) and hip circumference (P = 0.033, P = 0.021, P = 0.083) after bariatric surgery. In VAT, when the basal ACSS2 expression was below percentile-50, there was a greater decrease in hip circumference (P = 0.006). After adjusting for confounding variables in logistic regression models, only the morbidly obese patients with SAT or VAT ACSS2 expression≥P50 before bariatric surgery had a lower percentage hip circumference loss (P = 0.039; VAT: P = 0.033).

Conclusions

A lower basal ACSS2, ACC1 and ACL expression, genes involved in de novo lipogenesis, is associated with a better evolution of anthropometric variables after bariatric surgery. Thus, the previous state of the pathways involved in fatty acid metabolism may have repercussions on the improvement of these patients.  相似文献   

20.
The circadian clock is finely regulated by posttranslational modifications of clock components. Mouse CRY2, a critical player in the mammalian clock, is phosphorylated at Ser557 for proteasome-mediated degradation, but its in vivo role in circadian organization was not revealed. Here, we generated CRY2(S557A) mutant mice, in which Ser557 phosphorylation is specifically abolished. The mutation lengthened free-running periods of the behavioral rhythms and PER2::LUC bioluminescence rhythms of cultured liver. In livers from mutant mice, the nuclear CRY2 level was elevated, with enhanced PER2 nuclear occupancy and suppression of E-box-regulated genes. Thus, Ser557 phosphorylation-dependent regulation of CRY2 is essential for proper clock oscillation in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号