首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Catechins, major polyphenol constituents of green tea, are potent chemopreventive agents against cancers caused by chemical carcinogens in rodents. The effects of four epicatechin derivatives, epigallocatechin gallate (EGCG), epicatechin gallate (ECG), epigallocatechin (EGC) and epicatechin (EC), on the metabolic activation of benzo[a]pyrene (B[a]P), 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhIP) and aflatoxin B(1) (AFB(1)) by human cytochrome P450 (CYP) were examined. B[a]P, PhIP and AFB(1) were activated by respective human CYP1A1, CYP1A2 and CYP3A4 expressed in the membrane fraction of genetically engineered Salmonella typhimurium (S. typhimurium) TA1538 cells harboring the human CYP and human NADPH-CYP reductase (OR), when the membrane fraction was added to S. typhimurium TA98. Galloylated catechins, ECG and EGCG inhibited the mutagenic activation potently, while EGC and EC showed relatively weak inhibitory effects. Catechins also inhibited the oxidations of typical substrates catalyzed by human CYPs, namely ethoxycoumarin O-deethylation by CYP1A1, ethoxyresorufin O-deethylation by CYP1A2 and midazolam 1'-hydroxylation by CYP3A4. The IC(50) values of catechins for the inhibition of human CYP were roughly the same as those seen in the mutagenic activation. EGCG inhibited other forms of human CYP such as CYP2A6, CYP2C19 and CYP2E1, indicating the non-specific inhibitory effects of EGCG toward human CYPs. Furthermore, EGCG inhibited human NADPH-cytochrome CYP reductase (OR) with a K(i) value of 2.5 microM. These results suggest that the inhibition of the enzyme activity of CYP is accounted for partially by the inhibition of OR.  相似文献   

2.
Epidemiological evidence has suggested an association between meat consumption and the risk of breast cancer. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine found in cooked meat, has been implicated in the aetiology of breast cancer and has been shown to induce tumour formation in rodent mammary glands. In addition, polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (B[a]P) which has also been shown to induce tumour formation at a number of sites in rodents including the breast, are produced during the cooking of meat through the pyrolysis of fats. The aim of this study was to examine the bioavailability of these compounds to human breast tissue and their ability to bind to DNA to form DNA adducts. Patients undergoing breast surgery at York District Hospital were orally administered prior to surgery a capsule containing 20microg of 14C PhIP (182kBq, specific activity 2.05GBq/mmol) or 5microg of 14C B[a]P (36kBq, specific activity 1.81GBq/mmol). At surgery, normal and tumour breast tissue was resected and tissue concentrations of carcinogen measured by liquid scintillation counting and DNA adduct levels by accelerator mass spectrometry (AMS) were subsequently determined. It was found that both 14C PhIP and 14C B[a]P were able to reach the target organ where they had the ability to form DNA adducts. The level of adducts ranged from 26.22-477.35 and 6.61-208. 38 adducts/10(12) nucleotides following administration of 14C PhIP and 14C B[a]P, respectively, with no significant difference observed between levels in normal or tumour tissue. In addition, the data obtained in this study were comparable to adduct levels previously found in colon samples following administration of the same compounds to individuals undergoing colorectal surgery. This is the first report that these two carcinogens bind to human breast DNA after administration of a defined low dose.  相似文献   

