首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cancer progression is often driven by an accumulation of genetic changes but also accompanied by increasing genomic instability. These processes lead to a complicated landscape of copy number alterations (CNAs) within individual tumors and great diversity across tumor samples. High resolution array-based comparative genomic hybridization (aCGH) is being used to profile CNAs of ever larger tumor collections, and better computational methods for processing these data sets and identifying potential driver CNAs are needed. Typical studies of aCGH data sets take a pipeline approach, starting with segmentation of profiles, calls of gains and losses, and finally determination of frequent CNAs across samples. A drawback of pipelines is that choices at each step may produce different results, and biases are propagated forward. We present a mathematically robust new method that exploits probe-level correlations in aCGH data to discover subsets of samples that display common CNAs. Our algorithm is related to recent work on maximum-margin clustering. It does not require pre-segmentation of the data and also provides grouping of recurrent CNAs into clusters. We tested our approach on a large cohort of glioblastoma aCGH samples from The Cancer Genome Atlas and recovered almost all CNAs reported in the initial study. We also found additional significant CNAs missed by the original analysis but supported by earlier studies, and we identified significant correlations between CNAs.  相似文献   

3.
The present study was aimed at discovering DNA copy number alterations (CNAs) involved in the carcinogenesis of stomach and at understanding their clinicopathological significances in the Korean population. DNA copy numbers were analyzed using Agilent 244K or 400K array comparative genomic hybridization (aCGH) in fresh-frozen tumor and matched normal tissues from 40 gastric cancer patients. Some of the detected CNA regions were validated using multiplex ligation-dependent probe amplification (MLPA) in six of the 40 patients and customized Agilent 60K aCGH in an independent set of 48 gastric cancers. The mRNA levels of genes at common CNA regions were analyzed using quantitative real-time PCR. Copy number gains were more common than losses across the entire genome in tumor tissues compared to matched normal tissues. The mean number of alterations per case was 64 for gains and 40 for losses, and the median aberration length was 44016 bp for gains and 4732 bp for losses. Copy number gains were frequently detected at 7p22.1 (20%), 8q24.21 (27%–30%), 8q24.3 (22%–48%), 13q34 (20%–31%), and 20q11-q13 (25%–30%), and losses at 3p14.2 (43%), 4q35.2 (27%), 6q26 (23%), and 17p13.3 (20%–23%). CNAs at 7p22.1, 13q34, and 17p13.3 have not been reported in other populations. Most of the copy number losses were associated with down-regulation of mRNA levels, but the correlation between copy number gains and mRNA expression levels varied in a gene-dependent manner. In addition, copy number gains tended to occur more commonly in intestinal-type cancers than in diffuse-type cancers. In conclusion, the present study suggests that copy number gains at 8q24 and 20q11-q13 and losses at 3p14.2 may be common events in gastric cancer but CNAs at 7p22.1, 13q34, and 17p13.3 may be Korean-specific.  相似文献   

4.
5.
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous group of diseases that have diverse clinical, pathological, and biological features. Here, it is shown that primary nodal and extranodal DLBCLs differ genomically and phenotypically. Using conventional comparative genomic hybridization (CGH), the authors assessed the chromosomal aberrations in 18 nodal, 13 extranodal, and 5 mixed DLBCLs. The results demonstrate significantly distinct chromosomal aberrations exemplified by gains of chromosomal arms 1p, 7p, 12q24.21-12q24.31, and 22q and chromosome X and loss of chromosome 4, 6q, and 18q22.3-23 in extranodal compared with nodal DLBCLs. Nodal DLBCLs showed an increased tendency for 18q amplification and BCL2 protein overexpression compared with extranodal and mixed tumors. Using a panel of five antibodies against GCET1, MUM1, CD10, BCL6, and FOXP1 proteins to subclassify DLBCLs according to the recent Choi algorithm, the authors showed that the genomic profiles observed between the nodal and extranodal DLBCLs were not due to the different proportions of GCB vs ABC in the two groups. Further delineation of these genomic differences was illuminated by the use of high-resolution 21K BAC array CGH performed on 12 independent new cases of extranodal DLBCL. The authors demonstrated for the first time a novel genome and proteome-based signatures that may differentiate the two lymphoma types.  相似文献   

