首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingosine 1-phosphate (S1P), a biologically active lipid growth factor, induces robust endothelial cell activation resulting in cellular locomotion, vascular maturation and angiogenesis. Recent work by our laboratory has demonstrated S1P to enhance the cellular barrier function of the vascular endothelium. S1P-induced modulation of vascular permeability is effected through profound cytoskeletal reorganization initiated by cell surface receptor-mediated G protein activation and downstream signaling via the Rho family of small GTPases. The details of the downstream signaling mechanism remain an active area of in vitro investigation. Translational investigation suggests a profound impact of S1P administration in the modulation of edema formation in disease state manifest as acute inflammatory lung injury in which increased vascular permeability is a hallmark feature. These data support an exciting potential therapeutic role for S1P in vascular barrier enhancement necessary for the treatment of critically ill patients.  相似文献   

2.
Apolipoprotein M (apoM), a lipocalin family member, preferentially associates with plasma HDL and binds plasma sphingosine 1-phosphate (S1P), a signaling molecule active in immune homeostasis and endothelial barrier function. ApoM overexpression in ABCA1-expressing HEK293 cells stimulated larger nascent HDL formation, compared with cells that did not express apoM; however, the in vivo role of apoM in HDL metabolism remains poorly understood. To test whether hepatic apoM overexpression increases plasma HDL size, we generated hepatocyte-specific apoM transgenic (APOM Tg) mice, which had an ∼3–5-fold increase in plasma apoM levels compared with wild-type mice. Although HDL cholesterol concentrations were similar to wild-type mice, APOM Tg mice had larger plasma HDLs enriched in apoM, cholesteryl ester, lecithin:cholesterol acyltransferase, and S1P. Despite the presence of larger plasma HDLs in APOM Tg mice, in vivo macrophage reverse cholesterol transport capacity was similar to that in wild-type mice. APOM Tg mice had an ∼5-fold increase in plasma S1P, which was predominantly associated with larger plasma HDLs. Primary hepatocytes from APOM Tg mice generated larger nascent HDLs and displayed increased sphingolipid synthesis and S1P secretion. Inhibition of ceramide synthases in hepatocytes increased cellular S1P levels but not S1P secretion, suggesting that apoM is rate-limiting in the export of hepatocyte S1P. Our data indicate that hepatocyte-specific apoM overexpression generates larger nascent HDLs and larger plasma HDLs, which preferentially bind apoM and S1P, and stimulates S1P biosynthesis for secretion. The unique apoM/S1P-enriched plasma HDL may serve to deliver S1P to extrahepatic tissues for atheroprotection and may have other as yet unidentified functions.  相似文献   

3.
Sphingosine-1-phosphate (S1P) signals to enhance or destabilize the vascular endothelial barrier depending on the receptor engaged. Here, we investigated the differential barrier effects of S1P on two influential primary endothelial cell (EC) types, human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs). S1PR1 (barrier protective) and S1PR3 (barrier disruptive) surface and gene expression were quantified by flow cytometry and immunofluorescence, and RT-qPCR, respectively. Functional evaluation of EC monolayer permeability in response to S1P was quantified with transendothelial electrical resistance (TEER) and small molecule permeability. S1P significantly enhanced HUVEC barrier function, while promoting HPMEC barrier breakdown. Immunofluorescence and flow cytometry analysis showed select, S1PR3-high HPMECs, suggesting susceptibility to barrier destabilization following S1P exposure. Reevaluation of HPMEC barrier following S1P exposure under inflamed conditions demonstrated synergistic barrier disruptive effects of pro-inflammatory cytokine and S1P. The role of the Rho-ROCK signaling pathway under these conditions was confirmed through ROCK1/2 inhibition (Y-27632). Thus, the heterogeneous responses of ECs to S1P signaling are mediated through Rho-ROCK signaling, and potentially driven by differences in the surface expression of S1PR3.  相似文献   