3.
Aim of the study was to investigate the usefulness of two human derived hepatoma cell lines (HepG2 and Hep3B) for the detection of dietary and lifestyle related DNA-reactive carcinogens. Comparisons of the sensitivity of HepG2 cells of different origin towards benzo[a]pyrene (B(a)P) showed that strong differences exist in the induction of micronuclei (MN). The most sensitive was used for all further experiments, in which we investigated the effects of aflatoxin B(1) (AFB(1)), B(a)P, As(2)O(3), CdCl(2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), ethanol, acetaldehyde and caffeic acid in micronucleus (MN) tests. Dose dependent effects were detected in HepG2 with AFB(1) (0.2microM), CdCl(2) (2.2microM), As(2)O(3) (8.1microM), B(a)P (22.7microM), PhIP (35.7microM), NDMA (22.7mM), acetaldehyde (11.2mM) and ethanol (442.2mM). Numbers in parentheses indicate the C(D) values (concentration that induced a two-fold increase over the background). NNK and caffeic acid gave negative results under all conditions. In Hep3B cells, the effects were generally weaker. With PhIP, As(2)O(3) and NDMA negative results were obtained; with caffeic acid and NPYR marginal but significant induction of MN was observed. Enzyme measurements showed that both cell lines possess CYP1A1, glutathione-S-transferase (three-fold higher in HepG2) as well as N-acetyltransferase (NAT) 1 and sulfotransferases (SULT1A1 and SULT1A3; two- and seven-fold higher in HepG2); other cytochrome P450 enzymes (CYP1A2, 2B1, 2E1) and NAT2 were not detectable. The differences in the activities of the various enzymes may explain the contrasting results obtained in the MN experiments. Overall, our results indicate that the HepG2 line is more sensitive towards dietary genotoxins than Hep3B, and support the assumption that the HepG2/MN assay enables the detection of genotoxic carcinogens which give negative results in other currently used in vitro assays.  相似文献   

4.
Colorectal neoplasia is the third most common cancer worldwide. Environmental factors such as diet are known to be involved in the etiology of this cancer. Several epidemiological studies have suggested that specific neo-formed mutagenic compounds related to meat consumption are an underlying factor involved in the association between diet and colorectal cancer. Heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs) are known mutagens and possible human carcinogens formed at the same time in meat during cooking processes. We studied the genotoxicity of the model PAH benzo(a)pyrene (B(a)P) and HCA 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), alone or in mixture, using the mouse intestinal cell line ApcMin/+, mimicking the early step of colorectal carcinogenesis, and control Apc+/+ cells. The genotoxicity of B(a)P and PhIP was investigated using both cell lines, through the quantification of B(a)P and PhIP derived DNA adducts, as well as the use of a genotoxic assay based on histone H2AX phosphorylation quantification. Our results demonstrate that heterozygous Apc mutated cells are more effective to metabolize B(a)P. We also established in different experiments that PhIP and B(a)P were more genotoxic on ApcMin/+ cells compared to Apc+/+. Moreover when tested in mixture, we observed a combined genotoxicity of B(a)P and PhIP on the two cell lines, with an increase of PhIP derived DNA adducts in the presence of B(a)P. Because of their genotoxic effects observed on heterozygous Apc mutated cells and their possible combined genotoxic effects, both B(a)P and PhIP, taken together, could be implicated in the observed association between meat consumption and colorectal cancer.  相似文献   

5.
Epidemiological evidence has suggested an association between meat consumption and the risk of breast cancer. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), a heterocyclic amine found in cooked meat, has been implicated in the aetiology of breast cancer and has been shown to induce tumour formation in rodent mammary glands. In addition, polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (B[a]P) which has also been shown to induce tumour formation at a number of sites in rodents including the breast, are produced during the cooking of meat through the pyrolysis of fats. The aim of this study was to examine the bioavailability of these compounds to human breast tissue and their ability to bind to DNA to form DNA adducts. Patients undergoing breast surgery at York District Hospital were orally administered prior to surgery a capsule containing 20 μg of 14C PhIP (182 kBq, specific activity 2.05 GBq/mmol) or 5 μg of 14C B[a]P (36 kBq, specific activity 1.81 GBq/mmol). At surgery, normal and tumour breast tissue was resected and tissue concentrations of carcinogen measured by liquid scintillation counting and DNA adduct levels by accelerator mass spectrometry (AMS) were subsequently determined. It was found that both 14C PhIP and 14C B[a]P were able to reach the target organ where they had the ability to form DNA adducts. The level of adducts ranged from 26.22–477.35 and 6.61–208.38 adducts/1012 nucleotides following administration of 14C PhIP and 14C B[a]P, respectively, with no significant difference observed between levels in normal or tumour tissue. In addition, the data obtained in this study were comparable to adduct levels previously found in colon samples following administration of the same compounds to individuals undergoing colorectal surgery. This is the first report that these two carcinogens bind to human breast DNA after administration of a defined low dose.  相似文献   

