首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
White J  Heylen DJ  Matthysen E 《Parasitology》2012,139(2):264-270
In non-permanent parasites with low intrinsic mobility such as ticks, dispersal is highly dependent on host movements as well as the timing of separation from the hosts. Optimal detachment behaviour is all the more crucial in nidicolous ticks as the risk of detaching in non-suitable habitat is high. In this study, we experimentally investigated the detachment behaviour of Ixodes arboricola, a nidicolous tick that primarily infests birds roosting in tree-holes. We infested great tits with I. arboricola larvae or nymphs, and submitted the birds to 2 experimental treatments, a control treatment in which birds had normal access to nest boxes and an experimental treatment, in which the birds were prevented access to their nest boxes for varying lengths of time. In the control group, most ticks detached within 5 days, whereas in the experimental group, ticks remained on the bird for as long as the bird was prevented access (up to 14 days). This prolonged attachment caused a decrease in survival and engorgement weight in nymphs, but not in larvae. The capacity of I. arboricola larvae to extend the duration of attachment in non-suitable environments with no apparent costs, may be an adaptation to unpredictable use of cavities by roosting hosts during winter, and at the same time may facilitate dispersal of the larval instars.  相似文献   

2.
McCoy KD  Tirard C  Michalakis Y 《Heredity》2003,91(4):422-429
To examine the potential importance of the spatial subdivision of hosts for the functioning of parasite populations, we analysed patterns of local genetic structure within natural populations of the seabird ectoparasite, Ixodes uriae, at the scale of the host breeding cliff. The seabird hosts of this parasite nest in dense colonies with a hierarchical spatial organisation (individual nests-breeding cliffs-colony). Using eight microsatellite markers and samples from three breeding cliffs of the Black-legged kittiwake (Rissa tridactyla), we found that tick populations were indeed genetically structured at this spatial scale. However, the nature of this structuring depended on the characteristics of the cliffs considered. Both the host nest and cliff topography seemed to be important factors in the isolation of tick groups, but their relative roles may depend on the size of the local parasite population. We found no evidence of isolation by distance within a cliff suggesting that independent tick dispersal may not be a significant force influencing population structure in highly infested cliffs. However, genetic structure seemed to decrease with tick life stage, nymphal ticks being more strongly structured than adult ticks. These results may be related to the clustering of tick progeny combined with differential mortality and dispersal probabilities of each life stage. Overall, results indicate that the spatial organisation of hosts can indeed have important consequences for the population genetic structure of their parasites and, thus, may modify parasite dynamics and the scale at which local coevolutionary processes occur.  相似文献   

3.
The aim of this study was to characterize the spatial distribution of the tick Ixodes uriae within and among populations of its seabird hosts and to consider the potential insight that could be gained by a population genetic approach to the issue of dispersal of this tick. Analyses of data collected around the Avalon Peninsula, Newfoundland, indicated that both the prevalence and mean abundance of ticks varied significantly among sample locations. Whereas ticks were found on all 4 host species examined (Rissa tridactyla, Uria aalge, Alca torda, Fratercula arctica), infestation prevalence and mean abundance differed among the species. On R. tridactyla, ticks were significantly aggregated at the among-nest scale and nestling infestation was spatially autocorrelated. Conversely, ticks were not aggregated among chicks within nests. These results enabled us to make a priori predictions regarding tick dispersal and host specificity and suggest there may be spatial structure of Ixodes uriae populations at both macro- and microgeographic scales. Investigating the population genetic structure of ticks within and among populations of hosts with different breeding biologies should provide direct insight into the metapopulation dynamics of such a spatially structured system.  相似文献   

4.

