首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heat shock proteins (HSPs) are molecular chaperones that play a pivotal role in correct folding, stabilization and intracellular transport of many client proteins including those involved in oncogenesis. HSP70, which is frequently overexpressed in prostate cancer (PCa), has been shown to critically contribute to tumor cell survival, and might therefore represent a potential therapeutic target. We treated both the androgen receptor (AR)-positive LNCaP and the AR-negative PC-3 cell lines with the pharmacologic HSP70 inhibitor VER155008. Although we observed antiproliferative effects and induction of apoptosis upon HSP70 inhibition, the apoptotic effect was more pronounced in AR-positive LNCaP cells. In addition, VER155008 treatment induced G1 cell cycle arrest in LNCaP cells and decreased AR expression. Further analysis of the HSP system by Western blot analysis revealed that expression of HSP27, HOP and HSP90β was significantly inhibited by VER155008 treatment, whereas the HSP40, HSP60, and HSP90α expression remained unchanged. Taken together, VER155008 might serve as a novel therapeutic option in PCa patients independent of the AR expression status.  相似文献   

2.
3.
Protein Kinase B (PKB/Akt) is a key regulator of cell proliferation, motility and survival. The activation status of PKB is regulated by phosphatidylinositol 3-kinase (PI3K) via the synthesis of phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P3, PIP3). PTEN antagonises PI3K by degrading PIP3 to phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Deregulation of PKB through loss of functional PTEN has frequently been implicated in the progression of tumours, including prostate cancer, and the PTEN-negative prostate cancer cell lines LNCaP and PC3 have been widely used as models for this mechanism of constitutive PKB activation. However, other enzymes in addition to PTEN can antagonise PI3K, including SHIP2, which degrades PIP3 to phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2). We investigated the role of PTEN and SHIP2 in the regulation of PKB phosphorylation in a panel of human prostate-derived epithelial cell lines. In the PTEN-positive prostate-derived cell lines PNT2, PNT1a and P4E6, PI3K inhibition by LY294002 caused rapid dephosphorylation of PKB at ser473 (T(1/2)<2 min), leading to its inactivation. In the PTEN-null line LNCaP, LY294002-induced PKB dephosphorylation was much slower (T(1/2)>20 min), but in PC3 cells (also PTEN-null) it was only slightly slower than in PTEN-positive cells (T(1/2)=3 min). PKB dephosphorylation paralleled loss of plasma membrane PIP3. PNT1a, P4E6 and PC3, but not PNT2 or LNCaP, expressed SHIP2. SiRNA-mediated knockdown of SHIP2 expression markedly slowed PKB inactivation in response to LY294002 in PC3 but not in other SHIP2-positive cells, whereas knockdown of PTEN expression in PNT2, PNT1a and P4E6 resulted in higher steady-state levels of PKB phosphorylation and slowed, but did not prevent, LY294002-induced PKB inactivation. Thus SHIP2 substitutes for PTEN in the acute regulation of PKB in PC3 cells but not other prostate cell lines, where PTEN may share this role with further PIP3-degrading mechanisms.  相似文献   

4.
Androgens and the androgen receptor (AR) are involved both in early tumorigenesis of prostate cancer (PCa) and in androgen-refractory disease. The role of AR signalling has also been highlighted by the fusion gene TMPRSS2:ERG recently identified in the majority of PCa. Several data indicate that re-expression of AR in PCa cell lines confers a less aggressive phenotype. We observed that re-expression of AR in the AR-negative cells PC3 decreases anchorage-independent growth and Matrigel invasiveness of PC3-AR cells where plasma membrane interaction between AR and EGFR led to an interference with downstream signalling and internalization of activated EGFR. Our data evidenced a shift of EGFR internalization pathway from the clathrin-coated pit one mediating signalling and recycling of EGFR to the lipid raft-mediated one mainly involved in lysosomal degradation of EGFR. These effects involved an altered recruitment to EGFR of the adaptor proteins Grb2 and c-Cbl followed by a reduced ubiquitination of EGFR. Our preliminary results suggest that in PC3-AR cells a pool of classical AR is located within cholesterol-rich membrane microdomains (namely as lipid rafts) and a population of EGFR is within cholesterol-rich membrane microdomains too. However, AR and EGFR membrane interaction that is increased by rapid androgen signalling is not within cholesterol-rich membrane microdomains. Our data enlighten that the crosstalk between genotropic and non-genotropic AR signalling interferes with signalling of EGFR in response to ligand leading to a lower invasive phenotype of AR-positive PCa cells.  相似文献   

5.
6.