6.
Identification of causative agents for human cancers is the goal of our studies. We analyzed ordinary foods for mutagenicity, using the well-established Salmonella test. Heating fish and meat yielded mutagens that require metabolic activation for exhibition of mutagenicity. Structural determination revealed these mutagens to be heterocyclic amines (HCAs), their precursors in some cases being creatin(in)e, sugars and amino acids. Ten HCAs so far examined have all proved carcinogenic in mice and rats, inducing cancers in various organs such as in the mammary glands, prostate, lung, colon, skin, bladder and liver. Human exposure to HCAs is 0.1-12 microg/day, predominantly to 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). For these types of genotoxic carcinogens, DNA-adduct formation is crucially important and PhIP-DNA adducts have been detected in human tissues. However, the amounts of individual HCAs ingested by humans may not be sufficient to induce cancers by themselves and many environmental factors have also been implicated in neoplasia in man, with other considerable inter-individual variation in susceptibility, e.g., to colon carcinogenesis. This is in line with results obtained by feeding different strains of rats with HCA. Studies using lacI transgenic mice and rats have revealed that DNA adducts do not directly correlate with mutant frequencies at the organ level, or cancer incidence. However, sequencing of the Apc gene of rat colon tumors induced by PhIP revealed that it induces a signature mutation of G deletion from the GGGA sequence. This type of mutation is found in the p53 gene of 0.3% human cancers having p53-somatic mutations, and it has been calculated that 3%-10% of the p53 mutations detected in human cancers could be ascribable to PhIP. Although there remains the possibility that other carcinogens involved in human carcinogenesis cause the same signature mutation, the available data point to an important role for PhIP.  相似文献   

7.
Yen GC  Ju JW  Wu CH 《Free radical research》2004,38(2):193-200
The protective effects of three tea extracts (green tea, GTE; oolong tea, OTE; and black tea, BTE) and five tea polyphenols (epicatechin, EC; epicatechin gallate, ECG; epigallocatechin, EGC; epigallocatechin gallate, EGCG; and theaflavins, THFs) on benzo[a]pyrene (B[a]P)-induced DNA damage in Chang liver cells were evaluated using the comet assay. B[a]P-induced DNA damage in Chang liver cells was significantly (p < 0.05) inhibited by GTE and OTE at a concentration of 10 microg/ml and by BTE at 25 microg/ml. At a concentration of 100 microg/ml, the % tail DNA was reduced from 33% (B[a]P treated only) to 10, 9, 13%, by GTE, OTE and BTE, respectively. EC and ECG did not cause DNA damage in cells according to the results of the comet assay; however, EGC, EGCG and theaflavins caused DNA damage in cells at a concentration of 100 microM. The results indicated that EC and ECG had protective effects against B[a]P-induced DNA damage in cells at a concentration of 10-100 microM. Although EGC, EGCG and the theaflavins caused DNA damage at a high concentration, but they had protective effects against B[a]P-induced DNA damage in cells at a low concentration of 10-50 microM. The results also showed that the DNA damage in cells induced by EGC, EGCG, and the theaflavins was due to the generation of superoxide during incubation with cells at a higher concentration. Therefore, tea catechins and THFs play an important role in enabling tea extracts to inhibit DNA damage in Chang liver cells.  相似文献   

