首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cidea, the cell death-inducing DNA fragmentation factor-α-like effector (CIDE) domain-containing protein, is targeted to lipid droplets in mouse adipocytes, where it inhibits triglyceride hydrolysis and promotes lipid storage. In mice, Cidea may prevent lipolysis by binding and shielding lipid droplets from lipase association. Here we demonstrate that human Cidea localizes with lipid droplets in both adipocyte and nonadipocyte cell lines, and we ascribe specific functions to its protein domains. Expression of full-length Cidea in undifferentiated 3T3-L1 cells or COS-1 cells increases total cellular triglyceride and strikingly alters the morphology of lipid droplets by enhancing their size and reducing their number. Remarkably, both lipid droplet binding and increased triglyceride accumulation are also elicited by expression of only the carboxy-terminal 104 amino acids, indicating this small domain directs lipid droplet targeting and triglyceride shielding. However, unlike the full-length protein, expression of the carboxy-terminus causes clustering of small lipid droplets but not the formation of large droplets, identifying a novel function of the N terminus. Furthermore, human Cidea promotes lipid storage via lipolysis inhibition, as the expression of human Cidea in fully differentiated 3T3-L1 adipocytes causes a significant decrease in basal glycerol release. Taken together, these data indicate that the carboxy-terminal domain of Cidea directs lipid droplet targeting, lipid droplet clustering, and triglyceride accumulation, whereas the amino terminal domain is required for Cidea-mediated development of enlarged lipid droplets.  相似文献   

2.
Lipid storage droplets are universal organelles essential for the cellular and organismal lipometabolism including energy homeostasis. Despite their apparently simple design they are proposed to participate in a growing number of cellular processes, raising the question to what extent the functional multifariousness is reflected by a complex organellar proteome composition. Here we present 248 proteins identified in a subproteome analysis using lipid storage droplets of Drosophila melanogaster fat body tissue. In addition to previously known lipid droplet-associated PAT (Perilipin, ADRP, and TIP47) domain proteins and homologues of several mammalian lipid droplet proteins, this study identified a number of proteins of diverse biological function, including intracellular trafficking supportive of the dynamic and multifaceted character of these organelles. We performed intracellular localization studies on selected newly identified subproteome members both in tissue culture cells and in fat body cells directly. The results suggest that the lipid droplets of fat body cells are of combinatorial protein composition. We propose that subsets of lipid droplets within single cells are characterized by a protein "zip code," which reflects functional differences or specific metabolic states.  相似文献   

3.
The majority of retinoid (vitamin A and its metabolites) present in the body of a healthy vertebrate is contained within lipid droplets present in the cytoplasm of hepatic stellate cells (HSCs). Two types of lipid droplets have been identified through histological analysis of HSCs within the liver: smaller droplets bounded by a unit membrane and larger membrane-free droplets. Dietary retinoid intake but not triglyceride intake markedly influences the number and size of HSC lipid droplets. The lipids present in rat HSC lipid droplets include retinyl ester, triglyceride, cholesteryl ester, cholesterol, phospholipids and free fatty acids. Retinyl ester and triglyceride are present at similar concentrations, and together these two classes of lipid account for approximately three-quarters of the total lipid in HSC lipid droplets. Both adipocyte-differentiation related protein and TIP47 have been identified by immunohistochemical analysis to be present in HSC lipid droplets. Lecithin:retinol acyltransferase (LRAT), an enzyme responsible for all retinyl ester synthesis within the liver, is required for HSC lipid droplet formation, since Lrat-deficient mice completely lack HSC lipid droplets. When HSCs become activated in response to hepatic injury, the lipid droplets and their retinoid contents are rapidly lost. Although loss of HSC lipid droplets is a hallmark of developing liver disease, it is not known whether this contributes to disease development or occurs simply as a consequence of disease progression. Collectively, the available information suggests that HSC lipid droplets are specialized organelles for hepatic retinoid storage and that loss of HSC lipid droplets may contribute to the development of hepatic disease.  相似文献   

