首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A number of antiepileptic medications that modulate GABA(A) mediated synaptic transmission are anxiolytic. The loop diuretics furosemide (Lasix) and bumetanide (Bumex) are thought to have antiepileptic properties. These drugs also modulate GABA(A) mediated signalling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signalling, we sought to investigate whether they also mediate anxiolytic effects. Here we report the first investigation of the anxiolytic effects of these drugs in rat models of anxiety. Furosemide and bumetanide were tested in adult rats for their anxiolytic effects using four standard anxiety models: 1) contextual fear conditioning; 2) fear-potentiated startle; 3) elevated plus maze, and 4) open-field test. Furosemide and bumetanide significantly reduced conditioned anxiety in the contextual fear-conditioning and fear-potentiated startle models. At the tested doses, neither compound had significant anxiolytic effects on unconditioned anxiety in the elevated plus maze and open-field test models. These observations suggest that loop diuretics elicit significant anxiolytic effects in rat models of conditioned anxiety. Since loop diuretics are antagonists of the NKCC1 and KCC2 cotransporters, these results implicate the cation-chloride cotransport system as possible molecular mechanism involved in anxiety, and as novel pharmacological target for the development of anxiolytics. In view of these findings, and since furosemide and bumetanide are safe and well tolerated drugs, the clinical potential of loop diuretics for treating some types of anxiety disorders deserves further investigation.  相似文献   

2.
Neonatal seizures can be refractory to conventional anticonvulsants, and this may in part be due to a developmental increase in expression of the neuronal Na+-K+-2 Cl cotransporter, NKCC1, and consequent paradoxical excitatory actions of GABAA receptors in the perinatal period. The most common cause of neonatal seizures is hypoxic encephalopathy, and here we show in an established model of neonatal hypoxia-induced seizures that the NKCC1 inhibitor, bumetanide, in combination with phenobarbital is significantly more effective than phenobarbital alone. A sensitive mass spectrometry assay revealed that bumetanide concentrations in serum and brain were dose-dependent, and the expression of NKCC1 protein transiently increased in cortex and hippocampus after hypoxic seizures. Importantly, the low doses of phenobarbital and bumetanide used in the study did not increase constitutive apoptosis, alone or in combination. Perforated patch clamp recordings from ex vivo hippocampal slices removed following seizures revealed that phenobarbital and bumetanide largely reversed seizure-induced changes in EGABA. Taken together, these data provide preclinical support for clinical trials of bumetanide in human neonates at risk for hypoxic encephalopathy and seizures.  相似文献   

3.
The NKCC1 ion transporter contributes to the pathophysiology of common neurological disorders, but its function in microglia, the main inflammatory cells of the brain, has remained unclear to date. Therefore, we generated a novel transgenic mouse line in which microglial NKCC1 was deleted. We show that microglial NKCC1 shapes both baseline and reactive microglia morphology, process recruitment to the site of injury, and adaptation to changes in cellular volume in a cell-autonomous manner via regulating membrane conductance. In addition, microglial NKCC1 deficiency results in NLRP3 inflammasome priming and increased production of interleukin-1β (IL-1β), rendering microglia prone to exaggerated inflammatory responses. In line with this, central (intracortical) administration of the NKCC1 blocker, bumetanide, potentiated intracortical lipopolysaccharide (LPS)-induced cytokine levels. In contrast, systemic bumetanide application decreased inflammation in the brain. Microglial NKCC1 KO animals exposed to experimental stroke showed significantly increased brain injury, inflammation, cerebral edema and worse neurological outcome. Thus, NKCC1 emerges as an important player in controlling microglial ion homeostasis and inflammatory responses through which microglia modulate brain injury. The contribution of microglia to central NKCC1 actions is likely to be relevant for common neurological disorders.