4.
Endothelial cell barrier regulation by sphingosine 1-phosphate   总被引:7,自引:0,他引:7  
Disruption of vascular barrier integrity markedly increases permeability to fluid and solute and is the central pathophysiologic mechanism of many inflammatory disease processes, including sepsis and acute lung injury (ALI). Dynamic control of the endothelial barrier involves complex signaling to the endothelial cytoskeleton and to adhesion complexes between neighboring cells and between cells and the underlying matrix. Sphingosine 1-phosphate (S1P), a biologically active lipid generated by hydrolysis of membrane lipids in activated platelets, organizes actin into a strong cortical ring and strengthens both intercellular and cell-matrix adherence. The mechanisms by which S1P increases endothelial barrier integrity remain the focus of intense basic research. The downstream structural changes induced by S1P interact to decrease vascular permeability to fluid and solute, which translates into a reduction lung edema formation in animal models of ALI, thus suggesting a potentially life-saving therapeutic role for vascular barrier modulation in critically ill patients.  相似文献   

5.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that acts either as an intracellular messenger or as a ligand for its membrane receptors. S1P is a normal constituent of blood, where it is found both in plasma and blood cells. Compared with other cell types, sphingolipid metabolism in erythrocytes and platelets has unique features that allow the erythrocytes and platelets to accumulate S1P. In plasma, S1P is bound mainly to HDLs and albumin. Of note, metabolism and biological activity of S1P is to a large extent affected by the type of its carrier. Plasma S1P is characterized by a short half-life, indicating rapid clearance by degradative enzymes and the presence of high-capacity sources involved in maintaining its high concentration. These sources include blood cells, vascular endothelium, and hepatocytes. However, the extent to which each of these contributes to the plasma pool of S1P is a matter of debate. Circulating S1P plays a significant physiological role. It was found to be the key regulator of lymphocyte trafficking, endothelial barrier function, and vascular tone. The purpose of this review is to summarize the present state of knowledge on the metabolism, transport, and origin of plasma S1P, and to discuss the mechanisms regulating its homeostasis in blood.  相似文献   

6.
7.
High density lipoproteins (HDL) are major plasma carriers of sphingosine 1-phosphate (S1P). Here we show that HDL increases endothelial barrier integrity as measured by electric cell substrate impedance sensing. S1P was implicated as the mediator in this process through findings showing that pertussis toxin, an inhibitor of G(i)-coupled S1P receptors, as well as antagonists of the S1P receptor, S1P1, inhibited barrier enhancement by HDL. Additional findings show that HDL stimulates endothelial cell activation of Erk1/2 and Akt, signaling pathway intermediates that have been implicated in S1P-dependent endothelial barrier activity. HDL was also found to promote endothelial cell motility, a process that may also relate to endothelial barrier function in the context of a vascular injury response. The effects of HDL on endothelial cell Erk1/2 and Akt activation and motility were suppressed by pertussis toxin and S1P1 antagonists. However, both HDL-induced barrier enhancement and HDL-induced motility showed a greater dependence on Akt activation as compared with Erk1/2 activation. Together, the findings indicate that HDL has endothelial barrier promoting activities, which are attributable to its S1P component and signaling through the S1P1/Akt pathway.  相似文献   

8.
Sphingosine-1-phosphate (S1P), a lipid growth factor, is critical to the maintenance and enhancement of vascular barrier function via processes highly dependent upon cell membrane raft-mediated signaling events. Anti-phosphotyrosine 2 dimensional gel electrophoresis (2-DE) immunoblots confirmed that disruption of membrane raft formation (via methyl-β-cyclodextrin) inhibits S1P-induced protein tyrosine phosphorylation. To explore S1P-induced dynamic changes in membrane rafts, we used 2-D techniques to define proteins within detergent-resistant cell membrane rafts which are differentially expressed in S1P-challenged (1 μM, 5 min) human pulmonary artery endothelial cells (EC), with 57 protein spots exhibiting > 3-fold change. S1P induced the recruitment of over 20 cell membrane raft proteins exhibiting increasing levels of tyrosine phosphorylation including known barrier-regulatory proteins such as focal adhesion kinase (FAK), cortactin, p85α phosphatidylinositol 3-kinase (p85αPI3K), myosin light chain kinase (nmMLCK), filamin A/C, and the non-receptor tyrosine kinase, c-Abl. Reduced expression of either FAK, MLCK, cortactin, filamin A or filamin C by siRNA transfection significantly attenuated S1P-induced EC barrier enhancement. Furthermore, S1P induced cell membrane raft components, p-caveolin-1 and glycosphingolipid (GM1), to the plasma membrane and enhanced co-localization of membrane rafts with p-caveolin-1 and p-nmMLCK. These results suggest that S1P induces both the tyrosine phosphorylation and recruitment of key actin cytoskeletal proteins to membrane rafts, resulting in enhanced human EC barrier function.  相似文献   

