首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Approximately 80% of the body vitamin A is stored in liver stellate cells with in the lipid droplets as retinyl esters. In low vitamin A status or after liver injury, stellate cells are depleted of the stored retinyl esters by their hydrolysis to retinol. However, the identity of retinyl ester hydrolase(s) expressed in stellate cells is unknown. The expression of carboxylesterase and lipase genes in purified liver cell-types was investigated by real-time PCR. We found that six carboxylesterase and hepatic lipase genes were expressed in hepatocytes. Adipose triglyceride lipase was expressed in Kupffer cells, stellate cells and endothelial cells. Lipoprotein lipase expression was detected in Kupffer cells and stellate cells. As a function of stellate cell activation, expression of adipose triglyceride lipase decreased by twofold and lipoprotein lipase increased by 32-fold suggesting that it may play a role in retinol ester hydrolysis during stellate cell activation.  相似文献   

3.
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.  相似文献   

4.
Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol acyltransferase (LRAT) and acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) in retinyl ester synthesis and lipid droplet dynamics, we modified LC–MS/MS procedures by including multiple reaction monitoring allowing unambiguous identification and quantification of all major retinyl ester species. Quiescent primary HSCs contain predominantly retinyl palmitate. Exogenous fatty acids are a major determinant in the retinyl ester species synthesized by activated HSCs and LX-2 cells, indicating that HSCs shift their retinyl ester synthesizing capacity from LRAT to DGAT1 during activation. Quiescent LRAT−/− HSCs retain the capacity to synthesize retinyl esters and to store neutral lipids in lipid droplets ex vivo. The median lipid droplet size in LRAT−/− HSCs (1080 nm) is significantly smaller than in wild type HSCs (1618 nm). This is a consequence of an altered lipid droplet size distribution with 50.5 ± 9.0% small (≤ 700 nm) lipid droplets in LRAT−/− HSCs and 25.6 ± 1.4% large (1400–2100 nm) lipid droplets in wild type HSC cells. Upon prolonged (24 h) incubation, the amounts of small (≤ 700 nm) lipid droplets strongly increased both in wild type and in LRAT−/− HSCs, indicating a dynamic behavior in both cell types. The absence of retinyl esters and reduced number of lipid droplets in LRAT-deficient HSCs in vivo will be discussed.  相似文献   

5.
6.
Hepatic stellate cells (HSCs) are the major site of retinol (ROH) metabolism and storage. GRX is a permanent murine myofibroblastic cell line, derived from HSCs, which can be induced to display the fat-storing phenotype by treatment with retinoids. Little is known about hepatic or serum homeostasis of beta-carotene and retinoic acid (RA), although the direct biogenesis of RA from beta-carotene has been described in enterocytes. The aim of this study was to identify the uptake, metabolism, storage, and release of beta-carotene in HSCs. GRX cells were plated in 25 cm(2) tissue culture flasks, treated during 10 days with 3 micromol/L beta-carotene and subsequently transferred into the standard culture medium. beta-Carotene induced a full cell conversion into the fat-storing phenotype after 10 days. The total cell extracts, cell fractions, and culture medium were analyzed by reverse phase high-performance liquid chromatography for beta-carotene and retinoids. Cells accumulated 27.48 +/- 6.5 pmol/L beta-carotene/10(6) cells, but could not convert it to ROH nor produced retinyl esters (RE). beta-Carotene was directly converted to RA, which was found in total cell extracts and in the nuclear fraction (10.15 +/- 1.23 pmol/L/10(6) cells), promoting the phenotype conversion. After 24-h chase, cells contained 20.15 +/- 1.12 pmol/L beta-carotene/10(6) cells and steadily released beta-carotene into the medium (6.69 +/- 1.75 pmol/ml). We conclude that HSC are the site of the liver beta-carotene storage and release, which can be used for RA production as well as for maintenance of the homeostasis of circulating carotenoids in periods of low dietary uptake.  相似文献   