This study shows that inflammatory responses of microglial cells are markedly influenced by the ion transporter, NKCC1; blockade or genetic deletion of microglial NKCC1 has broad cell-autonomous effects, leading to changes in morphology, membrane conductance, process recruitment after injury, and cytokine production, with worsened neurological outcome after stroke.  相似文献   

4.
The equilibrium potential for GABA-A receptor mediated currents (EGABA) in neonatal central neurons is set at a relatively depolarized level, which is suggested to be caused by a low expression of K+/Cl- co-transporter (KCC2) but a relatively high expression of Na+-K+-Cl- cotransporter (NKCC1). Theta-burst stimulation (TBS) in stratum radiatum induces a negative shift in EGABA in juvenile hippocampal CA1 pyramidal neurons. In the current study, the effects of TBS on EGABA in neonatal and juvenile hippocampal CA1 neurons and the underlying mechanisms were examined. Metabotropic glutamate receptors (mGluRs) are suggested to modulate KCC2 and NKCC1 levels in cortical neurons. Therefore, the involvement of mGluRs in the regulation of KCC2 or NKCC1 activity, and thus EGABA, following TBS was also investigated. Whole-cell patch recordings were made from Wistar rat hippocampal CA1 pyramidal neurons, in a slice preparation. In neonates, TBS induces a positive shift in EGABA, which was prevented by NKCC1 antisense but not NKCC1 sense mRNA. (RS)-a-Methyl-4-carboxyphenylglycine (MCPG), a group I and II mGluR antagonist, blocked TBS-induced shifts in both juvenile and neonatal hippocampal neurons. While blockade of mGluR1 or mGluR5 alone could interfere with TBS-induced shifts in EGABA in neonates, only a combined blockade could do the same in juveniles. These results indicate that TBS induces a negative shift in EGABA in juvenile hippocampal neurons but a positive shift in neonatal hippocampal neurons via corresponding changes in KCC2 and NKCC1 expressions, respectively. mGluR activation seems to be necessary for both shifts to occur while the specific receptor subtype involved seems to vary.  相似文献   

5.
Bumetanide and other high-ceiling diuretics (HCD) attenuate myogenic tone and contractions of vascular smooth muscle cells (VSMC) triggered by diverse stimuli. HCD outcome may be mediated by their interaction with NKCC1, the only isoform of Na+, K+, 2Cl cotransporter expressed in VSMC as well as with targets distinct from this carrier. To examine these hypotheses, we compared the effect of bumetanide on contractions of mesenteric arteries from wild-type and NKCC1 knockout mice. In mesenteric arteries from wild-type controls, 100 μM bumetanide evoked a decrease of up to 4-fold in myogenic tone and contractions triggered by modest [K+]o-induced depolarization, phenylephrine and UTP. These actions of bumetanide were preserved after inhibition of nitric oxide synthase with NG-nitro-l-arginine methyl ester, but were absent in mesenteric arteries from NKCC1-/- mice. The data show that bumetanide inhibits VSMC contractile responses via its interaction with NKCC1 and independently of nitric oxide production by endothelial cells.  相似文献   

6.
During development, activation of Cl(-)-permeable GABA(A) receptors (GABA(A)-R) excites neurons as a result of elevated intracellular Cl(-) levels and a depolarized Cl(-) equilibrium potential (E(Cl)). GABA becomes inhibitory as net outward neuronal transport of Cl(-) develops in a caudal-rostral progression. In line with this caudal-rostral developmental pattern, GABAergic anticonvulsant compounds inhibit motor manifestations of neonatal seizures but not cortical seizure activity. The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) facilitates the accumulation of Cl(-) in neurons. The NKCC1 blocker bumetanide shifted E(Cl) negative in immature neurons, suppressed epileptiform activity in hippocampal slices in vitro and attenuated electrographic seizures in neonatal rats in vivo. Bumetanide had no effect in the presence of the GABA(A)-R antagonist bicuculline, nor in brain slices from NKCC1-knockout mice. NKCC1 expression level versus expression of the Cl(-)-extruding transporter (KCC2) in human and rat cortex showed that Cl(-) transport in perinatal human cortex is as immature as in the rat. Our results provide evidence that NKCC1 facilitates seizures in the developing brain and indicate that bumetanide should be useful in the treatment of neonatal seizures.  相似文献   