8.
Constitutive and benzo[a]pyrene (B[a]P) inducible expression of CYP1A1 and CYP1A2 in prostate cancer and normal prostate epithelial cells were examined by immunoblotting. Androgen independent prostate cancer cell lines DU145 and PC3 have constitutive expression of CYP1A and CYP1A1 and CYP1A2, respectively. Four micromolar B[a]P did not appear to induce CYP1A1 or CYP1A2 expression in DU145 or PC3 cells. The androgen dependent prostate cancer cell line, LnCap, also has constitutive expression of CYP1A1 and CYP1A2. However, both CYP1A1 and CYP1A2 are induced by treatment of LnCap cells with 4 microM B[a]P. Untreated normal prostate and primary prostate tumor cells have no detectable CYP1A1 expression. Treatment with 4 microM B[a]P induced CYP1A1 expression in both normal and primary tumor prostate cells. Constitutive CYP1A2 expression was detected in normal prostate cells with little or no induction by exposure to 4 microM B[a]P. Primary prostate tumor cells did not show constitutive expression of CYP1A2. However, CYP1A2 was induced by 4 microM B[a]P in primary prostate tumor cells. These observations indicate that hormonal and cancer specific factors affect the expression and induction of the phase I metabolic enzymes, CYP1A1 and CYP1A2 in prostate cells. These observations may be related to the potential smoking-linked higher risk of prostate cancer development and morbidity of prostate cancer patients who smoke.  相似文献   

9.
Cigarette smoke is a risk factor for esophageal squamous cell carcinoma (ESCC). It contains several carcinogens known to initiate and promote tumorigenesis as well as metastasis. The nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is one of the strongest carcinogens in tobacco and our previous studies have shown its proliferation-promoting role in the progression of ESCC. Recently, NNK was identified as an agonist for both beta1- and beta2-adrenoceptors. Thus, we hypothesized that the cancer-promoting effect of NNK was likely mediated through beta-adrenoceptors in ESCC. Therefore, we investigated the comprehensive role of NNK in ESCC in vitro and in vivo, and found that NNK promoted many oncogenic features including ESCC cell proliferation and xenograft tumor growth as well as ESCC cell migration and invasion. Western blotting showed that NNK induced significant up-regulation of phosphorylated ERK1/2, cyclin D1, Bcl-2, and vascular endothelial growth factor as well as down-regulation of Bax. Importantly, the oncogenic effects of NNK in ESCC and the altered protein expression were reversed to some extent by down-regulation of beta1- and beta2-adrenoceptors with the beta2-adrenoceptor showing a greater rescue effect. Taken together, our in vitro and in vivo results demonstrate that NNK plays an oncogenic role in ESCC through beta-adrenoceptors. Furthermore, beta2-adrenoceptor might play a more important role in this process. Our findings might provide a chemoprevention and therapy strategy for cigarette smoke-related ESCC carcinogenesis.  相似文献   

10.
R L Melnick 《FASEB journal》1992,6(9):2698-2706
Cell proliferation has long been recognized as having an important role in chemically induced carcinogenesis. Based on findings that certain nongenotoxic chemical carcinogens induced cell proliferation in the same organ that had an increased incidence of tumors, it has been hypothesized that a chemically induced response of enhanced DNA synthesis and cellular division causes cancer by increasing the rate of spontaneous mutations. It was further suggested that there would be no increased human risk of cancer by non-DNA-reactive compounds at doses that do not cause a proliferative response. An evaluation of the literature on the relationship between chemically induced cell proliferation and liver carcinogenesis reveals that very few systematic cell proliferation studies have been conducted over periods of extended exposure, and in many cases the exposure concentrations were not similar to those used in the cancer studies. The proliferative response resulting from exposure to many nongenotoxic carcinogens is not well sustained, whereas the carcinogenic response by these chemicals often requires prolonged exposure. The available literature leads to the conclusion that quantitative correspondences between cellular proliferation and carcinogenic responses have not been demonstrated and do not support the hypothesis that chemically induced cell proliferation is the primary mechanism by which nongenotoxic chemicals cause liver cancer. Studies of liver carcinogenesis in two-stage models point out the need to better understand chemical effects on cell loss as well as on cell replication, and demonstrate that measurements of cell proliferation alone are not sufficient to elucidate mechanisms of tumor development.  相似文献   