Purpose

The purpose of this study was to investigate the expression of autophagy-related proteins in relation to androgen receptor (AR) status in estrogen receptor (ER)-negative breast cancers.

Methods

We extracted 334 ER-negative breast cancer samples to construct tissue microarrays (TMAs), which were immunohistochemically stained for autophagy-related proteins (beclin-1, LC3A, LC3B, p62) and for AR and HER-2.

Results

There were 127 AR-positive cases and 207 AR-negative cases, and 140 HER-2-positive cases and 194 HER-2 negative cases. The AR-negative group was associated with tumoral LC3A expression (P<0.001), while the AR-positive group was associated with tumoral BNIP3 expression (P<0.001). Tumoral LC3A was most highly expressed in the AR-negative and HER-2 negative group, while stromal LC3A showed the highest expression in the AR-negative and HER-2-positive group. Tumoral BNIP3 and stromal BNIP3 were highest in the AR-positive and HER-2-negative group. In the AR-positive and HER-2-negative group, stromal p62 positivity was an independent factor that was statistically significant in its association with shorter disease-free survival (DFS) (Hazard ratio: 10.21, 95% CI: 1.130–92.31, P = 0.039). Shorter DFS was associated with tumoral LC3A positivity (Hazard ratio: 10.28, 95% CI: 2.068–51.19, P = 0.004) in the AR-negative and HER-2-positive group.

Conclusion

In ER-negative breast cancers, AR status was associated with expression of different types of autophagy-related proteins. Tumoral LC3A was most highly expressed in AR-negative breast cancers, while tumor BNIP3 was highest in AR-positive breast cancers.  相似文献   

7.
Prior development of a unique androgen-receptor (AR)-negative cell line (HH870) from organ-confined (T2b) human prostate cancer (CaP) enabled comparison of the gangliosides associated with normal and neoplastic prostate epithelial cells, organ-confined versus metastatic (DU 145, PC-3), and AR-negative versus AR-positive CaP cell lines. Resorcinol-HCl and specific monoclonal antibodies were used to characterize gangliosides on 2D-chromatograms, and to visualize them on the cell surface with confocal-fluorescence microscopy. AR-negative cells expressed GM1b, GM2, GD2, GD1a, and GM3. GM1a, GD1b, and GT1b were undetectable. GM1b and GD1a were more prominent in AR-negative than in AR-positive cells. PC-3 and HH870 cells were unique in the expression of O-acetylGD2 (O-AcGD2) and two alpha2,3-sialidase-resistant, alkali-susceptible GMR17-reactive gangliosides. Expression of GD1a, GM1b, doublets of GD3, GD2, and O-AcGD2, and the presence of an additional alkali-labile-14.G2a-reactive ganglioside, two alkali-susceptible, and three alkali-resistant GMR17-reactive gangliosides makes HH870 a potential component of a polyvalent-vaccine for active-specific immunotherapy of CaP.  相似文献   

8.
9.
The effect of docosahexaenoic acid (DHA; 22:6 n–3) on Fe2+-mediated and/or H2O2-mediated oxidative stress (OS) was investigated in a PC12 pheochromocytoma cell line in the presence or absence of 50 ng/ml nerve growth factor (NGF). DHA-supplemented cells showed enhanced Fe2+-induced cell damage as evident by increased lipid peroxides formation (10-fold) and reduced neutral red (NR) dye uptake in a NGF-independent fashion. DHA caused a nearly 10-fold increase in free iron uptake in NGF-treated cells and doubled iron uptake in nondifferentiated cells. DHA-enrichment induced an elevation in the transferrin receptor protein in the nondifferentiated cells whereas NGF-treatment led to a substantial increase in the ubiquitous divalent metal ion transporter 1 (DMT-1) as detected by mRNA levels using qRT-PCR. The mechanism of action of DHA to accelerate cell death may be associated with the externalization of amino-phosphoglycerides (PG) species of which, increased ethanolamine plasmalogen levels, may be essential for cell rescue as noted in NGF-treated PC12 cells. Special issue dedicated to Dr. Moussa Youdim. Equal scientific input of ES and AB.  相似文献   