7.
8.
The four most important non-specific carboxylesterases from rat liver were assayed for their ability to hydrolyse retinyl esters. Only the esterases with pI 6.2 and 6.4 (= esterase ES-4) are able to hydrolyse retinyl palmitate. Their specific activities strongly depend on the emulsifier used (maximum rate: 440 nmol of retinol liberated/h per mg of esterase). Beside retinyl palmitate, these esterases cleave palmitoyl-CoA and monoacylglycerols with much higher rates, as well as certain drugs (e.g. aspirin and propanidid). However, no transacylation between palmitoyl-CoA and retinol occurs. Retinyl acetate also is a substrate for the above esterases and for another one with pI 5.6 (= esterase ES-3). Again the emulsifier influences the hydrolysis by these esterases (maximum rates: 475 nmol/h per mg for ES-4 and 200 nmol/h per mg for ES-3). Differential centrifugation of rat liver homogenate reveals that retinyl palmitate hydrolase activity is highly enriched in the plasma membranes, but only moderately so in the endoplasmic reticulum, where the investigated esterases are located. Since the latter activity can be largely inhibited with the selective esterase inhibitor bis-(4-nitrophenyl) phosphate, it is concluded that the esterases with pI 6.2 and 6.4 (ES-4) represent the main retinyl palmitate hydrolase of rat liver endoplasmic reticulum. In view of this cellular localization, the enzyme could possibly be involved in the mobilization of retinol from the vitamin A esters stored in the liver. However, preliminary experiments in vivo have failed to demonstrate such a biological function.  相似文献   

9.
Approximately 80–90% of all retinoids in the body are stored as retinyl esters (REs) in the liver. Adipose tissue also contributes significantly to RE storage. The present studies, employing genetic and nutritional interventions, explored factors that are responsible for regulating RE accumulation in the liver and adipose tissue and how these influence levels of retinoic acid (RA) and RA-responsive gene expression. Our data establish that acyl-CoA:retinol acyltransferase (ARAT) activity is not involved in RE synthesis in the liver, even when mice are nutritionally stressed by feeding a 25-fold excess retinol diet or upon ablation of cellular retinol-binding protein type I (CRBPI), which is proposed to limit retinol availability to ARATs. Unlike the liver, where lecithin:retinol acyltransferase (LRAT) is responsible for all RE synthesis, this is not true for adipose tissue where Lrat-deficient mice display significantly elevated RE concentrations. However, when CrbpI is also absent, RE levels resemble wild-type levels, suggesting a role for CrbpI in RE accumulation in adipose tissue. Although expression of several RA-responsive genes is elevated in Lrat-deficient liver, employing a sensitive liquid chromatography tandem mass spectrometry protocol and contrary to what has been assumed for many years, we did not detect elevated concentrations of all-trans-RA. The elevated RA-responsive gene expression was associated with elevated hepatic triglyceride levels and decreased expression of Pparδ and its downstream Pdk4 target, suggesting a role for RA in these processes in vivo.  相似文献   

10.
P D Bishop  M D Griswold 《Biochemistry》1987,26(23):7511-7518
When cultured Sertoli cells derived from 20-day-old weanling rats were supplied [3H]retinol bound to serum retinol binding protein-transthyretin complex, [3H]retinol was rapidly incorporated and [3H]retinyl esters were synthesized. Within 28 h after administration, 83% of the labeled retinoids were accounted for as retinyl esters (64% as retinyl palmitate). Sertoli cells derived from vitamin A deficient rats and supplied [3H]retinol in culture under identical conditions likewise incorporated [3H]retinol and synthesized retinyl esters. In contrast to normal Sertoli cells, vitamin A deficient Sertoli cells eventually metabolized virtually all of the cellular [3H]retinol to retinyl esters. The primary metabolic fate of retinol administered to Sertoli cell cultures was the synthesis of retinyl esters under all conditions tested. However, administration of [3H]retinol bound to serum retinol binding protein gave metabolic profiles having a higher proportion of retinyl esters and lower proportions of unresolved polar material than administration of [3H]retinol alone. The kinetics of retinol uptake and intracellular retinyl ester synthesis in cultured Sertoli cells was complex. An initial, rapid phase of [3H]retinol incorporation lasting 30 min was followed by a slower rate of incorporation and a concomitant decrease in the intracellular concentration of [3H]retinol. During the time course the specific activity of [3H]retinyl palmitate eventually exceeded that of intracellular [3H]retinol. These observations suggest that two intracellular pools of retinol may exist in Sertoli cells.  相似文献   