11.
Metabolic activation and DNA binding of aflatoxin B1 (AFB1), N-nitrosodimethylamine (DMN) and benzo[a]pyrene (B[a]P) were compared in human, rat and mouse hepatocytes and human pulmonary alveolar macrophages (PAM). The degree of carcinogen activation by hepatocytes and PAM was measured by cell-mediated mutagenesis assays in which co-cultivated Chinese hamster V79 cells were used to monitor mutagenic metabolites. Hepatocytes from human, mouse and rat metabolized DMN and released the active metabolites to induce either ouabain- or 6-thioguanine-resistant mutation. The mutation frequencies mediated by hepatocytes of the 3 animal species were approximately 3-9 mutants/10(5) survivors at a concentration of 0.2 mM DMN. The variations of radioactivity bound to liver cell DNA were relatively small in cultured mouse, rat, and human hepatocytes exposed to 14C label DMN (0.5 mM) and the binding values were in a range of 6-12 X 10(3) pmoles/mg DNA. However, rat hepatocytes were at least 10-fold more effective than either human or mouse hepatocytes in generating mutagenic metabolites of AFB1 and also had a much higher AFB1 metabolite DNA-binding value. The AFB1 DNA-binding levels were 4.1, 12-27 (range), 120 pmoles/mg DNA respectively in mouse, human, and rat liver cells following AFB1 (3.3 microM) exposure for 20 h. Hepatocytes from the 3 animal species were unable to mediate mutation in the presence of 4 microM B[a]P; PAM activated B[a]P and effectively mediated mutation in the co-cultivated V79 cells. In contrast to results with hepatocytes, PAM failed to generate enough mutagenic metabolites of AFB1 (3.3 microM) and the mediation of mutations was seen only at very high concentration of DMN (80 mM). The genotoxic effects of the 3 carcinogens on hepatocytes from different species in vitro were in agreement with the in vivo animal experiments in that mice are relatively resistant to AFB1 carcinogenesis whereas rats are sensitive; B[a]P is not effective as a complete liver carcinogen in adult rat and mouse whereas DMN induces liver cancer.  相似文献   

12.
Polycyclic aromatic hydrocarbons (PAHs) present in ambient air are considered as potential human carcinogens, but the detailed mechanism of action is still unknown. Our aim was to study the in vitro effect of exposure to dibenzo[a,l]pyrene (DB[a,l]P), the most potent carcinogenic PAH ever tested, and benzo[a]pyrene (B[a]P) in a normal human diploid lung fibroblast cells (HEL) using multiple endpoints. DNA adduct levels were measured by 32P-postlabelling, the expression of p53 and p21(WAF1) proteins by western blotting and the cell cycle distribution by flow cytometry. For both PAHs, the DNA adduct formation was proportional to the time of exposure and dependent on the stage of cell growth in culture. DNA binding was detectable even at the lowest concentration used (24h exposure, 0.01 microM for both PAHs). The highest DNA adduct levels were observed after 24h of exposure in near-confluent cells (>90% of cells at G0/G1 phase), but DNA damage induced by DB[a,l]P was approximately 8-10 times higher at a concentration one order of magnitude lower as compared with B[a]P (for B[a]P at 1 microM and for DB[a,l]P at 0.1 microM: 237+/-107 and 2360+/-798 adducts/10(8) nucleotides, respectively). The induction of p53 and p21(WAF1) protein occurred subsequent to the induction of DNA adducts. The DNA adduct levels correlated with both p53 (R=0.832, P<0.001 and R=0.859, P<0.001, for DB[a,l]P and B[a]P, respectively) and p21(WAF1) levels (R=0.808, P<0.001 and R=0.797, P=0.001, for DB[a,l]P and B[a]P, respectively), regardless of the PAH exposure and the phase of cell growth. The results showed that a detectable increase of p53 and p21(WAF1) proteins (> or = 1.5-fold as compared with controls) requires a minimal DNA adduct level of approximately 200-250 adducts/10(8) nucleotides for both PAHs tested and suggest that the level of adducts rather than their structure triggers the p53 and p21(WAF1) responses. The cell cycle was altered after 12-16h of treatment, and after 24h of exposure to 0.1 microM DB[a,l]P in growing cells, there was approximately 24% increase in S phase cells accompanied by a decrease in G1 and G2/mitosis (G2/M) cells. Cell treatment with 1.0 microM B[a]P resulted in more subtle alterations. We conclude that DB[a,l]P, and to a lesser degree B[a]P, are able to induce DNA adducts as well as p53 and p21(WAF1) without eliciting G1 or G2/M arrests but rather an S phase delay/arrest. Whether the S phase delay observed in our study is beneficial for the survival of the cells remains to be further established.  相似文献   

