首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 233 毫秒
1.
《Biophysical journal》2020,118(9):2220-2228
The one-dimensional information of genomic DNA is hierarchically packed inside the eukaryotic cell nucleus and organized in a three-dimensional (3D) space. Genome-wide chromosome conformation capture (Hi-C) methods have uncovered the 3D genome organization and revealed multiscale chromatin domains of compartments and topologically associating domains (TADs). Moreover, single-nucleosome live-cell imaging experiments have revealed the dynamic organization of chromatin domains caused by stochastic thermal fluctuations. However, the mechanism underlying the dynamic regulation of such hierarchical and structural chromatin units within the microscale thermal medium remains unclear. Microrheology is a way to measure dynamic viscoelastic properties coupling between thermal microenvironment and mechanical response. Here, we propose a new, to our knowledge, microrheology for Hi-C data to analyze the dynamic compliance property as a measure of rigidness and flexibility of genomic regions along with the time evolution. Our method allows the conversion of an Hi-C matrix into the spectrum of the dynamic rheological property along the genomic coordinate of a single chromosome. To demonstrate the power of the technique, we analyzed Hi-C data during the neural differentiation of mouse embryonic stem cells. We found that TAD boundaries behave as more rigid nodes than the intra-TAD regions. The spectrum clearly shows the dynamic viscoelasticity of chromatin domain formation at different timescales. Furthermore, we characterized the appearance of synchronous and liquid-like intercompartment interactions in differentiated cells. Together, our microrheology data derived from Hi-C data provide physical insights into the dynamics of the 3D genome organization.  相似文献   

2.
Disulfide bond formation in the endoplasmic reticulum is catalyzed by enzymes of the protein disulfide-isomerase family that harbor one or more thioredoxin-like domains. We recently discovered the transmembrane protein TMX3, a thiol-disulfide oxidoreductase of the protein disulfide-isomerase family. Here, we show that the endoplasmic reticulum-luminal region of TMX3 contains three thioredoxin-like domains, an N-terminal redox-active domain (named a) followed by two enzymatically inactive domains (b and b'). Using the recombinantly expressed TMX3 domain constructs a, ab, and abb', we compared structural stability and enzymatic properties. By structural and biophysical methods, we demonstrate that the reduced a domain has features typical of a globular folded domain that is, however, greatly destabilized upon oxidization. Importantly, interdomain stabilization by the b domain renders the a domain more resistant toward chemical denaturation and proteolysis in both the oxidized and reduced form. In combination with molecular modeling studies of TMX3 abb', the experimental results provide a new understanding of the relationship between the multidomain structure of TMX3 and its function as a redox enzyme. Overall, the data indicate that in addition to their role as substrate and co-factor binding domains, redox-inactive thioredoxin-like domains also function in stabilizing neighboring redox-active domains.  相似文献   

3.
New advances in Internet technologies and computer modeling provide opportunities for collaborative systems to support research and development in the field of industrial ecology. In particular, new information technologies such as semantic search engines based on ontologies could help researchers to link fragments of knowledge generated at research centers from around the world. Using a storyline of four imaginary researchers who hope to find collaborators in order to develop their research findings, we illustrate two levels of a four-level architecture for an Internet-based knowledge integration and collaboration environment for integrated environmental assessment. The foundation of the proposed architecture is a belief that computational models are an effective medium for conveying expert knowledge of various phenomena. Drawing from this premise, the first level of the architecture stands on a base of computational models that in some way represent the expert knowledge of the model builder. At the second level, we provide markup and interface definition tools to describe the type of knowledge contained in each model, together with the types of information services that can be provided.
The results of research at these two levels of an Internet-based knowledge integration environment for integrated environmental assessment in industrial ecology are presented in this article. Our work on the third level of model searching and matching and the fourth level of parametric model integration and solving will be presented in subsequent articles.  相似文献   