11.
Retinoids (vitamin A and its derivatives) play an essential role in many biological functions. However mammals are incapable of de novo synthesis of vitamin A and must acquire it from the diet. In the intestine, dietary retinoids are incorporated in chylomicrons as retinyl esters, along with other dietary lipids. The majority of dietary retinoid is cleared by and stored within the liver. To meet vitamin A requirements of tissues, the liver secretes retinol (vitamin A alcohol) into the circulation bound to its sole specific carrier protein, retinol-binding protein (RBP). The single known function of this protein is to transport retinol from the hepatic stores to target tissues. Over the last few years, the generation of knockout and transgenic mouse models has significantly contributed to our understanding of RBP function in the metabolism of vitamin A. We discuss below the role of RBP in maintaining normal vision and a steady flux of retinol throughout the body in times of need.  相似文献   

12.
Cultured fibroblasts of adult rats were used to determine whether they could take in retinol administered to the culture medium at physiological concentration. After the administration of retinol, cells were observed with a phase-contrast fluorescence light microscope (LM) and a transmission electron microscope (TEM). Retinol and retinyl fatty acyl esters (RFAE) stored in the cells were analyzed with high-performance liquid chromatography (HPLC). It was revealed that these fibroblasts could take in retinol in the medium at a concentration of 1 x 10(-7) M and store it in lipid droplets in the cytoplasm as retinyl palmitate and other RFAE.  相似文献   

13.
Hepatic stellate cells (HSCs) store 75% of the body's supply of vitamin A (retinol) and play a key role in liver fibrogenesis. During liver injury, HSCs become activated and susceptible to natural killer (NK) cell killing due to increased expression of the NK cell activating ligand retinoic acid early inducible gene 1 (RAE-1). To study the mechanism by which RAE-1 is upregulated in HSCs during activation, an in vitro model of cultured mouse HSCs was employed. RAE-1 was detected at low levels in quiescent HSCs but upregulated in 4- and 7-day cultured HSCs (early activated HSCs), whereas 21-day cultured HSCs (fully activated HSCs) lost RAE-1 expression. High levels of RAE-1 in 4- and 7-day cultured HSCs correlated with their susceptibility to NK cell killing, which was diminished by treatment with RAE-1 neutralizing antibody. Furthermore, retinoic acid (RA) and retinal dehydrogenase (Raldh) levels were upregulated in early activated HSCs compared with quiescent or fully activated HSCs. Blocking RA synthesis by the Raldh inhibitor or blocking RA signaling by the retinoic acid receptor antagonist abolished upregulation of RAE-1 whereas treatment with RA induced RAE-1 expression in HSCs. In conclusion, during activation, HSCs lose retinol, which is either secreted out or oxidized into RA; the latter stimulates RAE-1 expression and sensitizes early activated HSCs to NK cell killing. In contrast, fully activated HSCs become resistant to NK cell killing because of lack of RAE1 expression, leading to chronic liver fibrosis and disease.  相似文献   

14.
The main retinoids and some binding proteins and enzymes involved in retinol metabolism have been quantified in different types of rat liver cells. Hepatic perisinusoidal stellate cells contained 28-34 nmol of retinoids/10(6) cells, and parenchymal liver cells contained 0.5-0.8 nmol of retinoids/10(6) cells, suggesting that as much as 80% of more of total liver retinoids might be stored in stellate cells with the rest stored in parenchymal cells. Isolated endothelial cells and Kupffer cells contained very low levels of retinoids. More than 98% of the retinoids recovered in stellate cells were retinyl esters. Isolated parenchymal and stellate cell preparations both contained considerable retinyl palmitate hydrolase and acyl-CoA:retinol acyltransferase activities. Parenchymal cells accounted for about 75-80% of the total hepatic content of these two enzyme activities, with the rest located in stellate cells. On a cell protein basis, the concentrations of both of these activities were much greater in stellate cells than in parenchymal cells. In contrast, cholesteryl oleate and triolein hydrolase activities were fairly evenly distributed in all types of liver cells. Large amounts of cellular retinol binding proteins were also found in parenchymal and stellate cells. Although parenchymal cells accounted for more than 90% of hepatic cellular retinol binding protein, the concentration of the protein in stellate cells (per unit protein) was 22 X greater than that in parenchymal cells. Stellate cells were also enriched in cellular retinoic acid binding protein. Thus, both parenchymal and stellate cells contain substantial amounts of retinoids and of the enzymes and intracellular binding proteins involved in retinol metabolism. Stellate cells are particularly enriched in these several components.  相似文献   