13.
N-acetyltransferases (EC 2.3.1.5) catalyze O-acetylation of heterocyclic amine carcinogens to DNA-reactive electrophiles that bind and mutate DNA. An acetylation polymorphism exists in humans and Syrian hamsters regulated by N-acetyltransferase-2 (NAT2) genotype. Some human epidemiological studies suggest a role for NAT2 phenotype in predisposition to cancers related to heterocyclic amine exposures, including breast cancer. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine carcinogen prevalent in the human environment and induces a high incidence of mammary tumors in female rats. PhIP-induced carcinogenesis was examined in female rapid and slow acetylator Syrian hamsters congenic at the NAT2 locus. In both rapid and slow acetylators, PhIP-DNA adduct levels were highest in pancreas, lower in heart, small intestine, and colon, and lowest in mammary gland and liver. Metabolic activation of N-hydroxy-PhIP by O-acetyltransferase was highest in mammary epithelial cells, lower in liver and colon, and lowest in pancreas. Metabolic activation of N-hydroxy-PhIP by O-sulfotransferase was low in liver and colon and below the limit of detection in mammary epithelial cells and pancreas. Unlike the rat, PhIP did not induce breast or any other tumors in female rapid and slow acetylator congenic hamsters administered high-dose PhIP (10 doses of 75 mg/kg) and a high-fat diet.  相似文献   

14.
The metabolically competent human lymphoblastoid cell line MCL-5 was treated with a panel of mutagens to assess the induction of DNA damage. Treatment effects were observed by monitoring cell proliferation and by single-cell gel electrophoresis (SCGE). The direct-acting mutagens benzo[a]pyrene-7,8-diol 9,10-epoxide (BPDE) and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG), as well as pro-mutagens requiring metabolic activation, i.e. benzo[a]pyrene (BaP), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 4-N-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and cigarette-smoke condensate (CSC), were assayed by SCGE. Assay schemes were adapted for the MCL-5 cell line and for low levels of strand break induction, by inclusion of the DNA synthesis inhibitors cytosine arabinoside and hydyroxyurea, and by extending the electrophoresis time. For all mutagens tested, dose-dependent increases of median and average tail moment values among 50 nucleoids per slide were observed. The determining factors for selecting the treatment doses for mutation-induction experiments were the solubility of BaP and PhIP in the exposure medium, and the cytotoxicity exhibited by BPDE, MNNG and CSC. Induction of DNA strand breaks was obtained at mutagen concentrations permitting sufficient cell proliferation, except in the case of MNNG.  相似文献   

15.
A growing body of evidence from studies in laboratory animals indicates that green tea protects against cancer development at various organ sites. We have previously shown that green tea, administered as drinking water, inhibits lung tumor development in A/J mice treated with 4-(methylnitrosamino)-1-(3-pyridyl)-l-butanone (NNK), a potent nicotine-derived lung carcinogen found in tobacco. The inhibitory effect of green tea has been attributed to its major polyphenolic compound, epigallocatechin gallate (EGCG), and, to a lesser extent, to caffeine. We have also demonstrated that while levels of O6-methylguanine, a critical lesion in NNK lung tumorigenesis, were not affected in lung DNA. However, the levels of 8-hydroxydeoxyguanosine (8-OH-dG), a marker of oxidative DNA damage, were significantly suppressed in mice treated with green tea or EGCG. These studies underscore the importance of the antioxidant activity of green tea and EGCG for their inhibitory activity against lung tumorigenesis. Unlike green tea, the effect of black tea on carcinogenesis has been scarcely studied, even though the worldwide production and consumption of black tea far exceeds that of green tea. The oxidation products found in black tea, thearubigins and theaflavins, also possess antioxidant activity, suggesting that black tea may also inhibit NNK-induced lung tumorigenesis. Indeed, bioassays in A/J mice have shown that black tea given as drinking water retarded the development of lung cancer caused by NNK. However, data on the relationship of black tea consumption with the lung cancer risk in humans are limited and inconclusive. There is a need for additional tumor bioassays in animal models to better examine the protective role of black tea against lung cancer. The development of adenocarcinomas and adenosquamous carcinomas in F344 rats upon chronic administration of NNK provides an important and relevant model for lung carcinogenesis in smokers. Thus far, no information was previously available regarding the effects of tea on this model. We conducted a 2-year lifetime bioassay in F344 rats to determine whether black tea and caffeine are protective against lung tumorigenesis induced by NNK. Our studies in both mice and rats have generated important new data that support green and black tea and caffeine as potential preventive agents against lung cancer, suggesting that a closer examination of the roles of tea and caffeine on lung cancer in smokers may be warranted.  相似文献   

