首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xu Y  Liu XD  Gong X  Eissa NT 《Autophagy》2008,4(1):110-112
Autophagy has recently been shown to be an important component of the innate immune response. The signaling pathways leading to activation of autophagy in innate immunity are not well studied. Our recent study shows that Toll-like receptor 4 (TLR 4) serves as an environmental sensor for autophagy. We define a new molecular pathway in which lipopolysaccharide (LPS) induces autophagy in human and murine macrophages by a pathway regulated through Toll-interleukin 1 receptor domain-containing adaptor-inducing interferon-beta (TRIF)-dependent, myeloid differentiation factor 88 (MyD88)-independent TLR4 signaling. Receptor-interacting protein (RIP1) and p38 mitogen-activated protein-kinase (MAPK) are downstream components of this pathway. This signaling pathway does not affect cell viability, indicating that it is distinct from an autophagic death signaling pathway. We further show that LPS-induced autophagy can enhance mycobacterial co-localization with the autophagosomes. The above study raises important questions. (1) What is the complete signaling pathway for LPS-induced autophagy? (2) Does TLR3 mediate autophagy? (3) What are the mechanisms that determine whether autophagy acts as a pro-death or pro-survival pathway? (4) What are the physiological functions of LPS-induced autophagosomes? Future studies examining the above questions should provide us with important clues as to how autophagy is regulated in innate immunity, and how autophagy can be utilized in pathogen clearance.  相似文献   

2.
Toll-like receptor (TLR) signaling is an important part of the innate immune response. One of the downstream responses to TLR4 signaling upon lipopolysaccharide (LPS) stimulation is the induction of autophagy, which is a key response to multiple stressors. An additional adaptive signaling molecule that is involved in the response to stress is heme oxygenase-1 (HO-1). HO-1 signaling is essential to limit inflammation and restore homeostasis. We found that LPS induced autophagic signaling in macrophages via a TLR4, HO-1 dependent pathway in macrophages. These data add to the developing contribution of autophagic signaling as part of the inflammatory response.  相似文献   

3.
Autophagy is the host innate immune system's first line of defense against microbial intruders. When the innate defense system recognizes invading bacterial pathogens and their infection processes, autophagic proteins act as cytosolic sensors that allow the autophagic pathway to be rapidly activated. However, many intracellular bacterial pathogens deploy highly evolved mechanisms to evade autophagic recognition, manipulate the autophagic pathway, and remodel the autophagosomal compartment for their own benefit. Here current topics regarding the recognition of invasive bacteria by the cytosolic innate immune system are highlighted, including autophagy and the mechanisms that enable bacteria to evade autophagy. Also highlighted are some selective examples of bacterial activities that manipulate the autophagic pathways for their own benefit.  相似文献   

4.
Toll-like receptors (TLRs) serve as the major innate immune sensors for detection of specific molecular patterns on various pathogens. TLRs activate signaling events mainly by utilizing ubiquitin-dependent mechanisms. Recent research advances have provided evidence that TLR signaling is linked to induction of autophagy. Autophagy is currently known to affect both of the immune defense and suppression of inflammatory responses. In TLR-associated immune responses, autophagic lysis of intracellular microbes (called xenophagy) contributes to the former mechanism, while the latter seems to be mediated by the control of the mitochondrial integrity or selective autophagic clearance of aggregated signaling proteins (called aggrephagy). Several autophagy-related ubiquitin-binding proteins, such as SQSTM1/p62 and NDP52, mediate xenophagy and aggrephagy. In this review, we summarize the expanded knowledge regarding TLR signaling and autophagy signaling. After that, we will focus on autophagy-associated signaling downstream of TLRs and the effect of autophagy on TLR signaling, thus highlighting the signaling crosstalk between the TLR-associated innate immune responses and the regulation of innate immunity by xenophagy and aggrephagy.  相似文献   

5.
The present paradigms of selective autophagy in mammalian cells cannot fully explain the specificity and selectivity of autophagic degradation. In this paper, we report that a subset of tripartite motif (TRIM) proteins act as specialized receptors for highly specific autophagy (precision autophagy) of key components of the inflammasome and type I interferon response systems. TRIM20 targets the inflammasome components, including NLRP3, NLRP1, and pro–caspase 1, for autophagic degradation, whereas TRIM21 targets IRF3. TRIM20 and TRIM21 directly bind their respective cargo and recruit autophagic machinery to execute degradation. The autophagic function of TRIM20 is affected by mutations associated with familial Mediterranean fever. These findings broaden the concept of TRIMs acting as autophagic receptor regulators executing precision autophagy of specific cytoplasmic targets. In the case of TRIM20 and TRIM21, precision autophagy controls the hub signaling machineries and key factors, inflammasome and type I interferon, directing cardinal innate immunity response systems in humans.  相似文献   