15.
R Blomhoff  K Wake 《FASEB journal》1991,5(3):271-277
In mammals, liver perisinusoidal stellate cells play an important role as a main store of body retinol (vitamin A). This fat-soluble vitamin is essential for vision, and regulates differentiation and growth of many cell types during embryonal development as well as in adult tissues. Thus, many cell types require a continuous supply of retinol. The storage of retinol (as retinyl esters) in stellate cells ascertains ample access of retinol to such cells also during periods with a low dietary intake. In lower vertebrates such as fish, vitamin A-storing stellate cells are found not only in the hepatic lobule, but also in the connective tissues of organs like intestine, kidney, ovaries, testes, and gills. Extrahepatic vitamin A-storing stellate cells are found in higher vertebrates when excessive doses of vitamin A are administered. It is not clear at present whether these cells also play a role in retinol metabolism under normal conditions. Stellate cells proliferate in a fibrotic liver, and they have been found to synthesize connective tissue compounds such as collagen. It was recently demonstrated that stellate cells are the principal cellular source of collagen and other extracellular substances in normal as well as fibrotic livers. Therefore, stellate cells, which seem to be a specialized type of pericyte, have a central role in the pathological changes observed during the development of liver fibrosis.  相似文献   

16.
Lecithin:retinol acyltransferase (LRAT) is believed to be the predominant if not the sole enzyme in the body responsible for the physiologic esterification of retinol. We have studied Lrat-deficient (Lrat-/-) mice to gain a better understanding of how these mice take up and store dietary retinoids and to determine whether other enzymes may be responsible for retinol esterification in the body. Although the Lrat-/- mice possess only trace amounts of retinyl esters in liver, lung, and kidney, they possess elevated (by 2-3-fold) concentrations of retinyl esters in adipose tissue compared with wild type mice. These adipose retinyl ester depots are mobilized in times of dietary retinoid insufficiency. We further observed an up-regulation (3-4-fold) in the level of cytosolic retinol-binding protein type III (CRBPIII) in adipose tissue of Lrat-/- mice. Examination by electron microscopy reveals a striking total absence of large lipid-containing droplets that normally store hepatic retinoid within the hepatic stellate cells of Lrat-/- mice. Despite the absence of significant retinyl ester stores and stellate cell lipid droplets, the livers of Lrat-/- mice upon histologic analysis appear normal and show no histological signs of liver fibrosis. Lrat-/- mice absorb dietary retinol primarily as free retinol in chylomicrons; however, retinyl esters are also present within the chylomicron fraction obtained from Lrat-/- mice. The fatty acyl composition of these (chylomicron) retinyl esters suggests that they are synthesized via an acyl-CoA-dependent process suggesting the existence of a physiologically significant acyl-CoA:retinol acyltransferase.  相似文献   