6.
Lymph-node metastasis (LNM) predict high recurrence rates in breast cancer patients. Systemic treatment aims to eliminate (micro)metastatic cells. However decisions regarding systemic treatment depend largely on clinical and molecular characteristics of primary tumours. It remains, however, unclear to what extent metastases resemble the cognate primary breast tumours, especially on a genomic level, and as such will be eradicated by the systemic therapy chosen. In this study we used high-resolution aCGH to investigate DNA copy number differences between primary breast cancers and their paired LNMs. To date, no recurrent LNM-specific genomic aberrations have been identified using array comparative genomic hybridization (aCGH) analysis. In our study we employ a high-resolution platform and we stratify on different breast cancer subtypes, both aspects that might have underpowered previously performed studies.To test the possibility that genomic instability in triple-negative breast cancers (TNBCs) might cause increased random and potentially also recurrent copy number aberrations (CNAs) in their LNMs, we studied 10 primary TNBC–LNM pairs and 10 ER-positive (ER+) pairs and verified our findings adding additionally 5 TNBC-LNM and 22 ER+-LNM pairs. We found that all LNMs clustered nearest to their matched tumour except for two cases, of which one was due to the presence of two distinct histological components in one tumour. We found no significantly altered CNAs between tumour and their LNMs in the entire group or in the subgroups. Within the TNBC subgroup, no absolute increase in CNAs was found in the LNMs compared to their primary tumours, suggesting that increased genomic instability does not lead to more CNAs in LNMs. Our findings suggest a high clonal relationship between primary breast tumours and its LNMs, at least prior to treatment, and support the use of primary tumour characteristics to guide adjuvant systemic chemotherapy in breast cancer patients.  相似文献   

7.
Genomic DNA copy-number alterations (CNAs) are associated with complex diseases, including cancer: CNAs are indeed related to tumoral grade, metastasis, and patient survival. CNAs discovered from array-based comparative genomic hybridization (aCGH) data have been instrumental in identifying disease-related genes and potential therapeutic targets. To be immediately useful in both clinical and basic research scenarios, aCGH data analysis requires accurate methods that do not impose unrealistic biological assumptions and that provide direct answers to the key question, "What is the probability that this gene/region has CNAs?" Current approaches fail, however, to meet these requirements. Here, we introduce reversible jump aCGH (RJaCGH), a new method for identifying CNAs from aCGH; we use a nonhomogeneous hidden Markov model fitted via reversible jump Markov chain Monte Carlo; and we incorporate model uncertainty through Bayesian model averaging. RJaCGH provides an estimate of the probability that a gene/region has CNAs while incorporating interprobe distance and the capability to analyze data on a chromosome or genome-wide basis. RJaCGH outperforms alternative methods, and the performance difference is even larger with noisy data and highly variable interprobe distance, both commonly found features in aCGH data. Furthermore, our probabilistic method allows us to identify minimal common regions of CNAs among samples and can be extended to incorporate expression data. In summary, we provide a rigorous statistical framework for locating genes and chromosomal regions with CNAs with potential applications to cancer and other complex human diseases.  相似文献   

8.
We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC) and their lymph node metastases, and to identify genomic copy number aberrations (CNAs) related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs) with their paired lymph node metastases (LNMs), and also those of LNMs with non-metastatic primary tumors (NMPTs). Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.  相似文献   

9.
Oral potentially malignant disorders (OPMDs) characterized by the presence of dysplasia and DNA copy number aberrations (CNAs), may reflect chromosomal instability (CIN) and predispose to oral squamous cell carcinoma (OSCC). Early detection of OPMDs with such characteristics may play a crucial role in OSCC prevention. The aim of this study was to explore the relationship between CNAs, histological diagnosis, oral subsite and aneuploidy in OPMDs/OSCCs. Samples from OPMDs and OSCCs were processed by high-resolution DNA flow cytometry (hr DNA-FCM) to determine the relative nuclear DNA content. Additionally, CNAs were obtained for a subset of these samples by genome-wide array comparative genomic hybridization (aCGH) using DNA extracted from either diploid or aneuploid nuclei suspension sorted by FCM. Our study shows that: i) aneuploidy, global genomic imbalance (measured as the total number of CNAs) and specific focal CNAs occur early in the development of oral cancer and become more frequent at later stages; ii) OPMDs limited to tongue (TNG) mucosa display a higher frequency of aneuploidy compared to OPMDs confined to buccal mucosa (BM) as measured by DNA-FCM; iii) TNG OPMDs/OSCCs show peculiar features of CIN compared to BM OPMDs/OSCCs given the preferential association with total broad and specific focal CNA gains. Follow-up studies are warranted to establish whether the presence of DNA aneuploidy and specific focal or broad CNAs may predict cancer development in non-dysplastic OPMDs.  相似文献   