4.
Rotavirus, a nonturreted member of the Reoviridae, is the causative agent of severe infantile diarrhea. The double-stranded RNA genome encodes six structural proteins that make up the triple-layer particle. X-ray crystallography has elucidated the structure of one of these capsid proteins, VP6, and two domains from VP4, the spike protein. Complementing this work, electron cryomicroscopy (cryoEM) has provided relatively low-resolution structures for the triple-layer capsid in several biochemical states. However, a complete, high-resolution structural model of rotavirus remains unresolved. Combining new structural analysis techniques with the subnanometer-resolution cryoEM structure of rotavirus, we now provide a more detailed structural model for the major capsid proteins and their interactions within the triple-layer particle. Through a series of intersubunit interactions, the spike protein (VP4) adopts a dimeric appearance above the capsid surface, while forming a trimeric base anchored inside one of the three types of aqueous channels between VP7 and VP6 capsid layers. While the trimeric base suggests the presence of three VP4 molecules in one spike, only hints of the third molecule are observed above the capsid surface. Beyond their interactions with VP4, the interactions between VP6 and VP7 subunits could also be readily identified. In the innermost T=1 layer composed of VP2, visualization of the secondary structure elements allowed us to identify the polypeptide fold for VP2 and examine the complex network of interactions between this layer and the T=13 VP6 layer. This integrated structural approach has resulted in a relatively high-resolution structural model for the complete, infectious structure of rotavirus, as well as revealing the subtle nuances required for maintaining interactions in such a large macromolecular assembly.  相似文献   

5.

Background

It has been argued that science and society are in the midst of a far-reaching renegotiation of the social contract between science and society, with society becoming a far more active partner in the creation of knowledge. On the one hand, new forms of knowledge production are emerging, and on the other, both science and society are experiencing a rapid acceleration in new forms of knowledge utilization. Concomitantly since the Second World War, the science underpinning the knowledge utilization field has had exponential growth. Few in-depth examinations of this field exist, and no comprehensive analyses have used bibliometric methods.

Methods

Using bibliometric analysis, specifically first author co-citation analysis, our group undertook a domain analysis of the knowledge utilization field, tracing its historical development between 1945 and 2004. Our purposes were to map the historical development of knowledge utilization as a field, and to identify the changing intellectual structure of its scientific domains. We analyzed more than 5,000 articles using citation data drawn from the Web of Science®. Search terms were combinations of knowledge, research, evidence, guidelines, ideas, science, innovation, technology, information theory and use, utilization, and uptake.

Results

We provide an overview of the intellectual structure and how it changed over six decades. The field does not become large enough to represent with a co-citation map until the mid-1960s. Our findings demonstrate vigorous growth from the mid-1960s through 2004, as well as the emergence of specialized domains reflecting distinct collectives of intellectual activity and thought. Until the mid-1980s, the major domains were focused on innovation diffusion, technology transfer, and knowledge utilization. Beginning slowly in the mid-1980s and then growing rapidly, a fourth scientific domain, evidence-based medicine, emerged. The field is dominated in all decades by one individual, Everett Rogers, and by one paradigm, innovation diffusion.

Conclusion

We conclude that the received view that social science disciplines are in a state where no accepted set of principles or theories guide research (i.e., that they are pre-paradigmatic) could not be supported for this field. Second, we document the emergence of a new domain within the knowledge utilization field, evidence-based medicine. Third, we conclude that Everett Rogers was the dominant figure in the field and, until the emergence of evidence-based medicine, his representation of the general diffusion model was the dominant paradigm in the field.  相似文献   

6.
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunglobulin (Ig) domains, and the dimer interface at myomesin’s 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.  相似文献   