4.
The PAT family proteins, named after perilipin, adipophilin, and the tail-interacting protein of 47 kDa (TIP47), are implicated in intracellular lipid metabolism. They associate with lipid droplets, but how is completely unclear. From immunofluorescence studies, they are reported to be restricted to the outer membrane monolayer enveloping the lipid droplet and not to enter the core. Recently, we found another kind of lipid droplet-associated protein, caveolin-1, inside lipid droplets. Using freeze-fracture immunocytochemistry and electron microscopy, we now describe the distributions of perilipin and caveolin-1 and of adipophilin and TIP47 in lipid droplets of adipocytes and macrophages. All of these lipid droplet-associated proteins pervade the lipid droplet core and hence are not restricted to the droplet surface. Moreover, lipid droplets are surprisingly heterogeneous with respect to their complements and their distribution of lipid droplet-associated proteins. Whereas caveolin-1 is synthesized in the endoplasmic reticulum and is transferred to the lipid droplet core by inundating lipids during droplet budding, the PAT proteins, which are synthesized on free ribosomes in the cytoplasm, evidently target to the lipid droplet after it has formed. How the polar lipid droplet-associated proteins are accommodated among the essentially hydrophobic neutral lipids of the lipid droplet core remains to be determined.  相似文献   

5.
6.
In adipocytes, lipolysis is a highly regulated process involving hormonal signals, lipid droplet-associated proteins, and lipases. The discovery of new lipid droplet-associated proteins added complexity to the current model of lipolysis. In this study, we used cultured human adipocytes to demonstrate that fat-specific protein 27 (FSP27), an abundantly expressed protein in adipocytes, regulates both basal and stimulated lipolysis by interacting with adipose triglyceride lipase (ATGL, also called desnutrin or PNPLA2). We identified a core domain of FSP27, amino acids 120–220, that interacts with ATGL to inhibit its lipolytic function and promote triglyceride storage. We also defined the role of FSP27 in free fatty acid-induced insulin resistance in adipocytes. FSP27 depletion in human adipocytes increased lipolysis and inhibited insulin signaling by decreasing AKT phosphorylation. However, reducing lipolysis by either depletion of ATGL or expression of exogenous full-length FSP27 or amino acids 120–220 protected human adipocytes against the adverse effects of free fatty acids on insulin signaling. In embryonic fibroblasts derived from ATGL KO mice, exogenous free fatty acids did not affect insulin sensitivity. Our results demonstrate a crucial role for FSP27-ATGL interactions in regulating lipolysis, triglyceride accumulation, and insulin signaling in human adipocytes.  相似文献   

7.
Yuan Li  Wei-Xing Zong 《Autophagy》2017,13(11):1995-1997
Fatty acids are an important cellular energy source under starvation conditions. However, excessive free fatty acids (FFAs) in the cytoplasm cause lipotoxicity. Therefore, it is important to understand the mechanisms by which cells mobilize lipids and maintain a homeostatic level of fatty acids. Recent evidence suggests that cells can break down lipid droplets (LDs), the intracellular organelles that store neutral lipids, via PNPLA2/adipose triglyceride lipase and a selective type of macroautophagy/autophagy termed lipophagy, to release FFAs under starvation conditions. FFAs generated from LD catabolism are either transported to mitochondria for β-oxidation or converted back to LDs. The biogenesis of LDs under starvation conditions is mediated by autophagic degradation of membranous organelles and requires diacylglycerol O-acyltransferase 1, which serves as an adaptive cellular protective mechanism against lipotoxicity.  相似文献   

8.
Adipose differentiation-related protein (ADRP) is a lipid droplet-associated protein that is expressed early during adipose differentiation. The present study was undertaken to reveal the role of ADRP in adipose differentiation. In murine fibroblasts infected with green fluorescent protein (GFP)-ADRP fusion protein expression adenovirus vector, confocal microscopic analysis showed the number and size of lipid droplets apparently increased comparing with those of control cells. Overexpressed GFP-ADRP were mainly located at the surface of lipid droplets and appeared to be "ring-shaped." Triacylglycerol content was also significantly (P < 0.001) increased in GFP-ADRP-overexpressed cells compared with control cells. ADRP-induced lipid accumulation did not depend on adipocyte-specific gene induction, such as peroxisome proliferator-activated receptor-gamma, lipoprotein lipase, or other lipogenic genes, including acyl-CoA synthetase, fatty acid-binding protein, and fatty acid transporter. In conclusion, ADRP stimulated lipid accumulation and lipid droplet formation without induction of other adipocyte-specific genes or other lipogenic genes in murine fibroblasts. The detailed molecular mechanisms of ADRP on lipid accumulation remain to be elucidated.  相似文献   