10.
Prostate cancer (PCa) progresses from an early stage, confined to prostate, to a more aggressive metastasized cancer related with loss of androgen responsiveness. Although, it has been recognized that PCa cells have unique metabolic features, their glycolytic profile in androgen-dependent and androgen-independent stages of disease is much less known. Hence, the main purpose of this study was to compare glucose metabolism in androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) PCa cells. Cell culture medium was collected and differences in glucose consumption and, lactate and alanine production were measured using Proton Nuclear Magnetic Resonance ((1)H NMR) spectra analysis. The mRNA and protein expression of glucose transporters (GLUT1 and GLUT3), phosphofructokinase 1 (PFK1), lactate dehydrogenase (LDH) and monocarboxylate transporter (MCT4) were determined by real-time PCR and Western Blot, respectively. The obtained results demonstrate that androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) cells consumed similar amounts of glucose, whereas PC3 cells present higher lactate production. This increase in lactate production was concomitant with higher levels of MCT4 protein, increased LDH activity and higher lactate/alanine ratio, also suggesting increased levels of oxidative stress in PC3 cells. However, protein levels of LDH, associated with lactate metabolism, and GLUT3, involved in glucose uptake, were decreased in PC3 comparatively with LNCaP. Androgen-responsive and nonresponsive PCa cells present distinct glycolytic metabolism profiles, which suggest that targeting LDH and MCT4 metabolic pathways may be an important step for the development of new diagnostic and therapeutic strategies in the different stages of PCa.  相似文献   

11.
BACKGROUND: The prostate androgen-regulated (PAR) gene is ubiquitously overexpressed in prostate cancer (PCa) cells and is involved in proliferation of PCa. However, the mechanism by which the modulation of PAR gene expression elicits its biological effects on PCa cells is not well documented. Here, we investigate the mechanism of PAR depletion inhibiting PCa cell growth. METHODS: PAR expression was depleted by small interfering RNA (siRNA) and its subsequent effects on proliferation of PC3 cells were determined by the trypan blue exclusion assay. Flow cytometric analysis provided the evidence for the progression of cell cycle and the induction of apoptosis which was further confirmed by the observation of cleavage of poly(ADP-ribose) polymerase. Western blot analysis was performed to investigate the involvement of critical molecular events known to regulate the cell cycle and the apoptotic machinery. RESULTS: siRNA transfection results in a dose-dependent inhibition of cell growth in PC3 cells by causing G2/M phase cell cycle arrest and apoptosis. The G2/M arrest by PAR depletion was associated with decreased levels of cyclin B1, pCdc2 (Tyr15), Cdc2 and Cdc25C. PAR depletion also was found to result in inhibition of procaspases 9, 8, 6 and 3 with significant increase in the ratio of Bax : Bcl-2. CONCLUSIONS: Our data indicate that PAR depletion induces G2/M arrest via the Cdc25C-Cdc2/cyclin B1 pathway. Furthermore, the results of the present study point toward involvement of pathways mediated by both caspase 8 and caspase 9 in apoptosis induction by PAR depletion.  相似文献   

