首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions—uppermost (high irradiance), underside (low irradiance), and the colony base—representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.  相似文献   

2.

Background

The drastic decline in the abundance of Caribbean acroporid corals (Acropora cervicornis, A. palmata) has prompted the listing of this genus as threatened as well as the development of a regional propagation and restoration program. Using in situ underwater nurseries, we documented the influence of coral genotype and symbiont identity, colony size, and propagation method on the growth and branching patterns of staghorn corals in Florida and the Dominican Republic.

Methodology/Principal Findings

Individual tracking of> 1700 nursery-grown staghorn fragments and colonies from 37 distinct genotypes (identified using microsatellites) in Florida and the Dominican Republic revealed a significant positive relationship between size and growth, but a decreasing rate of productivity with increasing size. Pruning vigor (enhanced growth after fragmentation) was documented even in colonies that lost 95% of their coral tissue/skeleton, indicating that high productivity can be maintained within nurseries by sequentially fragmenting corals. A significant effect of coral genotype was documented for corals grown in a common-garden setting, with fast-growing genotypes growing up to an order of magnitude faster than slow-growing genotypes. Algal-symbiont identity established using qPCR techniques showed that clade A (likely Symbiodinium A3) was the dominant symbiont type for all coral genotypes, except for one coral genotype in the DR and two in Florida that were dominated by clade C, with A- and C-dominated genotypes having similar growth rates.

Conclusion/Significance

The threatened Caribbean staghorn coral is capable of extremely fast growth, with annual productivity rates exceeding 5 cm of new coral produced for every cm of existing coral. This species benefits from high fragment survivorship coupled by the pruning vigor experienced by the parent colonies after fragmentation. These life-history characteristics make A. cervicornis a successful candidate nursery species and provide optimism for the potential role that active propagation can play in the recovery of this keystone species.  相似文献   

3.
Anomalously high water temperatures may enhance the likelihood of coral disease outbreaks by increasing the abundance or virulence of pathogens, or by increasing host susceptibility. This study tested the compromised-host hypothesis, and documented the relationship between disease and temperature, through monthly monitoring of Acropora palmata colonies from May 2004 to December 2006, in Hawksnest Bay, St John, US Virgin Islands (USVI). Disease prevalence and the rate of change in prevalence showed a positive linear relationship with water temperature and rate of change in water temperature, respectively, but only in 2005 during prolonged periods of elevated temperature. Both bleached and unbleached colonies showed a positive relationship between disease prevalence and temperature in 2005, but the average area of disease-associated mortality increased only for bleached corals, indicating host susceptibility, rather than temperature per se, influenced disease severity on A. palmata.  相似文献   

4.
In recent years, the new phenomenon of intracolonial genetic variability within a single coral colony has been described. This connotes that coral colonies do not necessarily consist of only a single genotype, but may contain several distinct genotypes. Harboring more than one genotype could improve survival under stressful environmental conditions, e.g., climate change. However, so far it remained unclear whether the intracolonial genetic variability of the adult coral is also present in the gametes. We investigated the occurrence of intracolonial genetic variability in 14 mature colonies of the coral Acropora hyacinthus using eight microsatellite loci. A grid was placed over each colony before spawning, and the emerging egg/sperm bundles were collected separately in each grid. The underlying tissues as well as the egg/sperm bundles were genotyped to determine whether different genotypes were present. Within the 14 mature colonies, we detected 10 colonies with more than one genotype (intracolonial genetic variability). Four out of these 10 mature colonies showed a transfer of different genotypes via the eggs to the next generation. In two out of these four cases, we found additional alleles, and in the two other cases, we found only a subset of alleles in the unfertilized eggs. Our results suggest that during reproduction of A. hyacinthus, more than one genotype per colony is able to reproduce. We discuss the occurrence of different genotypes within a single coral colony and the ability for those to release eggs which are genetically distinct.  相似文献   

5.
The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS). Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010–2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010–2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef), in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%). At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0), whereas in 2010–2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5). A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics) and environmental conditions (e.g., sources of stress) of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species.  相似文献   

6.
White pox disease (WPD) affects the threatened elkhorn coral, Acropora palmata. Owing in part to the lack of a rapid and simple diagnostic test, there have been few systematic assessments of the prevalence of acroporid serratiosis (caused specifically by Serratia marcescens) versus general WPD signs. Six reefs in the Florida Keys were surveyed between 2011 and 2013 to determine the disease status of A. palmata and the prevalence of S. marcescens. WPD was noted at four of the six reefs, with WPD lesions found on 8 to 40% of the colonies surveyed. S. marcescens was detected in 26.9% (7/26) of the WPD lesions and in mucus from apparently healthy colonies both during and outside of disease events (9%; 18/201). S. marcescens was detected with greater frequency in A. palmata than in the overlying water column, regardless of disease status (P = 0.0177). S. marcescens could not be cultured from A. palmata but was isolated from healthy colonies of other coral species and was identified as pathogenic pulsed-field gel electrophoresis type PDR60. WPD lesions were frequently observed on the reef, but unlike in prior outbreaks, no whole-colony death was observed. Pathogenic S. marcescens was circulating on the reef but did not appear to be the primary pathogen in these recent WPD episodes, suggesting that other pathogens or stressors may contribute to signs of WPD. Results highlight the critical importance of diagnostics in coral disease investigations, especially given that field manifestation of disease may be similar, regardless of the etiological agent.  相似文献   