9.
In the recent years, new advances in the biology of lipid droplets led these structures specialized for lipid storage to be considered as new universal intracellular organelles playing active roles in cell physiology. Concomitantly, studies on the pathogenesis of metabolic diseases such as type 2 diabetes or atherosclerosis, associated with ongoing epidemic obesity, have pointed out the importance of lipotoxic effects in metabolic dysfunction, generated by ectopic lipid storage in non-adipose tissues. The purpose of this paper is to establish connections between recent discoveries in lipid droplet biology and novel views in the pathology of the metabolic syndrome. Bringing together the new concepts produced in these two separated fields might show the way towards the definition of innovative strategies to treat metabolic diseases. Particular attention is given to the role of adipocyte-specific proteins that interact with lipid droplets and confer unique functions to adipocyte lipid storage by limiting the spill-over of fatty acids and their lipotoxic effects.  相似文献   

10.
Mutation of the protein spartin is a cause of one form of spastic paraplegia. Spartin interacts with ubiquitin ligases of the Nedd4 family, and a recent report in BMC Biology now shows that it acts as an adaptor to recruit and activate the ubiquitin ligase AIP4 onto lipid droplets, leading to the ubiquitination and degradation of droplet-associated proteins. A deficiency of spartin apparently causes lipid droplets to accumulate.  相似文献   

11.
Jambunathan S  Yin J  Khan W  Tamori Y  Puri V 《PloS one》2011,6(12):e28614
Fat Specific Protein 27 (FSP27), a lipid droplet (LD) associated protein in adipocytes, regulates triglyceride (TG) storage. In the present study we demonstrate that FSP27 plays a key role in LD morphology to accumulate TGs. We show here that FSP27 promotes clustering of the LDs which is followed by their fusion into fewer and enlarged droplets. To map the domains of FSP27 responsible for these events, we generated GFP-fusion constructs of deletion mutants of FSP27. Microscopic analysis revealed that amino acids 173-220 of FSP27 are necessary and sufficient for both the targeting of FSP27 to LDs and the initial clustering of the droplets. Amino acids 120-140 are essential but not sufficient for LD enlargement, whereas amino acids 120-210 are necessary and sufficient for both clustering and fusion of LDs to form enlarged droplets. In addition, we found that FSP27-mediated enlargement of LDs, but not their clustering, is associated with triglyceride accumulation. These results suggest a model in which FSP27 facilitates LD clustering and then promotes their fusion to form enlarged droplets in two discrete, sequential steps, and a subsequent triglyceride accumulation.  相似文献   

12.
The study of proteins associated with lipid droplets in adipocytes and many other cells is a rapidly developing area of inquiry. Although lipid droplets are easily visible by light microscopy, few standardized microscopy methods have been developed. Several methods of chemical fixation have recently been used to preserve cell structure before visualization of lipid droplets by light microscopy. We tested the most commonly used methods to compare the effects of the fixatives on cellular lipid content and lipid droplet structure. Cold methanol fixation has traditionally been used before visualization of cytoskeletal elements. We found this method unacceptable for study of lipid droplets because it extracted the majority of cellular phospholipids and promoted fusion of lipid droplets. Cold acetone fixation is similarly unacceptable because the total cellular lipids are extracted, causing collapse of the shell of lipid droplet-associated proteins. Fixation of cells with paraformaldehyde is the method of choice, because the cells retain their lipid content and lipid droplet structure is unaffected. As more lipid droplet-associated proteins are discovered and studied, it is critical to use appropriate methods to avoid studying artifacts.  相似文献   

13.
Most mammalian cells package neutral lipids into droplets that are surrounded by a monolayer of phospholipids and a specific set of proteins including the adipose differentiation-related protein (ADRP; also called adipophilin), which is found in a wide array of cell types, and the perilipins, which are restricted to adipocytes and steroidogenic cells. TIP47 was initially identified in a yeast two-hybrid screen for proteins that interact with the cytoplasmic tail of the mannose 6-phosphate receptor, yet its sequence is highly similar to the lipid droplet protein, ADRP, and more distantly related to perilipins. Hence, we hypothesized that TIP47 might be associated with lipid droplets. In HeLa cells grown in standard low lipid-containing culture media, immunofluorescence microscopy revealed that the cells had few lipid droplets; however, TIP47 and ADRP were found on the surfaces of the small lipid droplets present. When the cells were grown in media supplemented with physiological levels of fatty acids, the amount of neutral lipid stored in lipid droplets increased dramatically, as did the staining of TIP47 and ADRP surrounding these droplets. TIP47 was found primarily in the cytosolic fractions of HeLa cells and murine MA10 Leydig cells grown in low lipid-containing culture medium, while ADRP was undetectable in these fractionated cell homogenates. When HeLa and MA10 Leydig cells were lipid-loaded, significant levels of ADRP were found in the floating lipid droplet fractions and TIP47 levels remained constant, but the distribution of a significant portion of TIP47 shifted from the cytosolic fractions to the lipid droplet fractions. Thus, we conclude that TIP47 associates with nascent lipid droplets and can be classified as a lipid droplet-associated protein.  相似文献   