12.
The majority of prostate cancer (PCa) patient receiving androgen ablation therapy eventually develop castration-resistant prostate cancer (CRPC). We previously reported that androgen treatment suppresses Skp2 and c-Myc through androgen receptor (AR) and induced G1 cell cycle arrest in androgen-independent LNCaP 104-R2 cells, a late stage CRPC cell line model. However, the mechanism of androgenic regulation of Skp2 in CRPC cells was not fully understood. In this study, we investigated the androgenic regulation of Skp2 in two AR-positive CRPC cell line models, the LNCaP 104-R1 and PC-3AR Cells. The former one is an early stage androgen-independent LNCaP cells, while the later one is PC-3 cells re-expressing either wild type AR or mutant LNCaP AR. Proliferation of LNCaP 104-R1 and PC-3AR cells is not dependent on but is suppressed by androgen. We observed in this study that androgen treatment reduced protein expression of Cdk2, Cdk7, Cyclin A, cyclin H, Skp2, c-Myc, and E2F-1; lessened phosphorylation of Thr14, Tyr15, and Thr160 on Cdk2; decreased activity of Cdk2; induced protein level of p27Kip1; and caused G1 cell cycle arrest in LNCaP 104-R1 cells and PC-3AR cells. Overexpression of Skp2 protein in LNCaP 104-R1 or PC-3AR cells partially blocked accumulation of p27Kip1 and increased Cdk2 activity under androgen treatment, which partially blocked the androgenic suppressive effects on proliferation and cell cycle. Analyzing on-line gene array data of 214 normal and PCa samples indicated that gene expression of Skp2, Cdk2, and cyclin A positively correlates to each other, while Cdk7 negatively correlates to these genes. These observations suggested that androgen suppresses the proliferation of CRPC cells partially through inhibition of Cyclin A, Cdk2, and Skp2.  相似文献   

13.
摘要 目的:探究长链非编码RNA LINC01006对前列腺癌(prostate cancer, PCa)细胞增殖和侵袭能力的影响。方法:体外培养人前列腺正常上皮细胞系RWPE-1,人PCa细胞系LNCaP、22Rv1、PC3、C4-2b,应用实时定量PCR(qRT-PCR)技术检测上述细胞LINC01006的表达;分别通过转染小干扰RNA(siRNA)或过表达LINC01006的慢病毒载体,在LNCaP和PC3细胞中敲减LINC01006或稳定过表达LINC01006;应用CCK8、克隆形成实验检测LINC01006对PCa细胞增殖能力的影响;应用Transwell侵袭实验检测LINC01006对PCa细胞侵袭能力的影响;通过网站预测LINC01006的转录调控因子及其结合位点。结果:相较于正常前列腺上皮细胞系RWPE-1,PCa细胞系LNCaP、22Rv1、C4-2b和PC3中LINC01006表达明显升高(P<0.05)。敲减LINC01006后的PCa细胞系LNCaP和PC3的增殖和侵袭能力被显著抑制(P<0.05),过表达LINC1006则明显促进PCa细胞系LNCaP和PC3的增殖、侵袭能力(P<0.05)。通过PROMO网站预测可见AR是LINC01006的潜在转录调控因子,通过Cistrome DB数据库发现LINC01006上游启动子区域存在AR富集;敲减、抑制AR后LNCaP细胞中LINC01006表达明显升高(P<0.05)。结论:LINC01006在PCa细胞系中呈高表达,促进PCa细胞的增殖和侵袭,其受到AR负向调控,可能在PCa发生发展和去势抵抗形成过程中发挥作用。  相似文献   

14.
15.
Recent studies have introduced prosaposin (PSAP) as a pleiotrophic growth factor for prostate cancer (PCa). We have previously reported that PSAP or one of its known active molecular derivatives, saposin C functions as an androgen-agonist and androgen-regulated gene (ARG) for androgen-sensitive (AS) PCa cell lines. Due to the potential significance of androgen receptor (AR)-expressing stroma in PCa, we evaluated a possible bi-directional paracrine regulatory interactions between DHT and PSAP in AR-positive prostate stromal (PrSt) cells. We report that saposin C in a ligand-independent manner increased AR expression, its nuclear content, and tyrosine phosphorylation. DHT treatment of PrSt cells increased PSAP expression. We also demonstrated both serum- and androgen-inducibility of a previously characterized hormone-responsive element (HRE) located in the proximal region of PSAP promoter. In addition, conditioned-media derived from PrSt cells and bone fibroblasts (i.e., MSF) differentially increased PSAP-promoter activity in androgen-independent (AI) PC-3 and AS LNCaP cells. Our data for the first time demonstrate that not only saposin C or PSAP regulates AR expression/activity, but also function as an ARG in PrSt. Ligand-independent activation of AR by PSAP or saposin C in PCa and stromal cells may contribute not only to prostate carcinogenesis at an early stage, but also in AI progression of the disease in an androgen-deprived tumor microenvironment.  相似文献   

16.

