首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken in order to characterize the dose-dependent nature of acetylsalicylic acid (ASA) on platelet aggregation and plasma thromboxane B2 (TXB2) release in healthy volunteers. Volunteers received either 25, 50, 100 or 500 mg daily for five consecutive days. At the end of the five day period, all dosages of ASA were capable of completely suppressing TXB2 production and arachidonic acid-induced platelet aggregation. At that time, the second phase of ADP-induced aggregation was also blocked. However, while the inhibition following 500 mg ASA was complete after 24 hours, total inhibition with 100, 50 and 25 mg was attained only after two, three and four days, respectively, indicating the cumulative effect of ASA on platelets. Aggregation induced by collagen was also inhibited dose-dependently- yet slower and at no time complete. ASA had no inhibitory effect on aggregation by platelet-activating factor (PAF). It is concluded that a daily dose of 50 mg ASA would suffice in blocking platelet TXA2 production and aggregation induced by most physiological agents.  相似文献   

2.
The oxygenation metabolism of arachidonic acid (ArA) has been early described in blood platelets, in particular with its conversion into the potent labile thromboxane A2 that induces platelet aggregation and vascular smooth muscle cells contraction. In addition, the primary prostaglandins D2 and E2 have been mainly reported as inhibitors of platelet function. The platelet 12-lipoxygenase (12-LOX) product, i.e. the hydroperoxide 12-HpETE, appears to stimulate platelet ArA metabolism at the level of its release from membrane phospholipids through phospholipase A2 (cPLA2) and cyclooxygenase (COX-1) activities, the first enzymes in prostanoid production cascade. Also, 12-HpETE may regulate the oxygenation of other polyunsaturated fatty acids (PUFA) by platelets, especially that of eicosapentaenoic acid (EPA). On the other hand, the reduced product of 12-HpETE, 12-HETE, is able to antagonize TxA2 action. This is even more obvious for the 12-LOX end-products from docosahexaenoic acid (DHA), 11- and 14-HDoHE. In addition, 12-HpETE plays a key role in platelet oxidative stress as observed in pathophysiological conditions, but may be regulated by DHA with a bimodal way according to its concentration. Other oxygenated products of PUFA, especially omega-3 PUFA, produced outside platelets may affect platelet functions as well.  相似文献   

3.
The effect of OKY-046 (ONO, Japan), a selective TX inhibitor, was studied for its effect on uterine and platelet activity. On day 21 of pregnancy, rats were injected with either 0, 1, or 5 mg/kg OKY-046 via the tail vein. One hour following injections, in vitro activity of uteri and platelets was assessed. A decrease (P<.01) in uterine TXB2 production (measured by RIA) occurred with increasing OKY-046 dose ( 104 ± 31 vs 44 ± 6 vs 24 ± 2 ng TXB2/g tissue/45 min). OKY-046 treatment had no effect on other prostanoids. Contractile activity was not affected by OKY-046. The amount of TXB2 produced in platelets from OKY-046 (5 mg/Kg) treated rats was 45.5% less than that from controls (P<.001). Likewise, arachidonate-induced aggregation of platelets from OKY-046 treated rats was 46.1% less (P<.05) than that of controls. In summary, in vivo administration of OKY-046 selectively reduced uterine TXB2 without altering other prostanoids, or affecting uterine contractions. In contrast, both platelet TXB2 production and platelet function (aggregation) was decreased.  相似文献   

4.
Sex differences in eicosanoid production in platelets and vessel walls have been studied in control and n-6 fatty acid supplemented rats. In platelet rich plasma (PRP) of control female rats, arachidonic acid (AA) levels in phospholipids (PL), thromboxane B2 (TxB2) formation following collagen stimulation and aggregatory responses to collagen were higher than in PRP of male rats. 6 keto PGF release from PRP-perfused isolated aortas were the same for both sexes, but the antiaggregatory activity of the wall was higher in males than in females, in association with a greater sensitivity of male platelets to prostacyclin.The administration of n-6 fatty acid supplements increased AA level in PL, TxB2 production and aggregation only in male platelets. Production of 6 keto PGF and the antiaggregatory activity of aortic walls were reduced after dietary treatment in males, but biochemical and functional parameters were not correlated in females.The results indicate complex sex-related differences in fatty acid metabolism and eicosanoid production, and in responses to n-6 dietary fatty acids in platelets and the vascular system in the rat.  相似文献   