7.
Improved sequence alignment at low pairwise identity is important for identifying potential remote homologues in database searches and for obtaining accurate alignments as a prelude to modeling structures by homology. Our work is motivated by two observations: structural data provide superior training examples for developing techniques to improve the alignment of remote homologues; and general substitution patterns for remote homologues differ from those of closely related proteins. We introduce a new set of amino acid residue interchange matrices built from structural superposition data. These matrices exploit known structural homology as a means of characterizing the effect evolution has on residue-substitution profiles. Given their origin, it is not surprising that the individual residue-residue interchange frequencies are chemically sensible.The structural interchange matrices show a significant increase both in pairwise alignment accuracy and in functional annotation/fold recognition accuracy across distantly related sequences. We demonstrate improved pairwise alignment by using superpositions of homologous domains extracted from a structural database as a gold standard and go on to show an increase in fold recognition accuracy using a database of homologous fold families. This was applied to the unassigned open reading frames from the genome of Helicobacter pylori to identify five matches, two of which are not represented by new annotations in the sequence databases. In addition, we describe a new cyclic permutation strategy to identify distant homologues that experienced gene duplication and subsequent deletions. Using this method, we have identified a potential homologue to one additional previously unassigned open reading frame from the H. pylori genome.  相似文献   

8.
Protein interactions critical to DNA repair and cell cycle control systems are often coordinated by modules that belong to a superfamily of structurally conserved BRCT domains. Because the mechanisms of BRCT interactions and their significance are not well understood, we sought to define the affinity and specificity of those BRCT modules that orchestrate base excision repair and single-strand break repair. Common to these pathways is the essential XRCC1 DNA repair protein, which interacts with at least nine other proteins and DNA. Here, we characterized the interactions of four purified BRCT domains, two from XRCC1 and their two partners from DNA ligase IIIalpha and poly(ADP-ribosyl) polymerase 1. A monoclonal antibody was selected that recognizes the ligase IIIalpha BRCT domain, but not the other BRCT domains, and was used to capture the relevant ligase IIIalpha BRCT complex. To examine the assembly states of isolated BRCT domains and pairwise domain complexes, we used size-exclusion chromatography coupled with on-line light scattering. This analysis indicated that isolated BRCT domains form homo-oligomers and that the BRCT complex between the C-terminal XRCC1 domain and the ligase IIIalpha domain is a heterotetramer with 2:2 stoichiometry. Using affinity capture and surface plasmon resonance methods, we determined that specific heteromeric interactions with high nanomolar dissociation constants occur between pairs of cognate BRCT domains. A structural model for a XRCC1 x DNA ligase IIIalpha heterotetramer is proposed as a core base excision repair complex, which constitutes a scaffold for higher order complexes to which other repair proteins and DNA are brought into proximity.  相似文献   

9.
Using structural similarity clustering of protein domains: protein domain universe graph (PDUG), and a hierarchical functional annotation: gene ontology (GO) as two evolutionary lenses, we find that each structural cluster (domain fold) exhibits a distribution of functions that is unique to it. These functional distributions are functional fingerprints that are specific to characteristic structural clusters and vary from cluster to cluster. Furthermore, as structural similarity threshold for domain clustering in the PDUG is relaxed we observe an influx of earlier-diverged domains into clusters. These domains join clusters without destroying the functional fingerprint. These results can be understood in light of a divergent evolution scenario that posits correlated divergence of structural and functional traits in protein domains from one or few progenitors.  相似文献   

10.
Epithelial cell migration requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion, when myosin II redistributes to the lamellipodial actin and condenses it into an actin arc parallel to the edge. The new actin arc moves rearward, slowing down at focal adhesions in the lamella. We propose that net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thereby serves as a structural element underlying the temporal and spatial connection between the lamellipodium and the lamella during directed cell motion.  相似文献   