7.
Studies in rat aorta have shown that the Na-K-2Cl cotransporter NKCC1 is activated by vasoconstrictors and inhibited by nitrovasodilators, contributes to smooth muscle tone in vitro, and is upregulated in hypertension. To determine the role of NKCC1 in systemic vascular resistance and hypertension, blood pressure was measured in rats before and after inhibition of NKCC1 with bumetanide. Intravenous infusion of bumetanide sufficient to yield a free plasma concentration above the IC(50) for NKCC1 produced an immediate drop in blood pressure of 5.2% (P < 0.001). The reduction was not prevented when the renal arteries were clamped, indicating that it was not due to a renal effect of bumetanide. Bumetanide did not alter blood pressure in NKCC1-null mice, demonstrating that it was acting specifically through NKCC1. In third-order mesenteric arteries, bumetanide-inhibitable efflux of (86)Rb was acutely stimulated 133% by phenylephrine, and bumetanide reduced the contractile response to phenylephrine, indicating that NKCC1 influences tone in resistance vessels. The hypotensive effect of bumetanide was proportionately greater in rats made hypertensive by a 7-day infusion of norepinephrine (12.7%, P < 0.001 vs. normotensive rats) but much less so when hypertension was produced by a fixed aortic coarctation (8.0%), again consistent with an effect of bumetanide on resistance vessels rather than other determinants of blood pressure. We conclude that NKCC1 influences blood pressure through effects on smooth muscle tone in resistance vessels and that this effect is augmented in hypertension.  相似文献   

8.
The widespread presence of the Na-K-2Cl (NKCC) cotransporter protein suggests that chronic administration of inhibitors may result in adverse effects. Inhibition of the NKCC cotransporter by loop diuretics is felt to underlie the diuretic and the pulmonary smooth muscle relaxant effects of this drug class. However, the fundamental regulation of salt and water movement by this cotransporter suggests that it may also mediate cell volume changes occurring during cell cycle progression. Thus we hypothesized that NKCC cotransporter inhibition by loop diuretics would decrease cellular proliferation. Normal human bronchial smooth muscle cells (BSMC) showed a significant concentration-dependent decrease in cell counts after 7 days of exposure to both bumetanide (n=5-10) and furosemide (n=6-16) compared with controls. Proliferation was similarly inhibited in normal human lung fibroblasts (n=5-9). To determine whether this was due to loss of cells, we performed apoptosis assays on BSMC. Both annexin V-propidium iodide staining (n=5-10) and single cell gel electrophoresis assays (n=4) were negative for necrosis and apoptosis in BSMC exposed to 10 microM bumetanide. Subsequent analysis of the cell cycle by flow cytometry showed that bumetanide-exposed BSMC were delayed in G1 phase compared with controls (n=4-8). This is the first evidence for loop diuretic inhibition of airway smooth muscle cell proliferation. NKCC cotransporter inhibition impeded G1-S phase transition without facilitating cell death. Thus although inhibition by loop diuretics relaxes airway smooth muscle, the NKCC cotransporter may have a more important role in cell proliferation regulation.  相似文献   

9.
Prostaglandin E2 (PGE2) mediates immune responses of the beet armyworm, Spodoptera exigua, including oenocytoid cell lysis (a class of lepidopteran hemocytes: OCL) via its specific membrane receptor to release inactive prophenoloxidase (PPO) into hemolymph. PPO is activated into phenoloxidase in the plasma to play crucial roles in the immune responses of S. exigua. The mechanism of OCL has not been elucidated, however we posed the hypothesis that a rapid accumulation of sodium ions within the oenocytoids allows a massive influx of water by the ion gradient, which leads to the cell lysis. It remains unclear which sodium channel is responsible for the OCL in response to PGE2. This study identified a specific sodium channel called sodium‐potassium‐chloride cotransporter 1 (Se‐NKCC1) expressed in hemocytes of S. exigua and analyzed its function in the OCL in response to PGE2. Se‐NKCC1 encodes a basic membrane protein (pI value = 8.445) of 1,066 amino acid residues, which contains 12 putative transmembrane domains. Se‐NKCC1 was expressed in all developmental stages and tissues. qPCR showed that bacterial challenge significantly induced its expression. A specific inhibitor of NKCC, bumetanide, prevented the OCL in a dose‐dependent manner. When RNA interference (RNAi) using double‐stranded RNA specific to Se‐NKCC1 suppressed its expression, the OCL and PPO activation were significantly inhibited in response to PGE2. The RNAi treatment also reduced nodule formation to bacterial challenge. These results suggest that Se‐NKCC1 is associated with OCL by facilitating inward transport of ions in response to PGE2.  相似文献   