5.
The phorbol ester 12-0-tetradecanoyl-phorbol-13-acetate, a potent tumor-promoting agent, caused irreversible platelet aggregation when more than 0.02 µM was stirred with human citrated or heparinized platelet-rich plasma (PRP). With washed platelets, 1 nM was effective. The alcohol phorbol, which has little tumor-promoting activity, failed to cause platelet aggregation. With all but low concentrations of phorbol ester, aggregation was succeeded by a rapid phase. The latter was prevented or reduced by enzymes which destroy ADP and by aspirin, was associated with a change in platelet shape, and was presumably due to released ADP. At higher concentrations, only a rapid phase was seen, and these inhibitors were not effective. Low concentrations did not aggregate platelets in PRP containing sufficient EDTA or EGTA to chelate ionized calcium or in PRP from thrombasthenic patients; higher concentrations caused slight aggregation. Both the primary, non-ADP-dependent aggregation and the rapid ADP-dependent aggregation were markedly inhibited by substances which increase cyclic AMP, metabolic inhibitors, and the sulfhydryl inhibitor N-ethylmaleimide. Phorbol ester reduced platelet cyclic AMP only when it had been previously elevated by prostaglandin E1. 1 µM did not release β-glucuronidase, lactic dehydrogenase, or inflammatory material from platelets in 4–5 min despite marked aggregation, but liberated all three in 30 min. The possibility is discussed that low phorbol ester concentrations cause primary aggregation by a direct action on platelet actomyosin.  相似文献   

6.
The “in vitro” effects of α-tocopherol, butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA) were studied on aggregation of human platelets induced by collagen and arachidonic acid (AA), on the metabolic conversion of 14C AA through the cyclooxygenase and lipoxygenase pathways and on the formation of thromboxane B2 (TXB2) in washed platelets after stimulation with collagen.Vitamin E completely inhibited AA induced platelet aggregation only at high concentration (mM) and after 10 minutes of preincubation, with limited effects on AA metabolism in platelets and no effect on TXB2 formation from endogenous substrate. BHA completely inhibited platelet aggregation in the 10−6M range, gave 50% inhibition of AA metabolism in the 10−5M range and almost complete inhibition of thromboxane formation in the 10−4M range. BHT was about 100 times less active on platelet aggregation and AA metabolism. The lipoxygenase and cyclooxygenase pathways were differentially affected at low concentrations of BHA and only at concentrations greater than 5×10−5M were both pathways depressed.  相似文献   

7.
Dibutyryl-cAMP but not dibutyryl-cGMP inhibited platelet aggregation and release of 14C-serotonin and ADP when induced by collagen and arachidonate but not when induced by the endoperoxide PGG2* (TXB2) induced by addition of collagen to platelet rich plasma (PRP) was decreased by dibutyryl-cAMP and agents known to increase the concentration of cAMP (PGE1, PGD2, theophylline and acetyl choline).PGE2 in concentrations known to decrease cAMP levels increased the formation of TXB2 whereas concentrations of PGE2 known to increase cAMP levels decreased the amount of TXB2 formed. That this was due to an effect on the cyclooxygenase was indicated by inhibition of the transformation of arachidonic acid by DB-cAMP and by high concentrations of PGE2. Additional support for regulation of the cyclo-oxygenase by cAMP and its relevance to platelet aggregation was obtained by demonstrating stimulation of PGG2 induced aggregation by low concentrations of PGE2 and the absence of this effect in the presence of a cyclo-oxygenase inhibitor.  相似文献   