17.
Retinol esterification in Sertoli cells by lecithin-retinol acyltransferase   总被引:1,自引:0,他引:1  
Esterification of retinol occurs during the metabolism of vitamin A in the testis. An acyl-CoA:retinol acyltransferase (ARAT) activity has been described for microsomes isolated from testis homogenates. That activity was also observed here in microsomal preparations obtained from cultured Sertoli cells from 20-day-old (midpubertal) rats. ARAT catalyzed the synthesis of retinyl laurate when free retinol and lauroyl-CoA were provided as substrates. However, in the absence of exogenous acyl-CoA, retinol was esterified by a different activity in a manner similar to the lecithin:retinol acyltransferase (LRAT) activity described recently for liver and intestine. Microsomal preparations obtained from enriched Sertoli cell fractions from the adult rat testis had 75-fold higher levels of LRAT than the preparations from midpubertal animals, but ARAT activity was the same in both these preparations. LRAT utilized an endogenous acyl donor and either unbound retinol or retinol complexed with cellular retinol-binding protein (CRBP) to catalyze the synthesis of retinyl linoleate, retinyl oleate, retinyl palmitate, and retinyl stearate. The addition of exogenous dilaurylphosphatidylcholine (DLPC) resulted in the synthesis of retinyl laurate. The esterification from both exogenous DLPC and endogenous acyl donor was inhibited by 2 mM phenylmethanesulfonyl fluoride (PMSF). ARAT activity was not affected by similar concentrations of PMSF. Furthermore, retinol bound to CRBP, a protein known to be present in Sertoli cells, was not an effective substrate for testicular ARAT. When retinol uptake and metabolism were examined in cultured Sertoli cells from 20-day-old rats, the cells synthesized the same retinyl esters that were produced by microsomal LRAT in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Vitamin A metabolism in the human intestinal Caco-2 cell line   总被引:2,自引:0,他引:2  
T C Quick  D E Ong 《Biochemistry》1990,29(50):11116-11123
The human intestinal Caco-2 cell line, described as enterocyte-like in a number of studies, was examined for its ability to carry out the metabolism of vitamin A normally required in the absorptive process. Caco-2 cells contained cellular retinol-binding protein II, a protein which is abundant in human villus-associated enterocytes and may play an important role in the absorption of vitamin A. Microsomal preparations from Caco-2 cells contained retinal reductase, acyl-CoA-retinol acyltransferase (ARAT), and lecithin-retinol acyltransferase (LRAT) activities, which have previously been proposed to be involved in the metabolism of dietary vitamin A in the enterocyte. When intact Caco-2 cells were provided with beta-carotene, retinyl acetate, or retinol, synthesis of retinyl palmitoleate, oleate, palmitate, and small amounts of stearate resulted. However, exogenous retinyl palmitate or stearate was not used by Caco-2 cells as a source of retinol for ester synthesis. While there was a disproportionate synthesis of monoenoic fatty acid esters of retinol in Caco-2 cells compared to the retinyl esters typically found in human chylomicrons or the esters normally synthesized in rat intestine, the pattern was consistent with the substantial amount of unsaturated fatty acids, particularly 18:1 and 16:1, found in the sn-1 position of Caco-2 microsomal phosphatidylcholine, the fatty acyl donor for LRAT. Both ARAT and LRAT have been proposed to be responsible for retinyl ester synthesis in the enterocyte.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We have studied the hepatic uptake of retinol bound to the circulating retinol binding protein-transthyretin complex. Labeled complex was obtained from the plasma of donor rats that were fed radioactive retinol. When labeled retinol-retinol binding protein-transthyretin complex was injected intravenously into control rats, about 45% of the administered dose was recovered in liver after 56 h. Parenchymal liver cells were responsible for an initial rapid uptake. Perisinusoidal stellate cells initially accumulated radioactivity more slowly than did the parenchymal cells, but after 16 h, these cells contained more radioactivity than the parenchymal cells. After 56 h, about 70% of the radioactivity recovered in liver was present in stellate cells. For the first 2 h after injection, most of the radioactivity in parenchymal cells was recovered as unesterified retinol. The radioactivity in the retinyl ester fraction increased after a lag period of about 2 h, and after 5 h more than 60% of the radioactivity was recovered as retinyl esters. In stellate cells, radioactivity was mostly present as retinyl esters at all time points examined. Uptake of retinol in both parenchymal cells and stellate cells was reduced considerably in vitamin A-deficient rats. Less than 5% of the injected dose of radioactivity was found in liver after 5-6 h (as compared to 25% in control rats), and the radioactivity recovered in liver from these animals was mostly in the unesterified retinol fraction. Studies with separated cells in vitro suggested that both parenchymal and stellate cells isolated from control rats were able to take up retinol from the retinol-retinol binding protein-transthyretin complex. This uptake was temperature dependent.  相似文献   

20.
Vitamin A and its analogs (retinoids) have acquired particular significance in embryonic development since the discovery that retinoic acid (RA) possesses properties of an endogenous morphogen and that embryonic tissues contain specific nuclear receptors for RA. Since the mammalian embryo does not synthesize RA de novo but rather must acquire it directly or in a precursor form from the maternal circulation, we sought to establish the relationship between levels of RA, retinol, and retinyl esters in the maternal system and their acquisition by the embryo, particularly during organogenesis in the mouse. Results indicate profound changes in maternal vitamin A levels during pregnancy in the mouse. These changes were characterized by a large, transient decrease in plasma retinol levels coincident with the period of organogenesis (e.g. gestational Days 9-14), and an apparent increase in mobilization from hepatic stores to the conceptus. During organogenesis, the embryo exhibited a steady increase in retinol levels with little increase in retinyl esters and virtually no change in RA. Analysis of retinoid accumulation patterns in the embryonic liver indicate that functional onset of vitamin A storage occurs by mid-organogenesis. In contrast, placental levels of these retinoids remained unchanged throughout organogenesis. Analysis of the conceptus as a developmental unit revealed that during early organogenesis the majority of retinoids are contained in the placenta (8-fold more than in the embryo). However, by mid-organogenesis the retinoid content of the embryo exceeds that of the placenta. Together, these results provide evidence that pregnancy in the mouse is accompanied by pronounced alterations in maternal retinoid homeostasis that occur coincident with the period of high embryonic sensitivity to exogenous retinoids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号