10.
The Na-K-Cl cotransporter (NKCC) plays central roles in cellular chloride homeostasis and in epithelial salt transport, but to date little is known about the mechanism by which the transporter moves ions across the membrane. We examined the functional role of transmembrane helix 3 (TM3) in NKCC1 using cysteine- and tryptophan-scanning mutagenesis and analyzed our results in the context of a structural homology model based on an alignment of NKCC1 with other amino acid polyamine organocation superfamily members, AdiC and ApcT. Mutations of residues along one face of TM3 (Tyr-383, Met-382, Ala-379, Asn-376, Ala-375, Phe-372, Gly-369, and Ile-368) had large effects on translocation rate, apparent ion affinities, and loop diuretic affinity, consistent with a proposed role of TM3 in the translocation pathway. The prediction that Met-382 is part of an extracellular gate that closes to form an occluded state is strongly supported by conformational sensitivity of this residue to 2-(trimethylammonium)ethyl methanethiosulfonate, and the bumetanide insensitivity of M382W is consistent with tryptophan blocking entry of bumetanide into the cavity. Substitution effects on residues at the intracellular end of TM3 suggest that this region is also involved in ion coordination and may be part of the translocation pathway in an inward-open conformation. Mutations of predicted pore residues had large effects on binding of bumetanide and furosemide, consistent with the hypothesis that loop diuretic drugs bind within the translocation cavity. The results presented here strongly support predictions of homology models of NKCC1 and demonstrate important roles for TM3 residues in ion translocation and loop diuretic inhibition.  相似文献   

11.
This study examines the action of agonists and antagonists of P2 receptors on mouse mesenteric artery contractions and the possible involvement of these signaling pathways in myogenic tone (MT) evoked by elevated intraluminal pressure. Both ATP and its non-hydrolyzed analog α,β-ATP triggered transient contractions that were sharply decreased in the presence of NF023, a potent antagonist of P2X1 receptors. In contrast, UTP and UDP elicited sustained contractions which were suppressed by MRS2567, a selective antagonist of P2Y6 receptors. Inhibition of Na+, K+, 2Cl cotransport (NKCC) with bumetanide led to attenuation of contractions in UTP- but not ATP-treated arteries. Both UTP-induced contractions and MT were suppressed by MRS2567 and bumetanide but were insensitive to NF023. These data implicate a P2Y6-mediated, NKCC-dependent mechanism in MT of mesenteric arteries. The action of heightened intraluminal pressure on UTP release from mesenteric arteries and its role in the triggering of P2Y6-mediated signaling should be examined further.  相似文献   

12.
How extrinsic stimuli and intrinsic factors interact to regulate continuous neurogenesis in the postnatal mammalian brain is unknown. Here we show that regulation of dendritic development of newborn neurons by Disrupted-in-Schizophrenia 1 (DISC1) during adult hippocampal neurogenesis requires neurotransmitter GABA-induced, NKCC1-dependent depolarization through a convergence onto the AKT-mTOR pathway. In contrast, DISC1 fails to modulate early-postnatal hippocampal neurogenesis when conversion of GABA-induced depolarization to hyperpolarization is accelerated. Extending the period of GABA-induced depolarization or maternal deprivation stress restores DISC1-dependent dendritic regulation through mTOR pathway during early-postnatal hippocampal neurogenesis. Furthermore, DISC1 and NKCC1 interact epistatically to affect risk for schizophrenia in two independent case control studies. Our study uncovers an interplay between intrinsic DISC1 and extrinsic GABA signaling, two schizophrenia susceptibility pathways, in controlling neurogenesis and suggests critical roles of developmental tempo and experience in manifesting the impact of susceptibility genes on neuronal development and risk for mental disorders.  相似文献   