Ticks are globally renowned vectors for numerous zoonoses, and birds have been identified as important hosts for several species of hard ticks (Acari: Ixodidae) and tick-borne pathogens. Many European bird species overwinter in Africa and Western Asia, consequently migrating back to breeding grounds in Europe in the spring. During these spring migrations, birds may transport exotic tick species (and associated pathogens) to areas outside their typical distribution ranges. In Finland, very few studies have been conducted regarding ticks parasitizing migrating or local birds, and existing data are outdated, likely not reflecting the current situation. Consequently, in 2018, we asked volunteer bird ringers to collect ticks from migrating and local birds, to update current knowledge on ticks found parasitizing birds in Finland. In total 430 ticks were collected from 193 birds belonging to 32 species, caught for ringing between 2018 and 2020. Furthermore, four Ixodes uriae were collected from two roosting islets of sea birds in 2016 and 2020. Ticks collected on birds consisted of: Ixodes ricinus (n?=?421), Ixodes arboricola (4), Ixodes lividus (2) and Hyalomma marginatum (3). Ixodes ricinus loads (nymphs and larvae) were highest on thrushes (Passeriformes: Turdidae) and European robins (Erithacus rubecula). The only clearly imported exotic tick species was H. marginatum. This study forms the second report of both I. uriae and I. arboricola from Finland, and possibly the northernmost observation of I. arboricola from Europe. The importation of exotic tick species by migrating birds seems a rare occurrence, as over 97% of all ticks collected from birds arriving in Finland during their spring migrations were I. ricinus, a species native to and abundant in Finland.

  相似文献   

5.
Although many wild bird species may act as reservoir hosts for tick-transmitted diseases and/or support long-distance dispersal of infected ticks, to date no research has been done on the extent to which songbirds may acquire resistance to ixodid ticks. Here we investigate whether two passerine species belonging to the family Paridae, the blue tit (Cyanistes caeruleus) and the great tit (Parus major), are able to acquire resistance after repeated infestations with Ixodes ricinus nymphs. As blue tits are less frequently exposed to I. ricinus in the wild than great tits, we expected I. ricinus to be less adapted towards the blue tit’s resistance mechanisms. Over the three infestation sessions we observed consistently high tick attachment rates and yields, high engorgement weights, and short engorgement and moulting durations, indicating that neither of the two songbird species is able to mount effective immune responses against I. ricinus nymphs after repeated infestations. As a consequence of the lack of resistance, birds were unable to prevent the direct harm (acute blood depletion) caused by tick feeding. Birds compensated the erythrocyte loss without reduction in general body condition (body mass corrected for tarsus length). The lack of resistance suggests that I. ricinus has a long co-evolutionary history with both avian hosts, which enables the tick to avoid or suppress the host’s resistance responses.  相似文献   

6.
The majority of studies on ecological specialisation rely on data reflecting realised specificity, without considering species’ potential specificity. Most species of ticks, a large family of hematophagous ectoparasites, have a narrow host range in nature, but it is unclear whether this is due to host-driven adaptations or other processes (such as off-host abiotic environment). We investigated the potential specificity of two tick species with contrasting ecology by infesting three avian host species that occur in the same off-host macrohabitat but are unequally infested by the ticks in nature (i.e. have contrasting realised specificity). The endophilic specialist tick Ixodes arboricola resides inside the hosts’ nest and has high realised host specificity, whereas the exophilic generalist tick I. ricinus encounters hosts in the field and has very low realised specificity. As hosts, we used great tits (frequently infested by both tick species), blackbirds (frequently infested by I. ricinus but never by I. arboricola) and great spotted woodpeckers (no ticks of either species have been reported). If realised specificity is constrained by host-driven adaptations there should be no differences between potential and realised specificity, whereas if realised specificity is constrained by other processes potential specificity and realised specificity should be different. We found that attachment rates and weight during feeding of I. arboricola were lower on blackbirds than on great tits, whereas there were no such differences for I. ricinus. No ticks of either species attached to woodpeckers. These results indicate that realised host specificity of ticks is, at least partially, constrained by host-driven adaptations. This specificity therefore strongly depends on the ticks’ encounter rates with particular host types, which are affected by the ticks’ off-host ecological requirements, behaviour and life-history characteristics.  相似文献   