16.
Cooking meat and fish at high temperature creates heterocyclic amines (HA) including 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Several HA are mutagens in the Ames' S9/Salmonella assay. While PhIP is a substantial Ames' test mutagen, it is 1000-fold less active than the extraordinarily potent MeIQ. In contrast, MeIQ is significantly less mutagenic than PhIP in several mammalian cell assays, especially in repair-deficient Chinese hamster ovary (CHO) cells. HA are suspect human carcinogens on the basis of (i) epidemiological evidence, (ii) induction of tumors in rodents and monkeys, (iii) DNA adduct formation and (iv) mutagenic capacity. In this study, MeIQ and PhIP were significant mutagens at the S1 locus of co-cultivated human/hamster hybrid AL cells following metabolic activation by beta-napthoflavone (betaNF)-induced chick embryonic liver cultures (CELC). MeIQ was more mutagenic than PhIP in the CELC+AL cell assay. The mutant response curves increase with dose and then plateau (PhIP), or decrease (MeIQ). The inflections in these response curves coincide with dose-dependent decreases in cytochrome CYP1A1 activity. Molecular analysis of S1- mutants indicates that a substantial fraction, >65%, of the mutations induced by PhIP are deletions of 4.2 to 133 (Mbp); half are larger than 21 Mbp. Mutations induced by MeIQ were smaller, most (56%) being less than 5.7 Mbp. When appropriate metabolic activation is combined with a target locus, which can detect both small and large chromosomal mutations, both MeIQ and PhIP are significant mutagens and clastogens in repair proficient mammalian cells.  相似文献   

17.
DNA adduct formation from tobacco-specific N-nitrosamines   总被引:22,自引:0,他引:22  
Hecht SS 《Mutation research》1999,424(1-2):127-142
Tobacco-specific N-nitrosamines are a group of carcinogens derived from the tobacco alkaloids. They are likely causative factors for cancers of the lung, esophagus, pancreas, and oral cavity in people who use tobacco products. The most carcinogenic tobacco-specific nitrosamines in laboratory animals are 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), and N'-nitrosonornicotine (NNN). DNA adduct formation from NNK and NNN has been studied extensively and is reviewed here. NNK is metabolically activated by cytochromes P450 to intermediates which methylate and pyridyloxobutylate DNA. The resulting adducts have been detected in cells and tissues susceptible to NNK carcinogenesis in rodents. The methylation and pyridyloxobutylation pathways are both important in carcinogenesis by NNK. NNK also induces single strand breaks and increases levels of 8-oxodeoxyguanosine in DNA of treated animals. NNAL, which like NNK is a potent pulmonary carcinogen, is also metabolically activated to methylating and pyridyloxobutylating intermediates. NNN pyridyloxobutylates DNA in its rat target tissues, esophagus and nasal mucosa. Methyl and pyridyloxobutyl DNA adducts are detected in human tissues. The methyl adducts most likely result in part from exposure of smokers to NNK, but these adducts are also detected in non-smokers. Some of the methyl adducts detected in non-smokers may be due to environmental tobacco smoke exposure. There are also potential dietary and endogenous sources of these adducts. Pyridyloxobutyl DNA adducts in human tissues result mainly from exposure to tobacco-specific N-nitrosamines. In laboratory animals, DNA adduct formation and carcinogenicity of tobacco-specific N-nitrosamines are closely correlated in many instances, and it is likely that similar relationships will hold in humans.  相似文献   