7.
We propose ‘the moving target hypothesis’ to describe the aetiology of a contemporary coral disease that differs from that of its historical disease state. Hitting the target with coral disease aetiology is a complex pursuit that requires understanding of host and environment, and may lack a single pathogen solution. White pox disease (WPX) affects the Caribbean coral Acropora palmata. Acroporid serratiosis is a form of WPX for which the bacterial pathogen (Serratia marcescens) has been established. We used long-term (1994–2014) photographic monitoring to evaluate historical and contemporary epizootiology and aetiology of WPX affecting A. palmata at eight reefs in the Florida Keys. Ranges of WPX prevalence over time (0–71.4%) were comparable for the duration of the 20-year study. Whole colony mortality and disease severity were high in historical (1994–2004), and low in contemporary (2008–2014), outbreaks of WPX. Acroporid serratiosis was diagnosed for some historical (1999, 2003) and contemporary (2012, 2013) outbreaks, but this form of WPX was not confirmed for all WPX cases. Our results serve as a context for considering aetiology as a moving target for WPX and other coral diseases for which pathogens are established and/or candidate pathogens are identified. Coral aetiology investigations completed to date suggest that changes in pathogen, host and/or environment alter the disease state and complicate diagnosis.  相似文献   

8.
There are limited quantitative data available documenting the natural, or non-epizootic, occurrence of scleractinian coral diseases over multiple years. Individual coral colonies exhibiting black band disease (BBD), white plague (WP), dark spots syndrome (DSS), and white band disease (WBD) were monitored 3 times per year on 5 south Florida reefs over a 2 yr period. Surveys included measurements of coral population composition, coral diversity, disease type, coral species affected, colony size, percent of colony affected, and the number of lesions or active infections per colony. Data on re-infections of the same colonies, multiple infections per colony, disease duration, disease-associated tissue mortality, and coral recruitment are also presented. A total of 674 coral colonies exhibiting coral diseases were tagged and monitored. DSS was the most common syndrome (n = 620 infected colonies), but BBD and WP infections caused the largest amount of coral tissue death. The only disease that exhibited a linear increase in incidence with elevated temperature was BBD. DSS and BBD were the most persistent conditions, and WP infections were comparatively short-lived, with obvious signs of disease typically disappearing after 2 to 3 mo. The only disease that caused total colony death as oppposed to partial mortality during the survey period was WBD. WP and DSS incidence was significantly positively correlated with the relative frequency of the species most commonly affected by each disease at each study site. Of the 61 colonies examined in the recruitment survey, only 5 scleractinian coral recruits were identified. The most commonly recorded colonizer of exposed coral skeleton was filamentous/turf algae, thus indicating the potential for a shift towards algal-dominated reef communities.  相似文献   

9.
The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5–56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures.  相似文献   

10.
The rapid decline of Acropora cervicornis and Acropora palmata has often been linked with coral reef deterioration in the Caribbean; yet, it remains controversial whether these species are currently recovering or still declining. In this study, the status of ten populations of A. palmata in Los Roques National Park (LRNP), Venezuela is presented. Six of these populations showed signs of recovery. Ten 80 m2 belt-transects were surveyed at each of the ten reef sites. Within belt-transects, each colony was measured (maximum diameter and height) and its status (healthy, diseased or injured) was recorded. Populations in recovery were defined by a dominance of small to medium-sized colonies in densities >1 colony per 10 m2, together with 75% undamaged colonies, a low prevalence of diseases (<10%), and a low density of predators (0.25 snails per colony). Based on allozyme analysis of seven polymorphic loci in four populations (N = 30), a moderate to high-genetic connectivity among these populations (F ST = 0.048) was found with a predominance of sexual over asexual reproduction (N* : N = 1; N go : N = 0.93–1). Both ecological and molecular data support a good prognosis for the recovery of this species in Los Roques.  相似文献   

