首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The expression of mRNA of leptin, the product of the obese gene, in bovine adipose tissue was analyzed by a lysate RNase protection assay. The mRNA level was significantly decreased by food deprivation for two days and partially recovered after 3 hr of refeeding, indicating that obese gene expression in the ruminant was regulated by feeding.  相似文献   

2.
Disrupted circadian rhythms are associated with obesity and metabolic alterations, but little is known about the participation of peripheral circadian clock machinery in these processes. The aim of the present study was to analyze RNA expression of clock genes in subcutaneous (SAT) and visceral (VAT) adipose tissues of male and female subjects in AM (morning) and PM (afternoon) periods, and its interactions with body mass index (BMI). Ninety-one subjects (41?±?11 yrs of age) presenting a wide range of BMI (21.4 to 48.6?kg/m2) were included. SAT and VAT biopsies were obtained from patients undergoing abdominal surgeries. Clock genes expressions were evaluated by qRT-PCR. The only clock gene that showed higher expression (p?<?.0001) in SAT in comparison to VAT was PER1 of female (372%) and male (326%) subjects. Different patterns of expression between the AM and PM periods were observed, in particular REV-ERBα, which was reduced (p?<?.05) at the PM period in SAT and VAT of both women and men (women: ~53% lower; men: ~78% lower), whereas CLOCK expression was not altered. Relationships between clock genes were different in SAT vs. VAT. BMI was negatively correlated with SATPER1 (r?=??.549; p?=?.001) and SATPER2 (r?=??.613; p?=?.0001) and positively with VATCLOCK (r?=?.541; p?=?.001) and VATBMAL1 (r?=?.468; p?=?.007) only in women. These data suggest that the circadian clock machinery of adipose tissue depots differs between female and male subjects, with a sex-specific effect observed for some genes. BMI correlated with clock genes, but at this moment it is not possible to establish the cause-effect relationship. (Author correspondence: )  相似文献   

3.
Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.  相似文献   

4.

Background

Alternative macrophages (M2) express the cluster differentiation (CD) 206 (MCR1) at high levels. Decreased M2 in adipose tissue is known to be associated with obesity and inflammation-related metabolic disturbances. Here we aimed to investigate MCR1 relative to CD68 (total macrophages) gene expression in association with adipogenic and mitochondrial genes, which were measured in human visceral [VWAT, n = 147] and subcutaneous adipose tissue [SWAT, n = 76] and in rectus abdominis muscle (n = 23). The effects of surgery-induced weight loss were also longitudinally evaluated (n = 6).

Results

MCR1 and CD68 gene expression levels were similar in VWAT and SWAT. A higher proportion of CD206 relative to total CD68 was present in subjects with less body fat and lower fasting glucose concentrations. The ratio MCR1/CD68was positively associated with IRS1gene expression and with the expression of lipogenic genes such as ACACA, FASN and THRSP, even after adjusting for BMI. The ratio MCR1/CD68 in SWAT increased significantly after the surgery-induced weight loss (+44.7%; p = 0.005) in parallel to the expression of adipogenic genes. In addition, SWAT MCR1/CD68ratio was significantly associated with muscle mitochondrial gene expression (PPARGC1A, TFAM and MT-CO3). AT CD206 was confirmed by immunohistochemistry to be specific of macrophages, especially abundant in crown-like structures.

Conclusion

A decreased ratio MCR1/CD68 is linked to adipose tissue and muscle mitochondrial dysfunction at least at the level of expression of adipogenic and mitochondrial genes.  相似文献   

5.
6.
Obesity, and in particular visceral obesity, has been associated with an increased risk of developing cancers as well as higher rates of mortality following diagnosis. The impact of obesity on adipose-derived stromal cells (ASC), which contribute to the formation of tumor stroma, is unknown. Here we hypothesized that visceral source and diet-induced obesity (DIO) changes the ASC phenotype, contributing to the tumor promoting effects of obesity. We found that ASC isolated from subcutaneous (SC-ASC) and visceral (V-ASC) white adipose tissue(WAT) of lean(Le) and obese(Ob) mice exhibited similar mesenchymal cell surface markers expression, and had comparable effects on ovarian cancer cell proliferation and migration. Obese and visceral derived ASC proliferated slower and exhibited impaired differentiation into adipocytes and osteocytes in vitro as compared to ASC derived from subcutaneous WAT of lean mice. Intraperitoneal co-injection of ovarian cancer cells with obese or visceral derived ASC, but not lean SC-ASC, increased growth of intraperitoneal ID8 tumors as compared to controls. Obese and V-ASC increased stromal infiltration of inflammatory cells, including CD3+ T cells and F4/80+ macrophages. Obese and visceral derived ASC, but not lean SC-ASC, increased expression of chemotactic factors IL-6, MIP-2, and MCP-1 when cultured with tumor cells. Overall, these results demonstrate that obese and V-ASC have a unique phenotype, with more limited proliferation and differentiation capacity but enhanced expression of chemotactic factors in response to malignant cells which support infiltration of inflammatory cells and support tumor growth and dissemination.  相似文献   