18.
Benzo-[a]-pyrene (B[a]P) is a family member of polycyclic aromatic hydrocarbons and a widespread environmental pollutant. It is a mammary carcinogen in rodents and contributes to the development of human breast cancer. However, the signal transduction pathways induced by B[a]P and its role in breast cancer progression have not been studied in detail. Here, we demonstrate that B[a]P induces cell migration through a lipoxygenase- and Src-dependent pathway, as well as the activation of focal adhesion kinase, Src, and the extracellular signal-regulated kinase 2 in MDA-MB-231 breast cancer cells. However, B[a]P is not able to promote migration in the mammary nontumorigenic epithelial cells MCF12A. Moreover, B[a]P promotes an increase of αvβ3 integrin–cell surface levels and an increase of metalloproteinase (MMP)-2 and MMP-9 secretions. In summary, our findings demonstrate that B[a]P induces the activation of signal transduction pathways and biological processes involved in the invasion/metastasis process in MDA-MB-231 breast cancer cells.  相似文献   

19.
To study the suspected mechanism of the interaction between tobacco smoking and asbestos exposure in the modulation of cancer risk, the mutagenic potential of asbestos in combination with the tobacco smoke carcinogen benzo[a]pyrene (B[a]P) was examined in vivo in the rat lung. B[a]P was administered intratracheally in one set of experiments, or by two daily intraperitoneal injections in another set of experiments, to lambdalacI transgenic rats, together with 1, 2 or 4 x 2 mg amosite in one experiment. In the first experiment, the combined action of amosite and B[a]P caused a synergistic (superadditive) increase of mutation frequency in the lung, as compared to groups treated only with asbestos or B[a]P. In the second experiment, i.p. treatment with B[a]P did not significantly alter the mutation frequency induced by amosite, neither after 4 nor after 16 weeks of exposure. The B[a]P-DNA adduct levels were unaffected by amosite co-treatment in both experiments. We assume that the synergistic increase of mutation frequency after intratracheal treatment was due to the mitogenic activities of B[a]P and of amosite. In conclusion, our findings indicate that a weak and delayed mutagenic effect of amosite in rat lung observed in another study was strongly enhanced by the concomitant action of B[a]P. The striking enhancement effect of B[a]P may provide a basis for understanding the suspected synergism of smoking on asbestos carcinogenesis.  相似文献   

20.
Metformin (MET) is a clinically used anti-hyperglycemic agent that shows activities against chemically-induced animal models of cancer. A study from our laboratory showed that MET protectes against 7, 12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenesis in vitro human non-cancerous epithelial breast cells (MCF10A) via activation of the aryl hydrocarbon receptor (AhR). However, it is unclear whether MET can prevent the initiation of breast carcinogenesis in an in vivo rat model of AhR-induced breast carcinogenesis. Therefore, the main aims of this study are to examine the effect of MET on protecting against rat breast carcinogenesis induced by DMBA and to explore whether this effect is medicated through the AhR pathway. In this study, treatment of female rats with DMBA initiated breast carcinogenesis though inhibiting apoptosis and tumor suppressor genes while inducing oxidative DNA damage and cell cycle proliferative markers. This effect was associated with activation of AhR and its downstream target genes; cytochrome P4501A1 (CYP1A1) and CYP1B1. Importantly, MET treatment protected against DMBA-induced breast carcinogenesis by restoring DMBA effects on apoptosis, tumor suppressor genes, DNA damage, and cell proliferation. Mechanistically using in vitro human breast cancer MCF-7 cells, MET inhibited breast cancer stem cells spheroids formation and development by DMBA, which was accompanied by a proportional inhibition in CYP1A1 gene expression. In conclusion, the study reports evidence that MET is an effective chemopreventive therapy for breast cancer by inhibiting the activation of CYP1A1/CYP1B1 pathway in vivo rat model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号