8.
Formation of prostaglandin D2 (PGD2) during the aggregation of platelets was determined, employing a specific bioassay. PGD2 was synthesized in human platelet rich plasma (PRP) in response to thrombin, collagen and epinephrine. Indomethacin pretreatment abolished the biosynthesis of PGD2. When thrombin treated PRP was incubated for different periods of time and denatured in the presence of SnCl2 to prevent the formation of PGD2 from endoperoxides during the extraction procedure, PGD2 formation was noted within the first minute of incubation and reached a peak level after 4 minutes. PGD2 from thrombin stimulated PRP was conclusively identified by gas chromatography-mass spectrometry.The formation of PGD2 during platelet aggregation could represent a mechanism of feedback inhibition of aggregation.  相似文献   

9.
Obesity, diabetes, hyperlipidaemia and age are conditions predisposing to atheroscleorosis and arterial occlusion. Recently it has been claimed that increased synthesis of thromboxane A2 by platelets and decreased synthesis of prostacyclin (PGI2) by blood vessels play an important role. The “Zucker” rat, a genetically obese animal with hyperlipidaemia, hyperinsulinaemia and normoglycaemia was used to study platelet aggregation, thromboxane (TXB2) production and aortic PGI2 synthesis. Two age groups (6–8 months and 14–16 months old) and their homozygote lean controls were used. In the obese rats no increased aggregation was found with ADP, arachidonic acid and collagen. On the contrary platelets from young fatty rats were less sensitive to ADP than platelets from lean young animals. An increase in platelet sensitivity to aggregating agents with age was observed, especially in the obese rats. TXB2 measured in platelet rich plasma after exposure to ADP, arachidonic acid, arachidonic acid plus ADP and collagen was similar in the fatty and lean animals.Production of PGI2 from incubated aortic rings was lowest in young lean animals. No differences existed between the other groups of rats studied. Insulin added to aortic rings had no influence on PGI2 production. It is concluded that age rather than obesity, hyperlipidaemia or hyperinsulinaemia may cause platelet hyperresponsiveness to aggregating agents. Thromboxane and plateletaggregation do not closely correlate. PGI2 production is not reduced by metabolic alterations, thought to predispose to atherosclerosis.  相似文献   

10.
The levels of the stable degradation products of prostacyclin (PGI2) and thromboxane A2 (TXA2): 6-oxo-prostaglandin F(6-oxo-PGE) and thromboxane B2 (TXB2) respectively were determined in the effluent of the rabbit epigastric skin flap after infusion of exogenous arachidonic acid. The blood to the flap passes through the microcirculation and thus the changes in eicosanoid biosynthesis in this part of the vasculature were recorded. The aim was to use inhibitors of arachidonic acid metabolism to increase the PGI2/TXA2 ratio. This may be potentially beneficial to ischaemic skin flaps by reducing platelet aggregation associated with damaged microvascular endothelium, overcoming vasospasm and increasing microvascular blood flow. Increased PGI2/TXA2 ratios (up to 5-fold) were best achieved using TXA2 synthetase inhibitors such as dazoxiben hydrochloride. These were significantly more potent than the phosphodiesterase inhibitor dipyridamole, and the lipoxygenase inhibitor Bay g6575. No increase in blood flow was achieved. The cyclooxygenase inhibitor indomethacin did slow the blood flow at high concentrations (above 10−5 M), and inhibited both PGI2 and TXA2 synthesis. Approximately 2-fold higher concentrations of dazoxiben hydrochloride and dipyridamole were required to produce the same TXA2 synthetase inhibition in the flap microvasculature compared with platelets .  相似文献   

11.
We screened myoga extracts for inhibitors of human platelet aggregation and human 5-lipoxygenase. We identified a novel labdane type of diterpene, together with three known diterpenes (miogadial and galanals A and B) from the flower buds of myoga. Spectroscopic data indicated the structure of the new compound to be 12(E)-labdene-15,16,(8β)17-trial (miogatrial). Miogatrial and miogadial were potent inhibitors of human platelet aggregation and human 5-lipoxygenase (5-LOX). The sesquiterpene, polygodial, also exhibited strong inhibitory activity against human platelet aggregation and 5-LOX. On the other hand, galanals A and B did not have inhibitory activity in either experimental system. It thus appears that a 3-formyl-3-butenal structure was essential for the potent inhibition of human platelet aggregation and human 5-LOX.  相似文献   