10.
Modeling recurrent DNA copy number alterations in array CGH data   总被引:1,自引:0,他引:1  
MOTIVATION: Recurrent DNA copy number alterations (CNA) measured with array comparative genomic hybridization (aCGH) reveal important molecular features of human genetics and disease. Studying aCGH profiles from a phenotypic group of individuals can determine important recurrent CNA patterns that suggest a strong correlation to the phenotype. Computational approaches to detecting recurrent CNAs from a set of aCGH experiments have typically relied on discretizing the noisy log ratios and subsequently inferring patterns. We demonstrate that this can have the effect of filtering out important signals present in the raw data. In this article we develop statistical models that jointly infer CNA patterns and the discrete labels by borrowing statistical strength across samples. RESULTS: We propose extending single sample aCGH HMMs to the multiple sample case in order to infer shared CNAs. We model recurrent CNAs as a profile encoded by a master sequence of states that generates the samples. We show how to improve on two basic models by performing joint inference of the discrete labels and providing sparsity in the output. We demonstrate on synthetic ground truth data and real data from lung cancer cell lines how these two important features of our model improve results over baseline models. We include standard quantitative metrics and a qualitative assessment on which to base our conclusions. AVAILABILITY: http://www.cs.ubc.ca/~sshah/acgh.  相似文献   

11.
35 oral squamous cell carcinomas examined previously by comparative genomic hybridization (CGH) exhibited 5 up to 47 copy number alterations (CNAs). 13 of those cases showed a loss of parts of the short arm of chromosome 9, band p21 being affected in all of these cases. A highly complex but strikingly consistent pattern of genomic imbalances with an average 31.5 CNAs per tumor was associated with this deletion, and gains clearly dominated over losses of genomic material. Comparable patterns, however, could also be found in tumors with a high number of CNAs (24 CNAs) but without the deletion. Low numbers of imbalances were accompanied by low consistency of the CNA patterns. None of these latter cases showed the deletion 9p21. 66.7% of the dim(9p21)-positive tumors were of class pT4 (vs. 22% in dim(9p21)-negative cases), 77% of stage III or IV (vs. 47% in the group without the deletion), but only 8% of the dim(9p21)-positive tumors were classified as grade 3 (vs. 41% in the negative group). Other clinicopathologic features like prevalence of relapse, or survival time could not be as clearly associated with the deletion. For instance, short relapse-free survival was clearly associated with a high number of CNAs, rather independent of presence or absence of dim(9p21) in the affected tumor. From these findings it is concluded that previously found associations of 9p21 deletion with clinical parameters can reasonably be estimated only in the context of the pattern and complexity of the genomic imbalances accompanying this chromosomal loss in the examined tumors.  相似文献   

12.
Rhabdomyosarcoma (RMS) is the most common pediatric soft tissue sarcoma with poor prognosis. The genetic etiology of RMS remains largely unclear underlying its development and progression. To reveal novel genes more precisely and new therapeutic targets associated with RMS, we used high-resolution array comparative genomic hybridization (aCGH) to explore tumor-associated copy number variations (CNVs) and genes in RMS. We confirmed several important genes by quantitative real-time polymerase chain reaction (QRT-PCR). We then performed bioinformatics-based functional enrichment analysis for genes located in the genomic regions with CNVs. In addition, we identified miRNAs located in the corresponding amplification and deletion regions and performed miRNA functional enrichment analysis. aCGH analyses revealed that all RMS showed specific gains and losses. The amplification regions were 12q13.12, 12q13.3, and 12q13.3–q14.1. The deletion regions were 1p21.1, 2q14.1, 5q13.2, 9p12, and 9q12. The recurrent regions with gains were 12q13.3, 12q13.3–q14.1, 12q14.1, and 17q25.1. The recurrent regions with losses were 9p12–p11.2, 10q11.21–q11.22, 14q32.33, 16p11.2, and 22q11.1. The mean mRNA level of GLI1 in RMS was 6.61-fold higher than that in controls (p = 0.0477) by QRT-PCR. Meanwhile, the mean mRNA level of GEFT in RMS samples was 3.92-fold higher than that in controls (p = 0.0354). Bioinformatic analysis showed that genes were enriched in functions such as immunoglobulin domain, induction of apoptosis, and defensin. Proto-oncogene functions were involved in alveolar RMS. miRNAs that located in the amplified regions in RMS tend to be enriched in oncogenic activity (miR-24 and miR-27a). In conclusion, this study identified a number of CNVs in RMS and functional analyses showed enrichment for genes and miRNAs located in these CNVs regions. These findings may potentially help the identification of novel biomarkers and/or drug targets implicated in diagnosis of and targeted therapy for RMS.  相似文献   