11.
Despite recent advances in identifying the causative agents of disease in corals and understanding the impact of epizootics on reef communities, little is known regarding the interactions among diseases, corals, and their dinoflagellate endosymbionts (Symbiodinium spp.). Since the genotypes of both corals and their resident Symbiodinium contribute to colony-level phenotypes, such as thermotolerance, symbiont genotypes might also contribute to the resistance or susceptibility of coral colonies to disease. To explore this, Symbiodinium were identified using the internal transcribed spacer-2 region of ribosomal DNA from diseased and healthy tissues within individual coral colonies infected with black band disease (BB), dark spot syndrome (DSS), white plague disease (WP), or yellow blotch disease (YB) in the Florida Keys (USA) and the US Virgin Islands. Most of the diseased colonies sampled contained B1, B5a, or C1 (depending on host species), while apparently healthy colonies of the same coral species frequently hosted these types and/or additional symbiont diversity. No potentially “parasitic” Symbiodinium types, uniquely associated with diseased coral tissue, were detected. Within most individual colonies, the same dominant Symbiodinium type was detected in diseased and visually healthy tissues. These data indicate that specific Symbiodinium types are not correlated with the infected tissues of diseased colonies and that DSS and WP onset do not trigger symbiont shuffling within infected tissues. However, few diseased colonies contained clade D symbionts suggesting a negative correlation between hosting Symbiodinium clade D and disease incidence in scleractinian corals. Understanding the influence of Symbiodinium diversity on colony phenotypes may play a critical role in predicting disease resistance and susceptibility in scleractinian corals.  相似文献   

12.
Coral nurseries are commonly employed to generate coral material for reef restoration projects, but observations of epifaunal organisms utilising the nurseries for food and shelter indicate that they can also provide important functions beyond that of coral propagation. To examine the level of biodiversity that can be supported by coral nurseries, and investigate if epifaunal communities were influenced by the presence of live coral tissue, we compared the abundance, diversity and community composition of mobile invertebrate epifauna associated with live and dead fragments of three coral species (Pocillopora acuta, Echinopora lamellosa, Platygyra sinensis) that were reared in an in situ nursery. A total of 418 mobile invertebrates spanning 63 taxa were recorded from 22 coral colonies. The three coral species hosted significantly different epifaunal communities, most likely a consequence of the difference in growth forms of the coral hosts. Significant differences in epifaunal communities were only observed between live and dead colonies of P. acuta, indicating that resource provisioning in this species is particularly influenced by the presence of live tissue. Our findings showed that coral nurseries can support a range of mobile invertebrates and function as tools to conserve threatened mobile invertebrates. This ecological function is under-studied and should be assessed in restoration programs for the conservation of corals and associated fauna.  相似文献   

13.
In September of 2010, Brewer''s Bay reef, located in St. Thomas (U.S. Virgin Islands), was simultaneously affected by abnormally high temperatures and the passage of a hurricane that resulted in the mass bleaching and fragmentation of its coral community. An outbreak of a rapid tissue loss disease among coral colonies was associated with these two disturbances. Gross lesion signs and lesion progression rates indicated that the disease was most similar to the Caribbean coral disease white plague type 1. Experiments indicated that the disease was transmissible through direct contact between colonies, and five-meter radial transects showed a clustered spatial distribution of disease, with diseased colonies being concentrated within the first meter of other diseased colonies. Disease prevalence and the extent to which colonies were bleached were both significantly higher on unattached colony fragments than on attached colonies, and disease occurred primarily on fragments found in direct contact with sediment. In contrast to other recent studies, disease presence was not related to the extent of bleaching on colonies. The results of this study suggest that colony fragmentation and contact with sediment played primary roles in the initial appearance of disease, but that the disease was capable of spreading among colonies, which suggests secondary transmission is possible through some other, unidentified mechanism.  相似文献   

14.

Background

Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD), a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands.

Methodology/Principal Findings

Ripley''s K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect) and transect-level (presence/absence of WBD within transects) data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley''s K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1) at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD.

Conclusions

As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other coral disease studies, as well as, improve reef conservation and management.  相似文献   

15.
The number of coral diseases, coral species they infect, number of reported cases, and range over which these diseases are distributed have all increased dramatically in the past 3 decades, posing a serious threat to coral reef ecosystems worldwide. While some published studies provide data on the distribution of coral diseases at local and regional levels, few studies have addressed the factors that may drive these distributions. We recorded coral disease occurrence, prevalence, and severity along with temperature, sedimentation, and coral population data (species abundance and colony size) over 2 consecutive summers on reefs near Lee Stocking Island (LSI) in the Bahamas' Exuma Chain. In 2002 a total of 11092 coral colonies (all species present) were examined within a survey area of 9420 m2, and 13 973 colonies within 10 362 m2 in 2003. Similar to other reports, relatively large, framework species including Siderastrea siderea, Colpophyllia natans, and Montastraea annularis, along with the smaller Dichocoenia stokesi, were the species most susceptible to coral disease. Recurring infections were observed on individual colonies from 2002 to 2003, and were more likely for black band disease (BBD) than for either white plague (WP) or dark spots syndrome (DS). In 2002, WP and DS demonstrated clumped distributions, while BBD was randomly distributed. However, in 2003 BBD and WP were clumped. This is the first study, to our knowledge, that quantitatively documents coral disease dynamics on reefs surrounding LSI.  相似文献   