14.
Li H  Song Y  Zhang LJ  Gu Y  Li FF  Pan SY  Jiang LN  Liu F  Ye J  Li Q 《PloS one》2012,7(6):e36712
Lipid storage droplet protein 5 (LSDP5) is a lipid droplet-associated protein of the PAT (perilipin, adipophilin, and TIP47) family that is expressed in the liver in a peroxisome proliferator-activated receptor alpha (PPARα)-dependent manner; however, its exact function has not been elucidated. We noticed that LSDP5 was localized to the surface of lipid droplets in hepatocytes. Overexpression of LSDP5 enhanced lipid accumulation in the hepatic cell line AML12 and in primary hepatocytes. Knock-down of LSDP5 significantly decreased the triglyceride content of lipid droplets, stimulated lipolysis, and modestly increased the mitochondrial content and level of fatty-acid β-oxidation in the mitochondria. The expression of PPARα was increased in LSDP5-deficient cells and required for the increase in the level of fatty acid β-oxidation in LSDP5-deficient cells. Using serial deletions of LSDP5, we determined that the lipid droplet-targeting domain and the domain directing lipid droplet clustering overlapped and were localized to the 188 amino acid residues at the N-terminus of LSDP5. Our findings suggest that LSDP5, a novel lipid droplet protein, may contribute to triglyceride accumulation by negatively regulating lipolysis and fatty acid oxidation in hepatocytes.  相似文献   

15.
Wang C  Liu Z  Huang X 《PloS one》2012,7(2):e32086
Lipids are essential components of all organisms. Within cells, lipids are mainly stored in a specific type of organelle, called the lipid droplet. The molecular mechanisms governing the dynamics of lipid droplets have been little explored. The protein composition of lipid droplets has been analyzed in numerous proteomic studies, and a large number of lipid droplet-associated proteins have been identified, including Rab small GTPases. Rab proteins are known to participate in many intracellular membranous events; however, their exact role in lipid droplets is largely unexplored. Here we systematically investigate the roles of Drosophila Rab family proteins in lipid storage in the larval adipose tissue, fat body. Rab32 and several other Rabs were found to affect the size of lipid droplets as well as lipid levels. Further studies showed that Rab32 and Rab32 GEF/Claret may be involved in autophagy, consequently affecting lipid storage. Loss-of-function mutants of several components in the autophagy pathway result in similar effects on lipid storage. These results highlight the potential functions of Rabs in regulating lipid metabolism.  相似文献   

16.
Lipid droplets in adipocytes serve as the principal long-term energy storage depot of animals. There is increasing recognition that lipid droplets are not merely a static neutral lipid storage site, but in fact dynamic and multi-functional organelles. Structurally, lipid droplet consists of a neutral lipid core surrounded by a phospholipid monolayer and proteins embedded in or bound to the phospholipid layer. Proteins on the surface of lipid droplets are crucial to droplet structure and dynamics. To understand the lipid droplet-associated proteome of primary adipocyte with a large central lipid droplet, lipid droplets of white adipose tissue from C57BL/6 mice were isolated. And the proteins were extracted and analyzed by liquid chromatography coupled with tandem mass spectrometry. A total of 193 proteins including 73 previously unreported proteins were identified. Furthermore, the isotope-coded affinity tags (ICAT) was used to compare the difference of lipid droplet-associated proteomes between the normal lean and the high-fat diet-induced obese C57BL/6 mice. Of 23 proteins quantified by ICAT analysis, 3 proteins were up-regulated and 4 proteins were down-regulated in the lipid droplets of adipose tissue from the obese mice. Importantly, two structural proteins of lipid droplets, perilipin A and vimentin, were greatly reduced in the lipid droplets of the adipose tissue from the obese mice, implicating reduced protein machinery for lipid droplet stability.  相似文献   