7.
Abstract Despite the fact that parasite dispersal is likely to be one of the most important processes influencing the dynamics and coevolution of host-parasite interactions, little information is available on the factors that affect it. In most cases, opportunities for parasite dispersal should be closely linked to host biology. Here we use microsatellite genetic markers to compare the population structure and dispersal of two host races of the seabird tick Ixodes uriae at the scale of the North Atlantic. Interestingly, tick populations showed high within-population genetic variation and relatively low population differentiation. However, gene flow at different spatial scales seemed to depend on the host species exploited. The black-legged kittiwake ( Rissa tridactyla ) had structured tick populations showing patterns of isolation by distance, whereas tick populations of the Atlantic puffin ( Fratercula arctica ) were only weakly structured at the largest scale considered. Host-dependent rates of tick dispersal between colonies will alter infestation probabilities and local dynamics and may thus modify the adaptation potential of ticks to local hosts. Moreover, as I. uriae is a vector of the Lyme disease agent Borrelia burgdorferi sensu lato in both hemispheres, the large-scale movements of birds and the subsequent dispersal of ticks will have important consequences for the dynamics and coevolutionary interactions of this microparasite with its different vertebrate and invertebrate hosts.  相似文献   

8.
The prevalence of ticks infected by Borrelia burgdorferi sensu lato on birds during their migrations was studied in Switzerland. A total of 1,270 birds captured at two sites were examined for tick infestation. Ixodes ricinus was the dominant tick species. Prevalences of tick infestation were 6% and 18.2% for birds migrating northward and southward, respectively. Borrelia valaisiana was the species detected most frequently in ticks, followed by Borrelia garinii and Borrelia lusitaniae. Among birds infested by infected ticks, 23% (6/26) were infested by B. lusitaniae-infected larvae. Migratory birds appear to be reservoir hosts for B. lusitaniae.  相似文献   

9.
Rhipicephalus sanguineus is believed to be the most widespread tick species of the world and its dissemination seems to rely on the diffusion of its main host, the dog. Empirical observations indicate that several bird species in urban areas regularly steal dog food. Such circumstances create a chance for R. sanguineus ticks to climb on birds and carry ticks to another site. In this work we evaluated experimentally the likelihood of birds (chicks) to either feed and/or carry R. sanguineus ticks from an infested site to another and to infest a host (rabbit) in the new location. Chicks were not suitable hosts for R. sanguineus ticks. Not a single adult tick engorged on chicks, yield as well as weight of engorged larvae and nymphs were very low and feeding period of these ticks was very long. However, a few larvae and, chiefly, nymphs were delivered to a new location either mechanically or after attachment and engorging total or partially on chicks. A few of these ticks fed successfully on rabbits. Further evidence on the capacity of birds to introduce R. sanguineus into non-infested dog settings should be provided by systematic examination of birds from urban areas, close to tick infested households.  相似文献   

10.
Host-parasite interactions may select for significant novel mutations with major evolutionary consequences for both partners. In poor active dispersers such as ticks, their population structures are shaped by their host movements. Here, we use population genetics and phylogeography to investigate the evolutionary history of the most common tick in Europe, Ixodes ricinus, a vector of pathogenic agents causing diseases in humans and animals. Two mitochondrial and four nuclear genes were sequenced for 60 individuals collected on four geographical scales (local, regional, Eurasian and western Palearctic scales). The overall level of nucleotide diversity was low and the variability did not differ at the local, regional or Eurasian scales but increased two fold for the western Palearctic scale. Moreover, the phylogenetic trees indicated an absence of genetic structure among Eurasian ticks, contrasting with a strong differentiation of the north-African ticks which formed a divergent clade. The homogeneity in Eurasian ticks may be explained by gene flows due to passive dispersal of ticks by hosts within a continuous population and recent range expansion of I. ricinus as shown by the fit of the observed frequency distribution of numbers of mismatches between pairwise sequences with the demographic expansion model (Harpending raggedness index, P = 0.74). The genetic divergence of the north-African populations could be explained by genetic drift in these small populations that are geographically isolated and/or selection pressures due to different ecological conditions (seasonal activity, pathogenic agents and hosts communities). The consequences of these results on the epidemiology of vector-borne diseases are discussed.  相似文献   