12.
Catechol (benzenediol) is present in plant-derived products, such as vegetables, fruits, coffee, tea, wine, areca nut and cigarette smoke. Because platelet dysfunction is a risk factor of cardiovascular diseases, including stroke, atherosclerosis and myocardial infarction, the purpose of this study was to evaluate the anti-platelet and anti-inflammatory effect of catechol and its mechanisms. The effects of catechol on cyclooxygenase (COX) activity, arachidonic acid (AA)-induced aggregation, thromboxane B2 (TXB2) production, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) production and extracellular signal-regulated kinase (ERK)/p38 phosphorylation were determined in rabbit platelets. In addition, its effect on IL-1β-induced prostaglandin E2 (PGE2) production by fibroblasts was determined. The ex vivo effect of catechol on platelet aggregation was also measured. Catechol (5-25 µM) suppressed AA-induced platelet aggregation and inhibited TXB2 production at concentrations of 0.5–5 µM; however, it showed little cytotoxicity and did not alter U46619-induced platelet aggregation. Catechol (10–50 µM) suppressed COX-1 activity by 29–44% and COX-2 activity by 29–50%. It also inhibited IL-1β-induced PGE2 production, but not COX-2 expression of fibroblasts. Moreover, catechol (1–10 µM) attenuated AA-induced ROS production in platelets and phorbol myristate acetate (PMA)-induced ROS production in human polymorphonuclear leukocytes. Exposure of platelets to catechol decreased AA-induced ERK and p38 phosphorylation. Finally, intravenous administration of catechol (2.5–5 µmole/mouse) attenuated ex vivo AA-induced platelet aggregation. These results suggest that catechol exhibited anti-platelet and anti-inflammatory effects, which were mediated by inhibition of COX, ROS and TXA2 production as well as ERK/p38 phosphorylation. The anti-platelet effect of catechol was confirmed by ex vivo analysis. Exposure to catechol may affect platelet function and thus cardiovascular health.  相似文献   

13.
Previous studies have demonstrated that 13-azaprostanoic acid (13-APA) is a potent and specific antagonist of thromboxane A2/prostaglandin H2 (TXA2/PGH2) at the platelet receptor level. In the present study we evaluated the effects of a new azaprostanoid, 2-(6-carboxyhexyl) cyclopentanone hexylhydrazone (CPH), on human platelet function. This hydrazone was found to completely inhibit arachidonic acid (AA)-induced platelet aggregation at 1 uM CPH. On the other hand, CPH was not an effective inhibitor of PGH2-induced aggregation. Furthermore, 100 uM CPH was completely ineffective in blocking platelet aggregation stimulated by adenosine diphosphate (ADP) or the stable prostaglandin endoperoxide analog U46619 (which presumably acts at the TXA2/PGH2 receptor). Measurement of platelet thromboxane B2 (TXB2) production demonstrated that the primary site-of-action of CPH is at the cyclo-oxygenase level. Thus, CPH inhibited TXB2 formation from AA in a dose-dependent manner (0.1 uM–100 uM CPH)2. In contrast, CPH blocked TXB2 production from PGH2 only at the highest CPH concentration tested, i.e., 100 uM. These results indicate that relative to 13-APA, addition of a second nitrogen at C14 and a double bond between the 12- and 13- positions results in a loss of receptor activity but produces a high affinity for the platelet cyclo-oxygenase.  相似文献   