13.
The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) located on the basolateral membrane of intestinal epithelia has been postulated to be the major basolateral Cl(-) entry pathway. With targeted mutagenesis, mice deficient in the NKCC1 protein were generated. The basal short-circuit current did not differ between normal and NKCC1 -/- jejuna. In the -/- jejuna, the forskolin response (22 microA/cm(2); bumetanide insensitive) was significantly attenuated compared with the bumetanide-sensitive response (52 microA/cm(2)) in normal tissue. Ion-replacement studies demonstrated that the forskolin response in the NKCC1 -/- jejuna was HCO(3)(-) dependent, whereas in the normal jejuna it was independent of the HCO(3)(-) concentration in the buffer. NKCC1 -/- ceca exhibited a forskolin response that did not differ significantly from that of normal ceca, but unlike that of normal ceca, was bumetanide insensitive. Ion-substitution studies suggested that basolateral HCO(3)(-) as well as Cl(-) entry (via non-NKCC1) paths played a role in the NKCC1 -/- secretory response. In contrast to cystic fibrosis mice, which lack both basal and stimulated Cl(-) secretion and exhibit severe intestinal pathology, the absence of intestinal pathology in NKCC1 -/- mice likely reflects the ability of the intestine to secrete HCO(3)(-) and Cl(-) by basolateral entry mechanisms independent of NKCC1.  相似文献   

14.
In a previous work, we have shown that overexpression of the Na(+)/K(+)/Cl(-) cotransporter (NKCC1) induces cell proliferation and transformation. We investigate in the present study the role of the NKCC1 in the mitogenic signal transduction. We show that overexpression of the cotransporter gene (NKCC1) in stablely transfected cells (Balb/c-NKCC1), resulted in enhanced phosphorylation of the extracellular regulated kinase (ERK) to produce double phosphorylated ERK (DP-ERK). Furthermore, the level of DP-ERK was reduced by 50-80% following the addition of bumetanide, a specific inhibitor of the Na(+)/K(+)/Cl(-) cotransporter, in quiescent as well as in proliferating cultures of the Balb/c-NKCC1 clone. In order to explore further the role of the Na(+)/K(+)/Cl(-) cotransporter in mitogenic signal transduction, we measured the effect of the two specific inhibitors of the cotransporter; bumetanide and furosemide, on DP-ERK level in immortalized non-transformed cells. In Balb/c 3T3 fibroblasts stimulated with FGF, bumetanide, and furosemide inhibited 50-60% of the ERK 1/2 phosphorylation. The inhibitor concentration needed for maximal inhibition of ERK 1/2 phosphorylation was similar to the concentration needed to block the K(+) influx mediated by the Na(+)/K(+)/Cl(-) cotransporter in these cells. To analyze whether the Na(+)/K(+)/Cl(-) cotransporter has a role in the mitogenic signal of normal cells, we measured the effect of bumetanide on ERK phosphorylation in human peripheral blood lymphocytes. The phosphorylation of ERK 1/2 in resting human lymphocytes, as well as in lymphocytes stimulated with phytohemagglutinin (PHA) was inhibited by bumetanide. The effect of bumetanide on ERK 2 phosphorylation was much lower than that of ERK 1 phosphorylation. The finding that the Na(+)/K(+)/Cl(-) cotransporter controls the ERK/MAPK (mitogen-activated protein kinase) signal transduction pathway, support our hypothesis that Na(+) and K(+) influxes mediated by this transporter plays a central role in the control of normal cell proliferation. Exploring the cellular ionic currents and levels, mediated by the Na(+)/K(+)/Cl(-) cotransporter, should lead to a better comprehension of cell proliferation and transformation machinery.  相似文献   

15.
在许多类型的哺乳动物细胞中,细胞体积对介导胰岛素发挥其生理功能起关键作用.细胞体积调节机制在胰岛素的主要靶组织骨骼肌中尤为重要.为了解该组织中细胞体积调节的机制,对Na+K+2Cl-共转运蛋白在大鼠L6骨骼肌细胞中的表达及其在调节性体积增加中的作用进行了研究.应用免疫印迹法,在L6肌管细胞中检测到分子量为170kD的钠钾氯共转运蛋白.K+(86Rb+)输入实验结果表明,54%的86Rb+是通过钠钾氯共转运蛋白输入细胞的,而其余86Rb+的输入是通过钠钾三磷酸腺苷酶和其他未知转运蛋白实现的.当L6细胞被置于高渗透压溶液(420mosmolL)中,导致细胞体积减少40%,同时钠钾氯共转运蛋白的活性迅速增加(高达2倍).细胞体积在60min内恢复至正常,但在钠钾氯共转运蛋白抑制剂bumetanide存在时,这种调节性体积增加的过程被阻断.这些结果表明,L6肌管细胞表达具有生理活性的钠钾氯共转运蛋白;此转运蛋白被高渗透压诱导造成的细胞体积缩小激活的现象表明,它是细胞调节性体积增加(RVI)机制中的关键元素,在L6骨骼肌细胞体积的调节中起重要作用.  相似文献   