7.
8.
Allele-specific gene expression associated with genetic variation in regulatory regions can play an important role in the development of complex traits. We hypothesized that polymorphisms in microRNA (miRNA) response elements (MRE-SNPs) that either disrupt a miRNA binding site or create a new miRNA binding site can affect the allele-specific expression of target genes. By integrating public expression quantitative trait locus (eQTL) data, miRNA binding site predictions, small RNA sequencing, and Argonaute crosslinking immunoprecipitation (AGO-CLIP) datasets, we identified genetic variants that can affect gene expression by modulating miRNA binding efficiency. We also identified MRE-SNPs located in regions associated with complex traits, indicating possible causative mechanisms associated with these loci. The results of this study expand the current understanding of gene expression regulation and help to interpret the mechanisms underlying eQTL effects.  相似文献   

9.
Mesenteric adipose tissue, being a component of visceral adipose tissue, has a high lipolytic activity. Excessive accumulation of visceral adipose tissue increases the risk of metabolic disorders leading to severe consequences. Therefore, the aim of the presented study was to estimate the production of adipokine and proinflammatory molecules by the adipose tissue of small intestine mesentery evaluating its contribution to the formation of insulin resistance in obesity. The role of the activity of LEP, SERPINA12, RARRES2, and TNFα genes encoding leptin, vaspin, chemerin, and TNFα in adipose tissue of small intestinal mesentery in patients with abdominal obesity with a different state of carbohydrate metabolism was studied. The changes in serum/plasma content of the examined mediators that we detected are closely associated with their production in the adipose tissue of small intestinal mesentery. The revealed interrelations between the production of mediators (adipokines, proinflammatory molecules) studied with the parameters of carbohydrate metabolism indicate an important role of mesenteric adipose tissue in the formation of insulin resistance in obesity.  相似文献   

10.
11.
12.
The circadian clock can regulate the metabolic process of xenobiotics, but little is known as to circadian rhythms can be perturbed by xenobiotics. Styrene is a organic chemical widely used in occupational settings. The effects of styrene on the circadian genes of HuDE cells were evaluated after serum-shocking synchronization. A subtoxic dose of 100 µM of styrene altered the expression of clock genes BMAL1, PER2, PER3, CRY1, CRY2, and REV-ERB-α.  相似文献   

13.
Adipose stem cells (ASCs) are an appealing source of cells for therapeutic intervention; however, the environment from which ASCs are isolated may impact their usefulness. Using a range of functional assays, we have evaluated whether ASCs isolated from an obese environment are comparable to cells from non-obese adipose tissue. Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity. Metabolic analysis demonstrated that mitochondrial content and function was impaired in obese-derived ASCs resulting in changes in favored oxidative substrates. These findings highlight the impact of obesity on adult stem properties. Hence, caution should be exercised when considering the source of ASCs for cellular therapies since their therapeutic potential may be impaired.  相似文献   

14.
To understand the molecular mechanism for intramuscular fat deposition, the expression of the obese gene was examined in response to fasting. Food deprivation for 48 h induced a decrease in the level of obese mRNA in pooled adipose tissues (abdominal, perirenal, subcutaneous, intermuscular and intramuscular). The expression of obese mRNA was examined for individual adipose tissue from several fat depots. It was highly expressed in perirenal adipose tissue, but fasting did not affect its expression level in this tissue. Moderate levels were detected in subcutaneous and intermuscular adipose tissues, and a fasting-induced decrease in obese mRNA was apparent in these tissues. The expression level of the obese gene in intramuscular adipose tissue was very low and did not respond to fasting.  相似文献   

15.

Context and Aims

Carboxylesterase 1 (CES1) appears to play an important role in the control of the metabolism of triglycerides and cholesterol in adipocytes and other cell types including hepatocytes. Therefore, it is relevant to gain insights into the genetic versus non-genetic mechanisms involved in the control of CES1 mRNA expression. Here, we investigated CES1 mRNA expression level in adipose tissue and its association with measures of adiposity and metabolic function in a population of elderly twins. Furthermore, the heritability of CES1 mRNA expression level in adipose tissue and the effect of CES1 gene duplication were assessed.

Methodology

A total of 295 monozygotic and dizygotic twin subjects (62–83 years) with (n = 48) or without (n = 247) type 2 diabetes mellitus were enrolled in the study. They were subjected to a standard oral glucose tolerance test and excision of abdominal subcutaneous fat biopsies during the fasting state. Levels of CES1 mRNA and copy number of the gene were assessed by quantitative PCR.