14.
The goal of this study was to synthesize a macromolecular probe of the TXA2 receptor antagonist BM13.505 which is unable to penetrate the platelet membrane for localization and characterization of the TXA2 receptor. The active NHS-ester of BM13.505 was synthesized and purified. It was used for covalent coupling of BM13.505 to bovine serum albumin, a macromolecular carrier. Inhibitory effects of free and macromolecular bound BM13.505 on aggregatory properties of U46619-stimulated platelets were measured and compared to TXA2 generation in platelets, as determined by TXB2 radioimmuno assay. No inhibitory effects of free and macromolecular-bound BM13.505 on ADP- or thrombin-induced platelet aggregation were observed. Equimolar concentrations of free or macromolecular bound BM13.505 inhibited U46619-induced platelet aggregation and TXA2 generation with equal potency. IC50-values for platelet aggregation inhibition by free and macromolecular bound BM13.505 were 64 nM and 96 nM respectively. It appears that the TXA2 receptor ligand binding site is located close to the outer membrane surface of platelets. Interaction of macromolecular bound BM13.505 with the platelet thromboxane receptor does not depend on the availability of the free carboxyl residue in BM13.505. The method for coupling a TXA2 receptor antagonist to a macromolecule will aid in constructing probes for the localization and characterization of the TXA2 receptor.  相似文献   

15.

Objective

This study aimed to assess the association of clinical factors with P2Y12-dependent platelet inhibition as monitored by the ratio of ADP- to TRAP-induced platelet aggregation and conventional ADP-induced aggregation, respectively.

Background

Controversial findings to identify and overcome high platelet reactivity (HPR) after coronary stent-implantation and to improve clinical outcome by tailored anti-platelet therapy exist. Monitoring anti-platelet therapy ex vivo underlies several confounding parameters causing that ex vivo platelet aggregation might not reflect in vivo platelet inhibition.

Methods

In a single centre observational study, multiple electrode aggregometry was performed in whole blood of patients after recent coronary stent-implantation. Relative ADP-induced aggregation (r-ADP-agg) was defined as the ratio of ADP- to TRAP- induced aggregation reflecting the individual degree of P2Y12-mediated platelet reactivity.

Results

Platelet aggregation was assessed in 359 patients. Means (± SD) of TRAP-, ADP-induced aggregation and r-ADP-agg were 794 ± 239 AU*min, 297 ± 153 AU*min and 37 ± 14%, respectively. While ADP- and TRAP-induced platelet aggregation correlated significantly with platelet count (ADP: r = 0.302; p<0.001; TRAP: r = 0.509 p<0.001), r-ADP-agg values did not (r = -0.003; p = 0.960). These findings were unaltered in multivariate analyses adjusting for a range of factors potentially influencing platelet aggregation. The presence of an acute coronary syndrome and body weight were found to correlate with both ADP-induced platelet aggregation and r-ADP-agg.

Conclusion

The ratio of ADP- to TRAP-induced platelet aggregation quantifies P2Y12-dependent platelet inhibition independently of the platelet count in contrast to conventional ADP-induced aggregation. Furthermore, r-ADP-agg was associated with the presence of an acute coronary syndrome and body weight as well as ADP-induced aggregation. Thus, the r-ADP-agg is a more valid reflecting platelet aggregation and potentially prognosis after coronary stent-implantation in P2Y12-mediated HPR than conventional ADP-induced platelet aggregation.  相似文献   

16.
Evidence from recent epidemiological studies suggests a link between periodontal infections and increased risk of atherosclerosis and related cardiovascular and cerebrovascular events in human subjects. One of the major pathogens of periodontitis, Porphyromonas gingivalis, has the ability to aggregate human platelets in platelet-rich plasma (PRP). Mechanism of P. gingivalis-induced platelet aggregation in PRP was investigated. Proteinase inhibitors toward Arg-gingipain (Rgp) and Lys-gingipain (Kgp) did not suppress P. gingivalis-induced platelet aggregation in PRP, whereas the Rgp inhibitor markedly inhibited P. gingivalis-induced platelet aggregation using washed platelets. Mutant analysis revealed that P. gingivalis-induced platelet aggregation in PRP depended on Rgp-, Kgp- and haemagglutinin A (HagA)-encoding genes that intragenically coded for adhesins such as Hgp44. Hgp44 adhesin on the bacterial cell surface, which was processed by Rgp and Kgp proteinases, was essential for P. gingivalis-induced platelet aggregation in PRP. P. gingivalis cell-reactive IgG in plasma, and FcgammaRIIa receptor and to a lesser extent GPIbalpha receptor on platelets were found to be a prerequisite for P. gingivalis-induced platelet aggregation in PRP. These results reveal a novel mechanism of platelet aggregation by P. gingivalis.  相似文献   