11.
M J Sippl  S Weitckus 《Proteins》1992,13(3):258-271
We present an approach which can be used to identify native-like folds in a data base of protein conformations in the absence of any sequence homology to proteins in the data base. The method is based on a knowledge-based force field derived from a set of known protein conformations. A given sequence is mounted on all conformations in the data base and the associated energies are calculated. Using several conformations and sequences from the globin family we show that the native conformation is identified correctly. In fact the resolution of the force field is high enough to discriminate between a native fold and several closely related conformations. We then apply the procedure to several globins of known sequence but unknown three dimensional structure. The homology of these sequences to globins of known structures in the data base ranges from 49 to 17%. With one exception we find that for all globin sequences one of the known globin folds is identified as the most favorable conformation. These results are obtained using a force field derived from a data base devoid of globins of known structure. We briefly discuss useful applications in protein structural research and future development of our approach.  相似文献   

12.
Phylogeographic studies have merged different disciplines to explain speciation processes at both spatial and time scales. Although the number of phylogeographic extant studies has increased almost exponentially, few have been conducted in tropical countries, especially using plants. Plants are interesting models for such studies because their responses to different habitat conditions are reflected directly in the size and distribution of populations, enabling direct tests of alternative demographic scenarios. Here, we review phylogeographic studies using plant species occurring in different vegetation domains within Brazil, which has the greatest number of plant species in the world. Based on a detailed examination of 41 published articles, we synthesized the current knowledge and discussed the main processes driving the high levels of plant diversity within Brazilian domains. General patterns of diversification could be inferred due to the number of species studied, especially in the Cerrado and Atlantic Forest, the most intensively studied domains (34.1% and 17.1% of the studies, respectively). Distinct vegetation types within both biomes were affected differently by the Pleistocene climatic oscillations. Edaphic conditions and geographical barriers (rivers and mountains) have also influenced the phylogeographical patterns of plants species from Amazonia and the Atlantic Forest. Other Brazilian domains, such as the Caatinga, Pantanal, and Pampas, have been studied to a lesser extent and no common phylogeographic pattern across species could be inferred. Issues regarding past connections between distinct domains also remain unclear, including those affecting the two main forest domains in South America. Future research on plant species will fill these information gaps, improving our understanding of the complex diversification processes affecting the South American biota.  相似文献   

13.
Using numerical simulations of pairs of long polymeric chains confined in microscopic cylinders, we investigate consequences of double-strand DNA breaks occurring in independent topological domains, such as these constituting bacterial chromosomes. Our simulations show a transition between segregated and mixed state upon linearization of one of the modelled topological domains. Our results explain how chromosomal organization into topological domains can fulfil two opposite conditions: (i) effectively repulse various loops from each other thus promoting chromosome separation and (ii) permit local DNA intermingling when one or more loops are broken and need to be repaired in a process that requires homology search between broken ends and their homologous sequences in closely positioned sister chromatid.  相似文献   

14.
Myomesin is one of the most important structural molecules constructing the M-band in the force-generating unit of striated muscle, and a critical structural maintainer of the sarcomere. Using molecular dynamics simulations, we here dissect the mechanical properties of the structurally known building blocks of myomesin, namely α-helices, immunglobulin (Ig) domains, and the dimer interface at myomesin’s 13th Ig domain, covering the mechanically important C-terminal part of the molecule. We find the interdomain α-helices to be stabilized by the hydrophobic interface formed between the N-terminal half of these helices and adjacent Ig domains, and, interestingly, to show a rapid unfolding and refolding equilibrium especially under low axial forces up to ∼15 pN. These results support and yield atomic details for the notion of recent atomic-force microscopy experiments, namely, that the unique helices inserted between Ig domains in myomesin function as elastomers and force buffers. Our results also explain how the C-terminal dimer of two myomesin molecules is mechanically outperforming the helices and Ig domains in myomesin and elsewhere, explaining former experimental findings. This study provides a fresh view onto how myomesin integrates elastic helices, rigid immunoglobulin domains, and an extraordinarily resistant dimer into a molecular structure, to feature a mechanical hierarchy that represents a firm and yet extensible molecular anchor to guard the stability of the sarcomere.  相似文献   