9.
Disruption of endothelial cell-cell contact is a key event in many cardiovascular diseases and a characteristic of pathologically activated vascular endothelium. The CCM (cerebral cavernous malformation) family of proteins (KRIT1 (Krev-interaction trapped 1), PDCD10, and CCM2) are critical regulators of endothelial cell-cell contact and vascular homeostasis. Here we show novel regulation of vascular endothelial growth factor (VEGF) signaling in KRIT1-depleted endothelial cells. Loss of KRIT1 and PDCD10, but not CCM2, increases nuclear β-catenin signaling and up-regulates VEGF-A protein expression. In KRIT1-depleted cells, increased VEGF-A levels led to increased VEGF receptor 2 (VEGFR2) activation and subsequent alteration of cytoskeletal organization, migration, and barrier function and to in vivo endothelial permeability in KRIT1-deficient animals. VEGFR2 activation also increases β-catenin phosphorylation but is only partially responsible for KRIT1 depletion-dependent disruption of cell-cell contacts. Thus, VEGF signaling contributes to modifying endothelial function in KRIT1-deficient cells and microvessel permeability in Krit1+/− mice; however, VEGF signaling is likely not the only contributor to disrupted endothelial cell-cell contacts in the absence of KRIT1.  相似文献   

10.
During angiogenesis, nascent vascular sprouts fuse to form vascular networks, enabling efficient circulation. Mechanisms that stabilize the vascular plexus are not well understood. Sphingosine 1-phosphate (S1P) is a blood-borne lipid mediator implicated in the regulation of vascular and immune systems. Here we describe a mechanism by which the G protein-coupled S1P receptor-1 (S1P(1)) stabilizes the primary vascular network. A gradient of S1P(1) expression from the mature regions of the vascular network to the growing vascular front was observed. In the absence of endothelial S1P(1), adherens junctions are destabilized, barrier function is breached, and flow is perturbed, resulting in abnormal vascular hypersprouting. Interestingly, S1P(1) responds to S1P?as well as laminar shear stress to transduce flow-mediated signaling in endothelial cells both in?vitro and in?vivo. These data demonstrate that blood flow and circulating S1P activate endothelial S1P(1) to stabilize blood vessels in development and homeostasis.  相似文献   

11.
12.
BACKGROUND: The lymphatic endothelium is an important semi-permeable barrier separating lymph from the interstitial space. However, there is currently a limited understanding of the lymphatic endothelial barrier and the mechanisms of lymph formation. The objectives of this study were to investigate the potential active role of lymphatic endothelial cells in barrier regulation, and to test whether the endothelial cell agonists VEGF-A and VEGF-C can alter lymphatic endothelial barrier function. METHODS AND RESULTS: Cultured adult human dermal microlymphatic endothelial cells (HMLEC-d) and human umbilical vein endothelial cells (HUVEC) were respectively used as models of lymphatic and vascular endothelium. Transendothelial electrical resistance (TER) of endothelial monolayers served as an index of barrier function. Cells were treated with VEGF-A, VEGF-C, or the VEGFR-3 selective mutant VEGF-C156S. MAZ51 was used to inhibit VEGFR-3 signaling. The results show that while VEGF-A causes a time-dependent decrease in TER in HUVEC, there is no response in HMLEC-d. In contrast, VEGF-C and VEGF-C156S cause a similar decrease in TER in HMLEC-d that is not observed in HUVEC. These results corresponded to the protein expression of VEGFR-2 and VEGFR-3 in these cell types, determined by Western blotting. In addition, the VEGF-C- and VEGF-C156S-induced TER changes were inhibited by MAZ51. CONCLUSIONS: The results indicate differential responses of the lymphatic and vascular endothelial barriers to VEGF-A and VEGF-C. Furthermore, our data suggest that VEGF-C alters lymphatic endothelial function through a mechanism involving VEGFR-3.  相似文献   