16.
在许多类型的哺乳动物细胞中,细胞体积对介导胰岛素发挥其生理功能起关键作用.细胞体积调节机制在胰岛素的主要靶组织骨骼肌中尤为重要.为了解该组织中细胞体积调节的机制,对Na K 2Cl-共转运蛋白在大鼠L6骨骼肌细胞中的表达及其在调节性体积增加中的作用进行了研究.应用免疫印迹法,在L6肌管细胞中检测到分子量为170kD的钠钾氯共转运蛋白.K (86Rb )输入实验结果表明,54%的86Rb 是通过钠钾氯共转运蛋白输入细胞的,而其余86Rb 的输入是通过钠钾三磷酸腺苷酶和其他未知转运蛋白实现的.当L6细胞被置于高渗透压溶液(420mosmolL)中,导致细胞体积减少40%,同时钠钾氯共转运蛋白的活性迅速增加(高达2倍).细胞体积在60min内恢复至正常,但在钠钾氯共转运蛋白抑制剂bumetanide存在时,这种调节性体积增加的过程被阻断.这些结果表明,L6肌管细胞表达具有生理活性的钠钾氯共转运蛋白;此转运蛋白被高渗透压诱导造成的细胞体积缩小激活的现象表明,它是细胞调节性体积增加(RVI)机制中的关键元素,在L6骨骼肌细胞体积的调节中起重要作用.  相似文献   

17.
The Na+-K+-2Cl cotransporter 1 (NKCC1) is one of several transporters that have been implicated for development of hypertension since NKCC1 activity is elevated in hypertensive aorta and vascular contractions are inhibited by bumetanide, an inhibitor of NKCC1. We hypothesized that promoter hypomethylation upregulates the NKCC1 in spontaneously hypertensive rats (SHR). Thoracic aortae and mesenteric arteries were excised, cut into rings, mounted in organ baths and subjected to vascular contraction. The expression levels of nkcc1 mRNA and protein in aortae and heart tissues were measured by real-time PCR and Western blot, respectively. The methylation status of nkcc1 promoter region was analyzed by combined bisulfite restriction assay (COBRA) and bisulfite sequencing. Phenylephrine-induced vascular contraction in a dose-dependent manner, which was inhibited by bumetanide. The inhibition of dose-response curves by bumetanide was much greater in SHR than in Wistar Kyoto (WKY) normotensive rats. The expression levels of nkcc1 mRNA and of NKCC1 protein in aortae and heart tissues were higher in SHR than in WKY. Nkcc1 gene promoter was hypomethylated in aortae and heart than those of WKY. These results suggest that promoter hypomethylation upregulates the NKCC1 expression in aortae and heart of SHR.  相似文献   