17.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

18.
The aggregation of human platelets by adrenaline and adenosine di-phosphate (ADP) and its inhibition by β-blockers was studied by measuring the light transmission of plateletrich plasma (PRP) and suspensions of washed platelets exposed to these agents. Inhibition of aggregation of PRP and washed platelets was dose related in the two β-blockers tested: propranolol and pindolol. The potent β-blockers pindolol was less inhibitory than propranolol when adrenaline and ADP were used to induce platelet aggregation. The aggregation of platelets by adrenaline has two phases. With low doses of the blockers only the second phase was inhibited whereas higher doses blocked both phases. Preincubation of human platelets (PRP and washed platelets) with both blockers per se resulted in release of 14C-labelled serotonin. Propranolol released more serotonin than pindolol. There was no concomitant release of lactic dehydrogenase. It is concluded that the effects of propranolol and pindolol on platelets do not correlate with the β-blocking activity of these agents. Rather, the more lypophilic agent, propranolol, is more active both in inhibition of aggregation and in releasing platelet serotonin. It is suggested that these actions of the drugs are related to their non-specific membrane effects.  相似文献   

19.
The bacterium Helicobacter pylori causes peptic ulcers and gastric cancer in human beings by mechanisms yet not fully understood. H. pylori produces urease which neutralizes the acidic medium permitting its survival in the stomach. We have previously shown that ureases from jackbean, soybean or Bacillus pasteurii induce blood platelet aggregation independently of their enzyme activity by a pathway requiring platelet secretion, activation of calcium channels and lipoxygenase‐derived eicosanoids. We investigated whether H. pylori urease displays platelet‐activating properties and defined biochemical pathways involved in this phenomenon. For that the effects of purified recombinant H. pylori urease (HPU) added to rabbit platelets were assessed turbidimetrically. ATP secretion and production of lipoxygenase metabolites by activated platelets were measured. Fluorescein‐labelled HPU bound to platelets but not to erythrocytes. HPU induced aggregation of rabbit platelets (ED50 0.28 μM) accompanied by ATP secretion. No correlation was found between platelet activation and ureolytic activity of HPU. Platelet aggregation was blocked by esculetin (12‐lipoxygenase inhibitor) and enhanced ~3‐fold by indomethacin (cyclooxygenase inhibitor). A metabolite of 12‐lipoxygenase was produced by platelets exposed to HPU. Platelet responses to HPU did not involve platelet‐activating factor, but required activation of verapamil‐inhibitable calcium channels. Our data show that purified H. pylori urease activates blood platelets at submicromolar concentrations. This property seems to be common to ureases regardless of their source (plant or bacteria) or quaternary structure (single, di‐ or tri‐chain proteins). These properties of HPU could play an important role in pathogenesis of gastrointestinal and associated cardiovascular diseases caused by H. pylori.  相似文献   

20.
The influences of experimental hypercholesterolemia in the rabbit on platelet-vessel wall interactions have been studied by evaluating the aggregatory response of platelet rich plasma (PRP) to arachidonic acid (AA) stimulation and levels of 6-keto-PGF in PRP from normal (N) and hypercholesterolemic (HC) animals prior and after perfusion through the corresponding aortas. In addition, the responses of N PRP to aggregation after perfusion through HC aortas and those of HC PRP perfused through N aortas, and the platelet response to the inhibitors effect of exogenous prostocyclin have been evaluated. The data indicate that in HC rabbits, on one side platelets aew hyperreactive to AA and less sensitive to the inhibitory activity of prostocyclin and, on the other, the antiaggregatory activity and prostacyclin production of vessel walls is higher, suggesting compensatory mechanisms in the haemostatic balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号