17.
PURPOSE OF REVIEW: Cytosolic lipid droplets are now recognized as dynamic organelles. This review summarizes our current understanding of the mechanisms involved in the formation of lipid droplets, the importance of lipid droplet-associated proteins and the link between lipid droplet accumulation and development of insulin resistance. RECENT FINDINGS: Lipid droplets are formed as primordial droplets and they increase in size by fusion. This fusion process requires the alpha-soluble N-ethylmaleimide-sensitive factor adaptor protein receptor SNAP23, which is also involved in the insulin-dependent translocation of a glucose transporter to the plasma membrane. Recent data suggest that SNAP23 is the link between increased lipid droplet accumulation and development of insulin resistance. Lipid droplets also form tight interactions with other organelles. Furthermore, additional lipid droplet-associated proteins have been identified and shown to play a role in droplet assembly and turnover, and in sorting and trafficking events. SUMMARY: Recent studies have identified a number of key proteins that are involved in the formation and turnover of lipid droplets, and SNAP23 has been identified as a link between accumulation of lipid droplets and development of insulin resistance. Further understanding of lipid droplet biology could indicate potential therapeutic targets to prevent accumulation of lipid droplets and associated complications.  相似文献   

18.
Intracellular neutral lipid storage droplets are essential organelles of eukaryotic cells, yet little is known about the proteins at their surfaces or about the amino acid sequences that target proteins to these storage droplets. The mammalian proteins Perilipin, ADRP, and TIP47 share extensive amino acid sequence similarity, suggesting a common function. However, while Perilipin and ADRP localize exclusively to neutral lipid storage droplets, an association of TIP47 with intracellular lipid droplets has been controversial. We now show that GFP-tagged TIP47 co-localizes with isolated intracellular lipid droplets. We have also detected a close juxtaposition of TIP47 with the surfaces of lipid storage droplets using antibodies that specifically recognize TIP47, further indicating that TIP47 associates with intracellular lipid storage droplets. Finally, we show that related proteins from species as diverse as Drosophila and Dictyostelium can also target mammalian or Drosophila lipid droplet surfaces in vivo. Thus, sequence and/or structural elements within this evolutionarily ancient protein family are necessary and sufficient to direct association to heterologous intracellular lipid droplet surfaces, strongly indicating that they have a common function for lipid deposition and/or mobilization.  相似文献   

19.
Lipid droplets are intracellular energy storage organelles composed of a hydrophobic core of neutral lipid, surrounded by a monolayer of phospholipid and a diverse array of proteins. The function of the vast majority of these proteins with regard to the formation and/or turnover of lipid droplets is unknown. Our laboratory was the first to report that microsomal triglyceride transfer protein (MTP), a lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins, was expressed in adipose tissue of humans and mice. In addition, our studies suggested that MTP was associated with lipid droplets in both brown and white fat. Our observations led us to hypothesize that MTP plays a key role in lipid droplet formation and/or turnover. The objective of these studies was to gain insight into the function of MTP in adipocytes. Using molecular, biochemical, and morphologic approaches we have shown: 1) MTP protein levels increase nearly five-fold as 3T3-L1 cells differentiate into adipocytes. 2) As 3T3-L1 cells undergo differentiation, MTP moves from the juxtanuclear region of the cell to the surface of lipid droplets. MTP and perilipin 2, a major lipid droplet surface protein, are found on the same droplets; however, MTP does not co-localize with perilipin 2. 3) Inhibition of MTP activity has no effect on the movement of triglyceride out of the cell either as a lipid complex or via lipolysis. 4) MTP is found associated with lipid droplets within hepatocytes from human fatty livers, suggesting that association of MTP with lipid droplets is not restricted to adipocytes. In summary, our data demonstrate that MTP is a lipid droplet-associated protein. Its location on the surface of the droplet in adipocytes and hepatocytes, coupled with its known function as a lipid transfer protein and its increased expression during adipocyte differentiation suggest a role in lipid droplet biology.  相似文献   

20.
All eukaryotic organisms store excess lipid in intracellular lipid droplets. These dynamic structures are associated with and regulated by numerous proteins. Perilipin 2, an abundant protein on most lipid droplets, promotes neutral lipid accumulation in lipid droplets. However, the mechanism by which perilipin 2 binds to and remains anchored on the lipid droplet surface is unknown. Here we identify features of the lipid droplet surface that influence perilipin 2 localization. We show that perilipin 2 binding to the lipid droplet surface requires both hydrophobic and electrostatic interactions. Reagents that disrupt these interactions also decrease binding. Moreover, perilipin 2 binding does not depend on other lipid droplet-associated proteins but is influenced by the lipid composition of the surface. Perilipin 2 binds to synthetic vesicles composed of dioleoylphosphatidylcholine, a phospholipid with unsaturated acyl chains. Decreasing the temperature of the binding reaction, or introducing phospholipids with saturated acyl chains, decreases binding. We therefore demonstrate a role for surface lipids and acyl chain packing in perilipin 2 binding to lipid droplets. The ability of the lipid droplet phospholipid composition to impact protein binding may link changes in nutrient availability to lipid droplet homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号