18.
Mao X  Ji C  Sun C  Cao D  Ma P  Ji Z  Cao F  Min D  Li S  Cai J  Cao Y 《Neurochemistry international》2012,60(1):39-46
Impaired GABAergic inhibitory synaptic transmission plays an essential role in the pathogenesis of selective neuronal cell death following transient global ischemia. GABAA receptor (GABAAR), K+-Cl co-transporter 2 (KCC2), Na+-K+-Cl co-transporter 1 (NKCC1) and astrocytes are of particular importance to GABAergic transmission. The present study was designed to explore whether the neuroprotective effect of topiramate (TPM) was linked with the alterations of GABAergic signaling and astrocytes. The bilateral carotid arteries were occluded, and TPM (80 mg/kg/day (divided twice daily), i.p.) was injected into gerbils. At day 1, 3 and 7 post-ischemia, neurological deficit was scored and changes in hippocampal neuronal cell death were evaluated by Nissl staining. The apoptosis-related regulatory proteins (procaspase-3, caspase-3, Bax and Bcl-2) and GABAergic signal molecules (GABAAR α1, GABAAR γ2, KCC2 and NKCC1) were also detected using western blot assay. In addition, the fluorescent intensity and protein level of glial fibrillary acidic protein (GFAP), a major component of astrocyte, were examined by confocal and immunoblot analysis. Our results showed that TPM treatment significantly decreased neurological deficit scores, attenuated the ischemia-induced neuronal loss and remarkably decreased the expression levels of procaspase-3, caspase-3 as well as the ratio of Bax/Bcl-2. Besides, treatment with TPM also resulted in the increased protein expressions of GABAAR α1, GABAAR γ2 and KCC2 together with the decreased protein level of NKCC1 in gerbils hippocampus. Furthermore, fluorescent intensity and protein level of GFAP were evidently reduced in TPM-treated gerbils. These findings suggest that the therapeutic effect of TPM on global ischemia/reperfusion injury appears to be associated with the enhancement of GABAergic signaling and the inhibition of astrogliosis in gerbils.  相似文献   

19.
Na-K-Cl协同转运蛋白是一类膜蛋白,负责转运Na、K、Cl离子进出上皮细胞与非上皮细胞。Na-K-Cl介导的转运过程是电中性的,多数情况下是1Na:1K:2Cl(乌贼轴突中是2Na:1 K:3Cl),其活性被布美他尼(bumetanide)和呋塞米(furosemide)所抑制。迄今为止,Na-K-Cl协同转运蛋白被鉴定出来两个同源异构体:NKCC1和NKCC2。NKCC1存在于多个组织中,含有NKCC1的上皮大多数属于分泌上皮,而且会有Na-K-Cl协同转运蛋白位于基底膜外侧;NKCC2只存在于肾脏,位于上皮细胞致密班的顶膜上。Na-K-Cl协同转运蛋白的调控在不同的细胞和组织中是不同的。Na-K-Cl协同转运蛋白的活性会受激素刺激和细胞体积变化的影响;有些组织中,这种调控作用(尤其是NKCC1亚基)是通过特定的激酶使该转运蛋白自身发生氧化/硝化、磷酸化/去磷酸化来实现的;蛋白过表达在Na-K-Cl协同转运蛋白的激活中也起重要作用。  相似文献   

20.
We investigated the role of Na(+)-K(+)-Cl(-) cotransporter (NKCC1) in conjunction with Na(+)/Ca(2+) exchanger (NCX) in disruption of endoplasmic reticulum (ER) Ca(2+) homeostasis and ER stress development in primary cortical neurons following in vitro ischemia. Oxygen-glucose deprivation (OGD) and reoxygenation (REOX) caused a rise in [Na(+)](cyt) which was accompanied by an elevation in [Ca(2+)](cyt). Inhibition of NKCC1 with its potent inhibitor bumetanide abolished the OGD/REOX-induced rise in [Na(+)](cyt) and [Ca(2+)](cyt). Moreover, OGD significantly increased Ca(2+)(ER) accumulation. Following REOX, a biphasic change in Ca(2+)(ER) occurred with an initial release of Ca(2+)(ER) which was sensitive to inositol 1,4,5-trisphosphate receptor (IP(3)R) inhibition and a subsequent refilling of Ca(2+)(ER) stores. Inhibition of NKCC1 activity with its inhibitor or genetic ablation prevented the release of Ca(2+)(ER). A similar result was obtained with inhibition of reversed mode operation of NCX (NCX(rev)). OGD/REOX also triggered a transient increase of glucose regulated protein 78 (GRP78), phospho-form of the alpha subunit of eukaryotic initiation factor 2 (p-eIF2alpha), and cleaved caspase 12 proteins. Pre-treatment of neurons with NKCC1 inhibitor bumetanide inhibited upregulation of GRP78 and attenuated the level of cleaved caspase 12 and p-eIF2alpha. Inhibition of NKCC1 reduced cytochrome C release and neuronal death. Taken together, these results suggest that NKCC1 and NCX(rev) may be involved in ischemic cell damage in part via disrupting ER Ca(2+) homeostasis and ER function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号