6.
Toll‐like receptors (TLRs) are essential immunoreceptors involved in host defence against invading microbes. Recent studies indicate that certain TLRs activate immunological autophagy to eliminate microbes. It remains unknown whether TLRs regulate autophagy to play a role in the heart. This study examined this question. The activation of TLR3 in cultured cardiomyocytes was observed to increase protein levels of autophagic components, including LC3‐II, a specific marker for autophagy induction, and p62/SQSTM1, an autophagy receptor normally degraded in the final step of autophagy. The results of transfection with a tandem mRFP‐GFP‐LC3 adenovirus and use of an autophagic flux inhibitor chloroquine both suggested that TLR3 in cardiomyocytes promotes autophagy induction without affecting autophagic flux. Gene‐knockdown experiments showed that the TRIF‐dependent pathway mediated the autophagic effect of TLR3. In the mouse model of chronic myocardial infarction, persistent autophagy was observed, concomitant with up‐regulated TLR3 expression and increased TLR3‐Trif signalling. Germline knockout (KO) of TLR3 inhibited autophagy, reduced infarct size, attenuated heart failure and improved survival. These protective effects were abolished by in vivo administration of an autophagy inducer rapamycin. Similar to the results obtained in cultured cardiomyocytes, TLR3‐KO did not prevent autophagic flux in mouse heart. Additionally, this study failed to detect the involvement of inflammation in TLR3‐KO‐derived protection, as wild‐type and TLR3‐KO hearts were comparable in inflammatory activity. It is concluded that up‐regulated TLR3 expression and signalling contributes to persistent autophagy following MI, which promotes heart failure and lethality.  相似文献   

7.
《Autophagy》2013,9(11):1394-1396
Hepatitis C virus (HCV) infects approximately 130 million people worldwide. The clinical sequelae of this chronic disease include cirrhosis, functional failure and carcinoma of the liver. HCV induces autophagy, a fundamental cellular process for maintaining homeostasis and mediating innate immune response, and also inhibits autophagic protein degradation and suppresses antiviral immunity. In addition to this ploy, the HCV serine protease composed of the viral non-structural proteins 3/4A (NS3/4A) can enzymatically digest two cellular proteins, mitochondria-associated anti-viral signaling protein (MAVS) and Toll/interleukin-1 receptor domain containing adaptor inducing IFN-β (TRIF). Since these two proteins are the adaptor molecules in the retinoic acid-inducible gene I (RIG-I) and TLR3 pathways, respectively, their cleavage has been suggested as a pivotal mechanism by which HCV blunts the IFN-α/β signaling and antiviral responses. Thus far, how HCV perturbs autophagy and copes with IFN-α/β in the liver remains unclear.  相似文献   

8.
Sun J  Desai MM  Soong L  Ou JH 《Autophagy》2011,7(11):1394-1396
Hepatitis C virus (HCV) infects approximately 130 million people worldwide. The clinical sequelae of this chronic disease include cirrhosis, functional failure and carcinoma of the liver. HCV induces autophagy, a fundamental cellular process for maintaining homeostasis and mediating innate immune response, and also inhibits autophagic protein degradation and suppresses antiviral immunity. In addition to this ploy, the HCV serine protease composed of the viral non-structural proteins 3/4A (NS3/4A) can enzymatically digest two cellular proteins, mitochondria-associated anti-viral signaling protein (MAVS) and Toll/interleukin-1 receptor domain containing adaptor inducing IFN-β (TRIF). Since these two proteins are the adaptor molecules in the retinoic acid-inducible gene I (RIG-I) and TLR3 pathways, respectively, their cleavage has been suggested as a pivotal mechanism by which HCV blunts the IFN-α/β signaling and antiviral responses. Thus far, how HCV perturbs autophagy and copes with IFN-α/β in the liver remains unclear.  相似文献   