13.
Breakdown of the endothelial barrier is a critical step in the development of organ failure in severe inflammatory conditions such as sepsis. Endothelial cells from different tissues show phenotypic variations which are often neglected in endothelial research. Sphingosine-1-phosphate (S1P) and AMP-dependent kinase (AMPK) have been shown to protect the endothelium and phosphorylation of AMPK by S1P was shown in several cell types. However, the role of the S1P-AMPK interrelationship for endothelial barrier stabilization has not been investigated. To assess the role of the S1P-AMPK signalling axis in this context, we established an in vitro model allowing real-time monitoring of endothelial barrier function in human microvascular endothelial cells (HMEC-1) and murine glomerular endothelial cells (GENCs) with the electric cell-substrate impedance sensing (ECIS™) system. Following the disruption of the cell barrier by co-administration of LPS, TNF-α, IL-1ß, IFN-γ, and IL–6, we demonstrated self-recovery of the disrupted barrier in HMEC-1, while the barrier remained compromised in GENCs. Under physiological conditions we observed a rapid phosphorylation of AMPK in HMEC-1 stimulated with S1P, but not in GENCs. Consistently, S1P enhanced the basal endothelial barrier in HMEC-1 exclusively. siRNA-mediated knockdown of AMPK in HMEC-1 led to a less pronounced barrier enhancement. Thus we present evidence for a functional role of AMPK in S1P-mediated barrier stabilization in HMEC-1 and we provide insight into cell-type specific differences of the S1P-AMPK-interrelationship, which might influence the development of interventional strategies targeting endothelial barrier dysfunction.  相似文献   

14.
The vascular endothelium provides a semi-permeable barrier, which restricts the passage of fluid, macromolecules and cells to the surrounding tissues. Cyclic AMP promotes endothelial barrier function and protects the endothelium against pro-inflammatory mediators. This study analyzed the relative contribution of two cAMP targets, PKA and Epac1, to the control of endothelial barrier function and endothelial cell migration. Real-time recording of transendothelial electrical resistance showed that activation of either PKA or Epac1 with specific cAMP analogues increases endothelial barrier function and promotes endothelial cell migration. In addition, reduction of Epac1 expression showed that Epac1 and PKA control endothelial integrity and cell motility by two independent and complementary signaling pathways. We demonstrate that integrin-mediated adhesion is required for PKA, but not Epac1-Rap1-driven stimulation of endothelial barrier function. In contrast, both PKA- and Epac1-stimulated endothelial cell migration requires integrin function. These data show that activation of Epac1 and PKA by cAMP results in the stimulation of two parallel, independent signaling pathways that positively regulate endothelial integrity and cell migration, which is important for recovery after endothelial damage and for restoration of compromised endothelial barrier function.  相似文献   

15.
Sphingosine 1-phosphate (S1P) is a membrane-derived lysophospholipid that acts primarily as an ex­tracellular signaling molecule. Signals initiated by S1P are transduced by five G protein-coupled receptors, named S1P1–5. Cellular and temporal expression of the S1P receptors (S1PRs) determine their specific roles in various organ systems, but they are particularly critical for regulation of the cardiovascular, immune, and nervous systems, with the most well-known contributions of S1PR signaling being modulation of vascular barrier function, vascular tone, and regulation of lymphocyte trafficking. However, our knowledge of S1PR biology is rapidly increasing as they become attractive therapeutic targets in several diseases, such as chronic inflammatory pathologies, autoimmunity, and cancer. Understanding how the S1PRs regulate interactions between biological systems will allow for greater efficacy in this novel therapeutic strategy as well as characterization of complex physiological networks. Because of the rapidly expanding body of research, this review will focus on the most recent advances in S1PRs.  相似文献   

16.

Background

Reactive oxygen species (ROS) are largely considered to be pathogenic to normal endothelial function in disease states such as sepsis. We hypothesized that Angiopoietin-1 (Angpt-1), an endogenous agonist of the endothelial-specific receptor, Tie-2, promotes barrier defense by activating NADPH oxidase (NOX) signaling.