Results

CES1 mRNA expression level in adipose tissue was positively associated with body-mass index (P<0.001), homeostasis model assessment-insulin resistance (P = 0.003) and level of fasting glucose (P = 0.002), insulin (P = 0.006), and triglycerides (P = 0.003). The heritability for the expression of CES1 mRNA in adipose tissue was high. CES1 gene duplication was positively associated with insulin sensitivity (P = 0.05) as well as glucose tolerance (P = 0.03) and negatively associated with homeostasis model assessment-insulin resistance (P = 0.02). Duplication of CES1 was not linked to mRNA level of this gene (P = 0.63).

Conclusion

CES1 mRNA in adipose tissue appears to be under strong genetic control and was associated with measures of metabolic function raising the possibility of a potential role of this enzyme in the development of type 2 diabetes mellitus. Further studies are needed to understand the potential effect of CES1 gene duplication on adipocyte and whole-body metabolic functions.  相似文献   

16.
17.
18.
Epidemiological studies have shown an increased obesity-related risk of asthma. In support, obese mice develop airway hyperresponsiveness (AHR). However, it remains unclear whether the increased risk is a consequence of obesity, adipogenic diet, or the metabolic syndrome (MetS). Altered L-arginine and nitric oxide (NO) metabolism is a common feature between asthma and metabolic syndrome that appears independent of body mass. Increased asthma risk resulting from such metabolic changes would have important consequences in global health. Since high-sugar diets can induce MetS, without necessarily causing obesity, studies of their effect on arginine/NO metabolism and airway function could clarify this aspect. We investigated whether normal-weight mice with MetS, due to high-fructose diet, had dysfunctional arginine/NO metabolism and features of asthma. Mice were fed chow-diet, high-fat-diet, or high-fructose-diet for 18 weeks. Only the high-fat-diet group developed obesity or adiposity. Hyperinsulinemia, hyperglycaemia, and hyperlipidaemia were common to both high-fat-diet and high-fructose-diet groups and the high-fructose-diet group additionally developed hypertension. At 18 weeks, airway hyperresponsiveness (AHR) could be seen in obese high-fat-diet mice as well as non-obese high-fructose-diet mice, when compared to standard chow-diet mice. No inflammatory cell infiltrate or goblet cell metaplasia was seen in either high-fat-diet or high-fructose-diet mice. Exhaled NO was reduced in both these groups. This reduction in exhaled NO correlated with reduced arginine bioavailability in lungs. In summary, mice with normal weight but metabolic obesity show reduced arginine bioavailability, reduced NO production, and asthma-like features. Reduced NO related bronchodilation and increased oxo-nitrosative stress may contribute to the pathogenesis.  相似文献   

19.

Objective

The aim of this study was to evaluate the association between psychological damage caused by common occupational trauma and metabolic syndrome (MES).

Method

571 workers from 20 small Italian companies were invited to fill in the Psychological Injury Risk Indicator (PIRI) during their routine medical examination at the workplace.

Results

Compared to workers with no psychological injury, workers with a high PIRI score had a significantly increased risk of having at least one metabolic syndrome component (adjusted hazards ratio, 1.8; 95% confidence interval, 1.2 to 2.6). There was a significant increase in the risk of hypertriglyceridemia in male workers (OR 2.53 CI95% 1.03-6.22), and of hypertension in female workers (OR 2.45 CI95% 1.29-4.66).

Conclusion

Psychological injury related to common occupational trauma may be a modifiable risk factor for metabolic syndrome.  相似文献   

20.
彭颗红  薛敏  肖松舒 《生物磁学》2009,(13):2514-2516,2537
目的:探讨visfatin基因在多囊卵巢综合征(PCOS)网膜脂肪组织中的表达及相关影响因素。方法:采用半定量RT-PCR方法检测PCOS组(30例)和对照组(25例)网膜脂肪组织visfatin mRNA表达,并测量体重指数、腰臀比、空腹血糖、空腹胰岛素、胰岛素抵抗指数和血清性激素水平。结果:①PCOS组网膜脂肪组织visfatin mRNA表达量高于对照组(P=0.000)。②网膜脂肪组织visfatin mRNA的表达量与BMI、WHR、FINS、HOMA-IR呈正相关(P〈0.05)。③多元逐步回归分析显示,HOMA-IR(P=0.000)和WHR(P=0.005)是影响网膜脂肪组织visfatin mRNA表达的相关因素。结论:网膜脂肪组织visfatin mRNA表达可能与PCOS胰岛素抵抗的发生和肥胖相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号