11.
Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators.  相似文献   

12.
Migratory birds may disperse parasites across ecological barriers, and recent climate change may alter the pattern of ectoparasite dispersal via changed patterns of bird migration. In order to document the parasitization of migratory birds by Ixodidae ticks on Jeju Island in Korea, we examined 934 migratory birds comprising 75 species for ticks from 2010 to 2012. In total, 313 ticks were collected from 74 migratory birds across 17 avian species and identified based on morphological keys. These ticks represented six species: Haemaphysalis flava, H. formosensis, H. longicornis, H. concinna, Ixodes turdus and I. nipponensis. Of particular note was the presence of H. formosensis, a species not previously reported to have been found in Korea, and H. concinna, which had not been previously reported on Jeju Island. The dominant tick species found were H. flava (226 ticks, 72.2 %) and I. turdus (54 ticks, 17.3 %), and ground-dwelling thrushes such as Pale thrushes (Turdus pallidus; 39 birds, 52.7 %) were the most important hosts. Although H. longicornis is the most abundant and prevalent terrestrial tick on Jeju Island, the species accounted for only 3.8 % of the total ticks collected in this study, suggesting that ticks on migratory birds may differ from the local tick fauna and that exotic ticks may be introduced via migratory birds. Therefore, long-term programs for tick and tick-borne disease surveillance are recommended to understand the role of migratory animals in the introduction of exotic species and associated pathogens and in life cycles of ticks at different stages in this region.  相似文献   

13.
The American dog tick (Dermacentor variabilis) is an important vector of numerous pathogens of humans and animals. In this study, we analysed population genetic patterns in D. variabilis at scales of the host individual (infrapopulation) and population (component population) to elucidate fine-scale spatial and temporal factors influencing transmission dynamics. We genotyped D. variabilis collected from raccoons (Procyon lotor) trapped in two habitat patches (located in Indiana, USA) which were spatially proximate (5.9 km) and limited in size (10.48 Ha and 25.47 Ha, respectively). Despite the fine spatial sampling scale, our analyses revealed significant genetic differentiation amongst component populations and infrapopulations (within each component population), indicating a non-random pattern of encountering tick genotypes by raccoons at both scales evaluated. We found evidence for male-biased dispersal in the ticks themselves (in one component population) and an age-bias in spatial scales at which raccoons encountered ticks in the environment. At the scale of the component population, our analyses revealed that raccoons encountered ticks from a limited number of D. variabilis family groups, likely due to high reproductive variance amongst individual ticks. Finally, we found evidence for a temporal effect with raccoons encountering ticks in the environment as “clumps” of related individuals. While the genetic structure of parasite populations are increasingly being investigated at small spatial scales (e.g. the infrapopulation), our data reveal that genetic structuring can originate at scales below that of the infrapopulation, due to the interaction between temporal and biological factors affecting the encounter of parasites by individual hosts. Ultimately, our data indicate that genetic structure in parasites must be viewed as a consequence of both spatial and temporal variance in host-parasite interactions, which in turn are driven by demographic factors related to both the host and parasite.  相似文献   

14.
The problem of urban ticks has arisen from the increased rate of urbanization since WWII. Expansion of municipal boundaries encompasses adjacent territories, so that large areas of wilderness together with all their inhabitants get incorporated into city limits. Current strategies of biodiversity conservation include the creation of green corridors and other forms of connectivity between wilderness and urban areas as well as between green patches within cities. All this allows various mammals and birds to migrate from their native habitats into and between various parts of the cities and to establish permanent urban populations. Medium-sized and larger animals provide adult ticks with blood meal, thus creating suitable conditions for the establishment and persistence of tick populations. Independent tick populations can exist in urban forests, parks, private properties, old cemeteries, etc. Over the last decades, the tick populations that originated from those in natural habitats around the cities have become a permanent component of urban fauna. Among such ticks, the castor bean tick Ixodes ricinus is the most important species for European cities, while the deer tick I. scapularis is of great significance for the East Coast of the United States. The taiga tick I. persulcatus is the most important species for the Russian cities and towns within its range. All these and some other ticks aggressively attack humans and their pets inside cities. The tick species especially well adapted to urban life are those which can live and reproduce in buildings. The brown dog tick Rhipicephalus sanguineus (family Ixodidae), the pigeon ticks from the reflexus group of the genus Argas, and Ornithodoros ticks (family Argasidae), which form urban and semi-urban populations, are the main urban tick pests and vectors. House infestation by ticks can lead to human infection with tick-borne pathogens or severe allergic reactions. Some tick hosts, mammals as well as birds, maintain tick-transmitted pathogens and serve as competent reservoir hosts. Urban populations of these animals can participate in the circulation of some pathogens within cities. Thus, the enlargement of urban green areas followed by their population by wild mammals and birds create good opportunities for the establishment of urban populations of tick vectors with the resulting threat to the health of urban dwellers and their pets. At the same time, our understanding of the real scope and complexity of the problem of urban ticks is far from being sufficient. Finding the ways of protecting the environment without increasing the risk to human health in modern cities is a pressing and challenging problem of our time.  相似文献   