Methods and Findings

Using primary human microvascular endothelial cells (HMVECs), we found that Angpt-1 stimulation induces phosphorylation of p47phox and a brief oxidative burst that is lost when chemical inhibitors of NOX activity or siRNA against the NOX component p47phox were applied. As a result, there was attenuated ROS activity, disrupted junctional contacts, enhanced actin stress fiber accumulation, and induced gap formation between confluent HMVECs. All of these changes were associated with weakened barrier function. The ability of Angpt-1 to prevent identical changes induced by inflammatory permeability mediators, thrombin and lipopolysaccharides (LPS), was abrogated by p47phox knockdown. P47phox was required for Angpt-1 to activate Rac1 and inhibit mediator-induced activation of the small GTPase RhoA. Finally, Angpt-1 gene transfer prevented vascular leakage in wildtype mice exposed to systemically administered LPS, but not in p47phox knock out (p47−/−) littermates.

Conclusions

These results suggest an essential role for NOX signaling in Angpt-1-mediated endothelial barrier defense against mediators of systemic inflammation. More broadly, oxidants generated for signal transduction may have a barrier-promoting role in vascular endothelium.  相似文献   

17.
Preeclampsia is a high-prevalence systemic pregnancy disorder associated with maternal and foetal mortality. Its pathogenesis is unknown, but it is thought that oxidative stress and endothelial dysfunction may play a fundamental role. Von Willebrand factor (vWF), a marker of endothelial cell injury, can be found in different cells and zones of the placenta. To determine the differential immunoexpression of vWF at different tissue types of preeclamptic placenta and endothelial dysfunction markers at maternal serum of preeclamptic pregnancies. A case–control study was performed on a population of pregnant women with preeclampsia (n = 14), and normal pregnancies (n = 8). Placental and blood plasma samples were withdrawn at delivery. Immunohistochemical vWF expression in the placental tissue was determined. Endothelial dysfunction was assessed through plasminogen activator inhibitor (PAI) 1 and 2 ratio and vWF concentration in maternal plasma. P values less than 0.05 were considered statistically significant. Preeclamptic women showed increased plasma PAI-1/PAI-2 ratio (P < 0.05). There was diminished placental vWF expression in syncytiotrophoblast and increased in the intervillous space of preeclamptic placentas (P < 0.05). No significant differences in vWF expression were found in the villous endothelium and stroma, but it was significantly higher in maternal plasma (P < 0.05). In preeclampsia occurs endothelial damage and placental cell injury. Cell damage in syncytiotrophoblast that occurs in preeclampsia could liberate vWF from syncytiotrophoblast to the placental intervillous space, and this may have pathogenic implications.  相似文献   

18.
19.
20.
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that mediates cellular functions by ligation via G protein-coupled S1P receptors. In addition to its extracellular action, S1P also has intracellular effects; however, the signaling pathways modulated by intracellular S1P remain poorly defined. We have previously demonstrated a novel pathway of intracellular S1P generation in human lung endothelial cells (ECs). In the present study, we examined the role of intracellular S1P generated by photolysis of caged S1P on EC barrier regulation and signal transduction. Intracellular S1P released from caged S1P caused mobilization of intracellular calcium, induced activation of MAPKs, redistributed cortactin, vascular endothelial cadherin, and β-catenin to cell periphery, and tightened endothelial barrier in human pulmonary artery ECs. Treatment of cells with pertussis toxin (PTx) had no effect on caged S1P-mediated effects on Ca(2+) mobilization, reorganization of cytoskeleton, cell adherens junction proteins, and barrier enhancement; however, extracellular S1P effects were significantly attenuated by PTx. Additionally, intracellular S1P also activated small GTPase Rac1 and its effector Ras GTPase-activating-like protein IQGAP1, suggesting involvement of these proteins in the S1P-mediated changes in cell-to-cell adhesion contacts. Downregulation of sphingosine kinase 1 (SphK1), but not SphK2, with siRNA or inhibition of SphK activity with an inhibitor 2-(p-hydroxyanilino)-4-(p-chlorophenyl) thiazole (CII) attenuated exogenously administrated S1P-induced EC permeability. Furthermore, S1P1 receptor inhibitor SB649164 abolished exogenous S1P-induced transendothelial resistance changes but had no effect on intracellular S1P generated by photolysis of caged S1P. These results provide evidence that intracellular S1P modulates signal transduction in lung ECs via signaling pathway(s) independent of S1P receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号