9.
Macroautophagy/autophagy is a central mechanism by which cells maintain integrity and homeostasis, and endotoxin-induced autophagy plays important roles in innate immunity. Although TLR4 stimulation mediated by lipopolysaccharide (LPS) also upregulates autophagy in hepatocytes and liver, its physiological role remains elusive. The objective of this study was to determine the role of LPS-induced autophagy in the regulation of liver lipid metabolism. LPS treatment (5 mg/kg) increased autophagy, as detected by LC3 conversion and transmission electron microscopy (TEM) analysis in C57BL6 mouse livers. AC2F hepatocytes also showed increased autophagic flux after LPS treatment (1 μg/ml). To investigate the role of LPS-induced autophagy further, liver lipid metabolism changes in LPS-treated mice and fasted controls were compared. Interestingly, LPS-treated mice showed less lipid accumulation in liver than fasted mice despite increased fatty acid uptake and lipid synthesis-associated genes. In vitro analysis using AC2F hepatocytes demonstrated LPS-induced autophagy influenced the degradation of lipid droplets. Inhibition of LPS-induced autophagy using bafilomycin A1 or Atg7 knockdown significantly increased lipid accumulation in AC2F hepatocytes. In addition, pretreatment with chloroquine aggravated LPS-induced lipid accumulation and inflammation in C57BL6 mouse livers. The physiological importance of autophagy was verified in LPS-treated young and aged rats. Autophagic response was diminished in LPS-treated aged rats and lipid metabolism was impaired during sepsis, indicating autophagy response is important for regulating lipid metabolism after endotoxin challenge. Our findings demonstrate endotoxin-induced autophagy is important for the regulation of lipid metabolism, and suggest that autophagy helps maintain lipid metabolism homeostasis during sepsis.  相似文献   

10.
Congenital myotonic dystrophy type 1 (CDM1) affects patients from birth and is associated with mental retardation and impaired muscle development. CDM1 patients carry 1000–3000 CTG repeats in the DMPK gene and display defective skeletal muscles differentiation, resulting in reduced size of myotubes and decreased number of satellite cells. In this study, human myoblasts in culture deriving from control and DM1 embryos (3200 CTG repeats) were analyzed using both a biochemical and electron microscopic approach, in order to provide new insights into the molecular mechanisms underlying such alteration. Interestingly, electron microscopy analysis showed not only ultrastructural features of abnormal differentiation but also revealed the presence of autophagic vacuoles in DM1 myoblasts not undergoing differentiation. In accordance with the electron microscopic findings, the autophagic markers LC3 and ATG5, but not apoptotic markers, were significantly up regulated in DM1 myoblasts after differentiating medium addition. The induction of autophagic processes in DM1 myoblasts was concomitant to p53 over-expression and inhibition of the mTOR–S6K1 pathway, causatively involved in autophagy. Moreover biochemical alterations of the two main signal transduction pathways involved in differentiation were observed in DM1 myoblasts, in particular decreased activation of p38MAPK and persistent activation of the MEK–ERK pathway. This work, while demonstrating that major signaling pathways regulating myoblasts differentiation are profoundly deranged in DM1 myoblasts, for the first time provides evidence of autophagy induction, possibly mediated by p53 activation in response to metabolic stress which might contribute to the dystrophic alterations observed in the muscles of congenital DM1 patients.  相似文献   

11.
《Autophagy》2013,9(5):552-554
Autophagy plays an evolutionarily conserved role in host defense against pathogens. Autophagic protection

mechanisms against microbes range from regulating immune signaling responses to directly targeting the

pathogens for lysosomal degradation. Toll-like receptors (TLRs) that detect conserved molecular features shared by pathogens regulate several innate immune responses including autophagy. Our recent study demonstrates that autophagy reported in response to TLR4-stimulation in macrophages is selective

autophagy of aggresome-like induced structures (ALIS), and p62 (also known as SQSTM1) plays an essential role in this process. Treatment of macrophages with either Escherichia coli or lipopolysaccharide (LPS) results in the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), leading to an increase in the levels of p62 mRNA and protein, assembly of ALIS and their autophagic degradation. This study revealed a signaling

role for p62, distinct from its known function as a bacterial-targeting factor, which might be critical for cellular stress response during infection.  相似文献   

12.
Autophagy plays an evolutionarily conserved role in host defense against pathogens. Autophagic protection mechanisms against microbes range from regulating immune signaling responses to directly targeting the pathogens for lysosomal degradation. Toll-like receptors (TLRs) that detect conserved molecular features shared by pathogens regulate several innate immune responses including autophagy. Our recent study demonstrates that autophagy reported in response to TLR4-stimulation in macrophages is selective autophagy of aggresome-like induced structures (ALIS), and p62 (also known as SQSTM1) plays an essential role in this process. Treatment of macrophages with either Escherichia coli or lipopolysaccharide (LPS) results in the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), leading to an increase in the levels of p62 mRNA and protein, assembly of ALIS and their autophagic degradation. This study revealed a signaling role for p62, distinct from its known function as a bacterial-targeting factor, which might be critical for cellular stress response during infection.  相似文献   