15.
A major question for understanding the ecology of parasite infections and diseases in wildlife populations concerns the transmission pathways among hosts. Network models are increasingly used to model the transmission of infections among hosts – however, few studies have integrated host behaviour and genetic relatedness of the parasites transmitted between hosts. In a study of the Australian sleepy lizard Tiliqua rugosa and its three‐host ixodid tick (Bothriocroton hydrosauri), we asked if patterns of genetic relatedness among ticks were best explained by spatial proximity or the host transmission network. Using synchronous GPS locations of over 50 adult lizards at 10 min intervals across the three‐month activity period, over 2 years, we developed two alternative parasite transmission networks. One alternative was based on the spatial proximity of lizards (at the centre of their home ranges), and the other was based on the frequency of asynchronous shared refuge use between pairs of lizards. In each year, adult ticks were removed from lizards and their genotypes were determined at four polymorphic microsatellite loci. Adult ticks collected from the same host were more related to each other than ticks from different hosts. Similarly, adult ticks collected from different lizards had a higher relatedness if those lizards had a shorter path length connecting them on each of the two networks we explored. The predictors of tick relatedness differed between years. In the first year, the asynchronous shared refuges network was the stronger predictor of tick relatedness, whereas in year two, the spatial proximity‐based network was the stronger predictor of tick relatedness. We speculate on how changing environmental conditions might change the relative importance of alternative processes driving the transmission of parasites.  相似文献   

16.
In ants the presence of multiple reproductive queens (polygyny) decreases the relatedness among workers and the brood they rear, and subsequently dilutes their inclusive fitness benefits from helping. However, adoption of colony daughters, low male dispersal in conjunction with intranidal (within nest) mating and colony reproduction by budding may preserve local genetic differences, and slow down the erosion of relatedness. Reduced dispersal and intranidal mating may, however, also lead to detrimental effects owing to competition and inbreeding. We studied mating and dispersal patterns, and colony kinship in three populations of the polygynous ant Plagiolepis pygmaea using microsatellite markers. We found that the populations were genetically differentiated, but also a considerable degree of genetic structuring within populations. The genetic viscosity within populations can be attributed to few genetically homogeneous colony networks, which presumably have arisen through colony reproduction by budding. Hence, selection may act at different levels, the individuals, the colonies and colony networks. All populations were also significantly inbred (F=0.265) suggesting high frequencies of intranidal mating and low male dispersal. Consequently the mean regression relatedness among workers was significantly higher (r = 0.529-0.546) than would be expected under the typically reported number (5-35) of queens in nests of the species. Furthermore, new queens were mainly recruited from their natal or a neighbouring related colony. Finally, the effective number of queens coincided with that found upon excavation, suggesting low reproductive skew.  相似文献   

17.
Zhu D  Chapuisat M  Pamilo P 《Hereditas》2003,139(1):7-12
Social organisation of colonies was examined in the ant Formica cinerea by estimating the coefficient of genetic relatedness among worker nest mates. The estimates based on microsatellite genotypes at three loci ranged from values close to zero to 0.61 across the populations studied in Finland. These results showed that a fundamental feature of colonies, the number of reproductive queens, varied greatly among the populations. Colonies in some populations had a single queen, whereas the nests could have a high number number of queens in other populations. There was a weak but non-significant correlation between the genetic and metric distance of nests within two populations with intermediate level of relatedness. Differentiation among nearby populations (within the dispersal distance of individuals) in one locality indicated limited dispersal or founder effects. This could occur when females are philopatric and stay in the natal polygynous colony which expands by building a network of nest galleries within a single habitat patch.  相似文献   