16.
Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts) and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community—which is critical to the healthy functioning of the coral holobiont—is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model''s assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.  相似文献   

17.
Black band disease (BBD), characterized by a black mat or line that migrates across a coral colony leaving behind it a bare skeleton, is a persistent disease affecting massive corals worldwide. Previous microscopic and molecular examination of this disease in faviid corals from the Gulf of Eilat revealed a number of possible pathogens with the most prominent being a cyanobacterium identified as Pseudoscillatoria coralii. We examined diseased coral colonies using histopathological and molecular methods in order to further assess the possible role of this cyanobacterium, its mode of entry, and pathological effects on the coral host tissues. Affected areas of colonies with BBD were sampled for examination using both light and transmission electron microscopies. Results showed that this dominant cyanobacterium was found on the coral surface, at the coral–skeletal interface, and invading the polyp tissues and gastrovascular cavity. Although tissues surrounding the invasive cyanobacterial filaments did not show gross morphological alterations, microscopic examination revealed that the coral cells surrounding the lesion were dissociated, necrotic, and highly vacuolated. No amoebocytes were evident in the mesoglea of affected tissues suggesting a possible repression of the coral immune response. Morphological and molecular similarity of the previously isolated BBD-associated cyanobacterium P. coralii to the current samples strengthens the premise that this species is involved in the disease in this coral. These results indicate that the cyanobacteria may play a pivotal role in this disease and that the mode of entry may be via ingestion, penetrating the coral via the gastrodermis, as well as through the skeletal–tissue interface.  相似文献   

18.
Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and <50% of the A. cervicornis population along the FRT, the remaining wild staghorn population, along with the rapidly increasing restored populations, continue to fulfill important functional roles on coral reefs by providing essential habitat and refuge to other reef organisms. Although the effects of damselfish predation are, and will continue to be, pervasive, successful restoration efforts and strategic coral transplantation designs may help overcome damselfish damage by rapidly increasing A. cervicornis cover and abundance while also providing important information to educate future conservation and management decisions.  相似文献   

19.
This study tested the hypothesis that corals of the same species, but of varying size and shape, may respond differently to thermal stress because of different mass transfer capacities. High mass transfer rates are an advantage under thermal stress, and mass transfer rates are assumed to scale with size. Yet large, corymbose Acropora colonies are more vulnerable to thermal stress than small corymbose Acropora colonies. We took a two-tiered approach to examine the differences in the susceptibility of different coral morphologies to thermal stress. Firstly, the response of several coral species of different sizes and shapes were measured in the field through a thermal stress event. Secondly, diffusion experiments were conducted using gypsum-coral models of different morphologies to estimate mass transfer rates, to test whether dissolution rates differed in accordance with colony morphology and colony size. Coral colonies with a high height to diameter ratio were subjected to more partial mortality than flat colonies. These results agree with mass transfer theory. The diffusion experiments showed that in a low-flow environment, small encrusting colonies had higher rates of dissolution than large flat or small branched colonies. These results, however, disagree with mass transfer theory. We show that the volume of space between colony branches predicts the response to thermal stress in the field. Small encrusting colonies were most likely to maintain mass transfer and were therefore more likely to survive thermal stress than large branched colonies. We predict that an increase in the frequency and intensity of thermal stresses may see a shift from large branched coral colonies to both small colonies, and flat-massive colonies with low aspect ratios.  相似文献   

20.
Over the last half-century, coral diseases have contributed to the rapid decline of coral populations throughout the Caribbean region. Some coral diseases appear to be potentially infectious, yet little is known about their modes of transmission. This study experimentally tested whether dark-spot syndrome on Siderastrea siderea was directly or indirectly transmissible to neighboring coral colonies. We also tested whether open wounds were necessary to facilitate disease transmission. At the completion of the experiments, we sampled bacterial communities on diseased, exposed, and healthy coral colonies to determine whether bacterial pathogens had transmitted to the susceptible colonies. We saw no evidence of either direct or waterborne transmission of dark-spot syndrome, and corals that received lesions by direct contact with diseased tissue, healed and showed no signs of infection. There were no significant differences among bacterial communities on healthy, exposed, and diseased colonies, although nine individual ribotypes were significantly higher in diseased corals compared with healthy and exposed corals, indicating a lack of transmission. Although our experiments do not fully refute the possibility that dark-spot syndrome is infectious and transmissible, our results suggest that in situ macroscopic signs of dark-spot syndrome are not always contagious.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号