13.
MyD88 is known as an essential adaptor protein for Toll-like receptors (TLRs). Previous studies have shown that transfected MyD88 forms condensed structures in the cytoplasm. However, upon TLR stimulation, there is little formation of endogenous MyD88 condensed structures. Thus, the formation of MyD88 condensed structures is tightly suppressed, but the mechanism and significance of this suppression are currently unknown. Here we show that Atg5, a key regulatory protein of autophagy, inhibits the formation of MyD88 condensed structures. We found that endogenous MyD88 had already formed condensed structures in Atg5-deficient cells and that the formation of condensed structures was further enhanced by TLR stimulation. This suppressive effect of Atg5 may not be associated with autophagic processes because MyD88 itself was not degraded and because TLR stimulation did not induce LC3 punctate formation and LC3 conversion. Immunoprecipitation analysis revealed that Atg5 could interact with MyD88. Furthermore, Atg5 deficiency increased formation of the MyD88–TRAF6 signaling complex induced by TLR stimulation, and it enhanced activation of NF-κB signaling but not MAPKs and Akt. These findings indicate that Atg5 regulates the formation of MyD88 condensed structures through association with MyD88 and eventually exerts a modulatory effect on MyD88-dependent signaling.  相似文献   

14.

Background

HIV-1 can infect and replicate in both CD4 T cells and macrophages. In these cell types, HIV-1 entry is mediated by the binding of envelope glycoproteins (gp120 and gp41, Env) to the receptor CD4 and a coreceptor, principally CCR5 or CXCR4, depending on the viral strain (R5 or X4, respectively). Uninfected CD4 T cells undergo X4 Env-mediated autophagy, leading to their apoptosis, a mechanism now recognized as central to immunodeficiency.

Methodology/Principal Findings

We demonstrate here that autophagy and cell death are also induced in the uninfected CD4 T cells by HIV-1 R5 Env, while autophagy is inhibited in productively X4 or R5-infected CD4 T cells. In contrast, uninfected macrophages, a preserved cell population during HIV-1 infection, do not undergo X4 or R5 Env-mediated autophagy. Autophagosomes, however, are present in macrophages exposed to infectious HIV-1 particles, independently of coreceptor use. Interestingly, we observed two populations of autophagic cells: one highly autophagic and the other weakly autophagic. Surprisingly, viruses could be detected in the weakly autophagic cells but not in the highly autophagic cells. In addition, we show that the triggering of autophagy in macrophages is necessary for viral replication but addition of Bafilomycin A1, which blocks the final stages of autophagy, strongly increases productive infection.

Conclusions/Significance

Taken together, our data suggest that autophagy plays a complex, but essential, role in HIV pathology by regulating both viral replication and the fate of the target cells.  相似文献   

15.
Autophagy is a lysosomal degradation pathway that degrades damaged or superfluous cell components into basic biomolecules, which are then recycled back into the cytosol. In this respect, autophagy drives a flow of biomolecules in a continuous degradation-regeneration cycle. Autophagy is generally considered a pro-survival mechanism protecting cells under stress or poor nutrient conditions. Current research clearly shows that autophagy fulfills numerous functions in vital biological processes. It is implicated in development, differentiation, innate and adaptive immunity, ageing and cell death. In addition, accumulating evidence demonstrates interesting links between autophagy and several human diseases and tumor development. Therefore, autophagy seems to be an important player in the life and death of cells and organisms. Despite the mounting knowledge about autophagy, the mechanisms through which the autophagic machinery regulates these diverse processes are not entirely understood. In this review, we give a comprehensive overview of the autophagic signaling pathway, its role in general cellular processes and its connection to cell death. In addition, we present a brief overview of the possible contribution of defective autophagic signaling to disease.  相似文献   

16.
Interleukin-6     
《Autophagy》2013,9(4):650-663
Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.  相似文献   

17.
Autophagy reallocates nutrients and clears normal cells of damaged proteins and organelles. In the context of metastatic disease, invading cancer cells hijack autophagic processes to survive and adapt in the host microenvironment. We sought to understand how autophagy is regulated in the metastatic niche for prostate cancer (PCa) cells where bone marrow stromal cell (BMSC) paracrine signaling induces PCa neuroendocrine differentiation (NED). In PCa, this transdifferentiation of metastatic PCa cells to neuronal-like cells correlates with advanced disease. Because autophagy provides a survival advantage for cancer cells and promotes cell differentiation, we hypothesized that autophagy mediates PCa NED in the bone. Thus, we determined the ability of paracrine factors in conditioned media (CM) from two separate BMSC subtypes, HS5 and HS27a, to induce autophagy in C4-2 and C4-2B bone metastatic PCa cells by characterizing the autophagy marker, LC3. Unlike HS27a CM, HS5 CM induced LC3 accumulation in PCa cells, suggesting autophagy was induced and indicating that HS5 and HS27a secrete a different milieu of paracrine factors that influence PCa autophagy. We identified interleukin-6 (IL-6), a cytokine more highly expressed in HS5 cells than in HS27a cells, as a paracrine factor that regulates PCa autophagy. Pharmacological inhibition of STAT3 activity did not attenuate LC3 accumulation, implying that IL-6 regulates NED and autophagy through different pathways. Finally, chloroquine inhibition of autophagic flux blocked PCa NED; hence autophagic flux maintains NED. Our studies imply that autophagy is cytoprotective for PCa cells in the bone, thus targeting autophagy is a potential therapeutic strategy.  相似文献   