18.
The association of ticks (Acarina) and seabirds provides an intriguing system for assessing the influence of long-distance dispersal on the evolution of parasitic species. Recent research has focused on host-parasite evolutionary relationships and dispersal capacity of ticks parasitising flighted seabirds. Evolutionary research on the ticks of non-flighted seabirds is, in contrast, scarce. We conducted the first phylogeographic investigation of a hard tick species (Ixodes eudyptidis) that parasitises the Little Blue Penguin (Eudyptula minor). Using one nuclear (28S) and two mitochondrial (COI and 16S) markers, we assessed genetic diversity among several populations in Australia and a single population on the South Island of New Zealand. Our results reveal two deeply divergent lineages, possibly representing different species: one comprising all New Zealand samples and some from Australia, and the other representing all other samples from Australian sites. No significant population differentiation was observed among any Australian sites from within each major clade, even those separated by hundreds of kilometres of coastline. In contrast, the New Zealand population was significantly different to all samples from Australia. Our phylogenetic results suggest that the New Zealand and Australian populations are effectively isolated from each other; although rare long-distance dispersal events must occur, these are insufficient to maintain trans-Tasman gene flow. Despite the evidence for limited dispersal of penguin ticks between Australia and New Zealand, we found no evidence to suggest that ticks are unable to disperse shorter distances at sea with their hosts, with no pattern of population differentiation found among Australian sites. Our results suggest that terrestrial seabird parasites may be quite capable of short-distance movements, but only sporadic longer-distance (trans-oceanic) dispersal.  相似文献   

19.
Parasites represent ideal models for unravelling biogeographic patterns and mechanisms of diversification on islands. Both host-mediated dispersal and within-island adaptation can shape parasite island assemblages. In this study, we examined patterns of genetic diversity and structure of Ornithodoros seabird ticks within the Cape Verde Archipelago in relation to their global phylogeography. Contrary to expectations, ticks from multiple, geographically distant clades mixed within the archipelago. Trans-oceanic colonization via host movements probably explains high local tick diversity, contrasting with previous research that suggests little large-scale dispersal in these birds. Although host specificity was not obvious at a global scale, host-associated genetic structure was found within Cape Verde colonies, indicating that post-colonization adaptation to specific hosts probably occurs. These results highlight the role of host metapopulation dynamics in the evolutionary ecology and epidemiology of avian parasites and pathogens.  相似文献   

20.
The spatial extent of Sitka black-tailed deer (Odocoileus hemionus sitkensis) populations below the regional scale is relatively unknown, as is dispersal between populations. Here, we use noninvasive samples to genotype 221 Sitka black-tailed deer in three watersheds on Prince of Wales Island, Alaska, separated by a maximum of 44 km, using traditional and spatial genetic approaches. We find that despite geographic proximity, multiple lines of evidence suggest fine-scale genetic structure among the three study sites. The 2 most geographically distant watersheds differed significantly in genetic composition, suggesting an isolation-by-distance pattern. Within study sites, deer exhibited spatial genetic structure within a radius of 1,000 m. Based on a reduced sample of known-sex individuals, females exhibited positive spatial genetic structure within a radius of 500 m but males showed no structure. Moreover, females were more likely to be related to their 5 nearest female neighbors, regardless of distance, than were males. Evidence indicates dispersal by both sexes although it may be more common, or dispersal distances are greater, in males. Nonetheless, analysis of assignment indices and comparison of sex-specific correlograms found no evidence of sex-biased dispersal between watersheds. Patterns of spatial relatedness and connectivity suggest limited dispersal among Sitka black-tailed deer, creating genetic structure on a fine spatial scale, perhaps as small as the watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号