Background

Current markers for prostate cancer, such as PSA lack specificity. Therefore, novel biomarkers are needed. Unfortunately, the complexity of body fluids often hampers biomarker discovery. An attractive alternative approach is the isolation of small vesicles, i.e. exosomes, ∼100 nm, which contain proteins that are specific to the tissue from which they are derived and therefore can be considered as treasure chests for disease-specific biomarker discovery.

Materials and Methods

Exosomes were isolated from 2 immortalized primary prostate epithelial cells (PNT2C2 and RWPE-1) and 2 PCa cell lines (PC346C and VCaP) by ultracentrifugation. After tryptic digestion, proteomic analyses utilized a nanoLC coupled with an LTQ-Orbitrap operated in tandem MS (MS/MS) mode. Accurate Mass and Time (AMT) tag approach was employed for peptide identification and quantitation. Candidate biomarkers were validated by Western blotting and Immunohistochemistry.

Results

Proteomic characterization resulted in the identification of 248, 233, 169, and 216 proteins by at least 2 peptides in exosomes from PNT2C2, RWPE-1, PC346C, and VCaP, respectively. Statistical analyses revealed 52 proteins differently abundant between PCa and control cells, 9 of which were more abundant in PCa. Validation by Western blotting confirmed a higher abundance of FASN, XPO1 and PDCD6IP (ALIX) in PCa exosomes.

Conclusions

Identification of exosomal proteins using high performance LC-FTMS resulted in the discovery of PDCD6IP, FASN, XPO1 and ENO1 as new candidate biomarkers for prostate cancer.  相似文献   

17.
Docosahexaenoic acid (DHA) accumulates in nerve endings of the brain during development. It is released from the membrane during ischemia and electroconvulsive shock. DHA optimizes neurologic development, it is neuroprotective, and rat adrenopheochromocytoma (PC12) cells have decreased PLA2 activity when DHA is present. To characterize DHA metabolism in PC12 cells, media were supplemented with [3H]DHA or [3H]glycerol. Fractions of nerve growth cone particles (NGC) and cell bodies were prepared and the metabolism of the radiolabeled substrates was determined by thin-layer chromatography. [3H]glycerol incorporation into phospholipids indicated de novo lipid synthesis. [3H]DHA uptake was more rapid in the cell bodies than in the NGC. [3H]DHA first esterified in neutral lipids and later in phospholipids (phosphatidylethanolamine). [3H]glycerol primarily labeled phosphatidylcholine. DHA uptake was compartmentalized between the cell body and the NGC. With metabolism similar to that seen in vivo, PC12 cells are an appropriate model to study DHA in neurons.  相似文献   

18.
19.
20.
Understanding androgen regulation of gene expression is critical for deciphering mechanisms responsible for the transition from androgen-responsive (AR) to androgen-independent (AI) prostate cancer (PCa). To identify genes differentially regulated by androgens in each prostate lobe, the rat castration model was used. Microarray analysis was performed to compare dorsolateral (DLP) and ventral prostate (VP) samples from sham-castrated, castrated, and testosterone-replenished castrated rats. Our data demonstrate that, after castration, the VP and the DLP differed in the number of genes with altered expression (1496 in VP vs. 256 in DLP) and the nature of pathways modulated. Gene signatures related to apoptosis and immune response specific to the ventral prostate were identified. Microarray and RT-PCR analyses demonstrated the androgen repression of IGF binding protein-3 and -5, CCAAT-enhancer binding protein-delta, and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) genes, previously implicated in apoptosis. We show that PTEN protein was increased only in the luminal epithelial cells of the VP, suggesting that it may be a key mediator of VP apoptosis in the absence of androgens. The castration-induced immune/inflammatory gene cluster observed specifically in the VP included IL-15 and IL-18. Immunostaining of the VP, but not the DLP, showed an influx of T cells, macrophages, and mast cells, suggesting that these cells may be the source of the immune signature genes. Interestingly, IL-18 was localized mainly to the basal epithelial cells and the infiltrating macrophages in the regressing VP, whereas IL-15 was induced in the luminal epithelium. The VP castration model exhibits immune cell infiltration and loss of PTEN that is often observed in progressive PCa, thereby making this model useful for further delineation of androgen-regulated gene expression with relevance to PCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号