18.
Toll-like receptors control autophagy   总被引:1,自引:0,他引:1  
Autophagy is a newly recognized innate defense mechanism, acting as a cell-autonomous system for elimination of intracellular pathogens. The signals and signalling pathways inducing autophagy in response to pathogen invasion are presently not known. Here we show that autophagy is controlled by recognizing conserved pathogen-associated molecular patterns (PAMPs). We screened a PAMP library for effects on autophagy in RAW 264.7 macrophages and found that several prototype Toll-like receptor (TLR) ligands induced autophagy. Single-stranded RNA and TLR7 generated the most potent effects. Induction of autophagy via TLR7 depended on MyD88 expression. Stimulation of autophagy with TLR7 ligands was functional in eliminating intracellular microbes, even when the target pathogen was normally not associated with TLR7 signalling. These findings link two innate immunity defense systems, TLR signalling and autophagy, provide a potential molecular mechanism for induction of autophagy in response to pathogen invasion, and show that the newly recognized ability of TLR ligands to stimulate autophagy can be used to treat intracellular pathogens.  相似文献   

19.
《Cellular signalling》2014,26(4):806-814
Toll-like receptor 2 (TLR2) is involved in phagocytosis and autophagy to enhance host innate immune response to bacterial infection. TLR2 has been reported to participate in the recognition of Staphylococcus aureus (S. aureus). However, the role of TLR2 in phagocytosis and autophagy in S. aureus-stimulated macrophages and the underlying mechanisms as yet remain unclear. In the present study, stimulation of mouse macrophage cell line RAW264.7 with S. aureus activated multiple signaling pathways including mitogen-activated protein kinases (MAPKs), myeloid differentiation factor 88 (MyD88), phosphatidylinositide 3-kinase (PI3K) and Rac1 and triggered autophagy process. Knockdown of TLR2 by siRNA significantly reduced phagocytosis and autophagy of macrophages upon S. aureus infection. Interestingly, TLR2 siRNA markedly attenuated S. aureus-induced phosphorylation of c-Jun N-terminal kinase (JNK) but not p38 or extracellular regulated protein kinase (ERK) in macrophages. Similarly, SP600125, a JNK inhibitor, also down-regulated phagocytosis and autophagy in S. aureus-stimulated macrophages. Furthermore, TLR2 siRNA and SP600125 simultaneous treatment showed similar phagocytosis and autophagy compared to that in TLR2 siRNA treatment alone. Collectively, our results indicate that TLR2 may be critical for phagocytosis and autophagy through JNK signaling pathway, and provide an underlying mechanistic link between innate immune receptor and induction of phagocytosis and autophagy in S. aureus-stimulated macrophages.  相似文献   

20.
Selective autophagy mediated by autophagic adapter proteins   总被引:4,自引:0,他引:4  
Johansen T  Lamark T 《Autophagy》2011,7(3):279-296
Mounting evidence suggests that autophagy is a more selective process than originally anticipated. The discovery and characterization of autophagic adapters, like p62 and NBR1, has provided mechanistic insight into this process. p62 and NBR1 are both selectively degraded by autophagy and able to act as cargo receptors for degradation of ubiquitinated substrates. A direct interaction between these autophagic adapters and the autophagosomal marker protein LC3, mediated by a so-called LIR (LC3-interacting region) motif, their inherent ability to polymerize or aggregate as well as their ability to specifically recognize substrates are required for efficient selective autophagy. These three required features of autophagic cargo receptors are evolutionarily conserved and also employed in the yeast cytoplasm-to-vacuole targeting (Cvt) pathway and in the degradation of P granules in C. elegans. Here, we review the mechanistic basis of selective autophagy in mammalian cells discussing the degradation of misfolded proteins, p62 bodies, aggresomes, mitochondria and invading bacteria. The emerging picture of selective autophagy affecting the regulation of cell signaling with consequences for oxidative stress responses, tumorigenesis and innate immunity is also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号