15.
Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.  相似文献   

16.
Latitudinal patterns of diversity are one of the most striking large-scale biological phenomena and several hypotheses have been proposed to explain them. Using data from literature-surveys we investigated how phylogenetic patterns in microorganisms, plants, and, metazoans communities differ between the tropical and temperate regions and then explored possible ecological and evolutionary process that could shape such patterns. Using the Net Relatedness Index, we analyzed data from 1486 biological communities, collected in 32 articles that considered the phylogenetic structure of biological communities. We found a pattern of phylogenetic clustering in both regions for microorganisms, while for plants we found phylogenetic clustering in temperate regions and phylogenetic overdispersion in the tropics. We did not detect a clear pattern of clustering or overdispersion in tropical or temperate regions in metazoans. From these patterns we explore different ecological and evolutionary processes that have shaped these communities over space and time.  相似文献   

17.
Domains are the evolutionary units that comprise proteins, and most proteins are built from more than one domain. Domains can be shuffled by recombination to create proteins with new arrangements of domains. Using structural domain assignments, we examined the combinations of domains in the proteins of 131 completely sequenced organisms. We found two-domain and three-domain combinations that recur in different protein contexts with different partner domains. The domains within these combinations have a particular functional and spatial relationship. These units are larger than individual domains and we term them "supra-domains". Amongst the supra-domains, we identified some 1400 (1203 two-domain and 166 three-domain) combinations that are statistically significantly over-represented relative to the occurrence and versatility of the individual component domains. Over one-third of all structurally assigned multi-domain proteins contain these over-represented supra-domains. This means that investigation of the structural and functional relationships of the domains forming these popular combinations would be particularly useful for an understanding of multi-domain protein function and evolution as well as for genome annotation. These and other supra-domains were analysed for their versatility, duplication, their distribution across the three kingdoms of life and their functional classes. By examining the three-dimensional structures of several examples of supra-domains in different biological processes, we identify two basic types of spatial relationships between the component domains: the combined function of the two domains is such that either the geometry of the two domains is crucial and there is a tight constraint on the interface, or the precise orientation of the domains is less important and they are spatially separate. Frequently, the role of the supra-domain becomes clear only once the three-dimensional structure is known. Since this is the case for only a quarter of the supra-domains, we provide a list of the most important unknown supra-domains as potential targets for structural genomics projects.  相似文献   

18.
Availability of the human genome data has enabled the exploration of a huge amount of biological information encoded in it. There are extensive ongoing experimental efforts to understand the biological functions of the gene products encoded in the human genome. However, computational analysis can aid immensely in the interpretation of biological function by associating known functional/structural domains to the human proteins. In this article we have discussed the implications of such associations. The association of structural domains to human proteins could help in prioritizing the targets for structure determination in the structural genomics initiatives. The protein kinase family is one of the most frequently occurring protein domain families in the human proteome while P-loop hydrolase, which comprises many GTPases and ATPases, is a highly represented superfamily. Using the superfamily relationships between families of unknown and known structures we could increase structural information content of the human genome by about 5%. We could also make new associations of domain families to 33 human proteins that are potentially linked to genetically inherited diseases.  相似文献   

19.
20.
Potassium channel regulation   总被引:1,自引:0,他引:1       下载免费PDF全文
The sulphonylurea receptor (SUR) is a member of the ATP-binding cassette (ABC) family of membrane proteins. It functions as the regulatory subunit of the ATP-sensitive potassium (KATP) channel, which comprises SUR and Kir6.x proteins. Here, we review data demonstrating functional differences between the two nucleotide binding domains (NBDs) of SUR1. In addition, to explain the structural basis of these functional differences, we have constructed a molecular model of the NBD dimer of human SUR1. We discuss the experimental data in the context of this model, and show how the model can be used to design experiments aimed at elucidating the relationship between the structure and function of the KATP channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号