13.
Diffuse large B-cell lymphoma (DLBCL) comprises 2 molecularly distinct subgroups of non-germinal center B-cell-like (non-GCB) and germinal center B-cell-like (GCB) DLBCLs, with the former showing relatively poor prognosis. In the present study, we analyzed the clinicopathological features of 39 patients with localized nasal/paranasal DLBCL. Immunohistochemistry-based subclassification revealed that 11 patients (28%) were of the GCB-type according to Hans’ algorithm and 11 (28%) were of the GCB-type according to Choi’s algorithm. According to both Hans’ and Choi’s algorithms, the non-GCB type was predominant. Nevertheless, prognosis was good. Overall survival did not differ significantly between the GCB and non-GCB subgroups (Hans’ algorithm: p = 0.57, Choi’s algorithm: p = 0.99). Furthermore, the prognosis of localized nasal/paranasal DLBCL was better than that of other localized extranodal DLBCLs. The prognosis of extranodal DLBCL is usually considered poorer than that of nodal DLBCL. However, in our study, no difference was noted between patients with localized nasal/paranasal DLBCL and patients with localized nodal DLBCL. In conclusion, although the non-GCB subtype is thought to show poor prognosis, in our study, the prognosis for localized nasal/paranasal DLBCL patients was good irrespective of subclassification.  相似文献   

14.
Recently, diffuse-large-B-cell lymphoma (DLBCL) associated with serum IgM monoclonal component (MC) has been shown to be a very poor prognostic subset although, detailed pathological and molecular data are still lacking. In the present study, the clinicopathological features and survival of IgM-secreting DLBCL were analyzed and compared to non-secreting cases in a series of 151 conventional DLBCL treated with R-CHOP. IgM MC was detected in 19 (12.5%) out of 151 patients at disease onset. In 17 of these cases secretion was likely due to the neoplastic clone, as suggested by the expression of heavy chain IgM protein in the cytoplasm of tumor cells. In IgM-secreting cases immunoblastic features (p<.0001), non-GCB-type (p = .002) stage III-IV(p = .003), ≥2 extra nodal sites (p<.0001), bone-marrow (p = .002), central-nervous-system (CNS) involvement at disease onset or relapse (p<.0001), IPI-score 3–5 (p = .009) and failure to achieve complete remission (p = .005), were significantly more frequent. FISH analyses for BCL2, BCL6 and MYC gene rearrangements detected only two cases harboring BCL2 gene translocation and in one case a concomitant BCL6 gene translocation was also observed. None of the IgM-secreting DLBCL was found to have L265P mutation of MYD88 gene. Thirty-six month event-free (11.8% vs 66.4% p<.0001), progression-free (23.5% vs 75.7%, p<.0001) and overall (47.1% vs 74.8%, p<.0001) survivals were significantly worse in the IgM-secreting group. In multivariate analysis IgM-secreting (p = .005, expB = 0.339, CI = 0.160-0.716) and IPI-score 3–5 (p = .010, expB = 0.274, CI = 0.102–0.737) were the only significant factors for progression-free-survival. Notably, four relapsed patients, who were treated with salvage immmunochemotherapy combined with bortezomib or lenalidomide, achieved lasting remission. Our data suggests that IgM-secreting cases are a distinct subset of DLBCL, originating from activated-B-cells with terminally differentiated features, prevalent extra nodal dissemination and at high risk of CNS involvement.  相似文献   

15.
Summary Array CGH is a high‐throughput technique designed to detect genomic alterations linked to the development and progression of cancer. The technique yields fluorescence ratios that characterize DNA copy number change in tumor versus healthy cells. Classification of tumors based on aCGH profiles is of scientific interest but the analysis of these data is complicated by the large number of highly correlated measures. In this article, we develop a supervised Bayesian latent class approach for classification that relies on a hidden Markov model to account for the dependence in the intensity ratios. Supervision means that classification is guided by a clinical endpoint. Posterior inferences are made about class‐specific copy number gains and losses. We demonstrate our technique on a study of brain tumors, for which our approach is capable of identifying subsets of tumors with different genomic profiles, and differentiates classes by survival much better than unsupervised methods.  相似文献   

16.

Introduction

In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line.

Methods

We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb).

Results

Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival.

Conclusion

Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to gene inactivation. These events may contribute to tumor formation through mechanisms not detected using conventional DNA copy number analyses.  相似文献   

17.
18.
19.
Squamous lung carcinoma lacks specific “ad hoc” therapies. Amplification of chromosome 3q is the most common genomic aberration and this region harbours genes having role as novel targets for therapeutics. There is no standard definition on how to score and report 3q amplification. False versus true 3q chromosomal amplification in squamous cell lung carcinoma may have tremendous impact on trials involving drugs which target DNA zones mapping on 3q. Forty squamous lung carcinomas were analyzed by FISH to assess chromosome 3q amplification. aCGH was performed as gold-standard to avoid false positive amplifications. Three clustered patterns of fluorescent signals were observed. Eight cases out of 40 (20%) showed ≥8 3q signals. Twenty out of 40 (50%) showed from 3 to 7 signals. The remaining showed two fluorescent signals (30%). When corrected by whole chromosome 3 signals, only cases with ≥8 signals maintained a LSI 3q/CEP3 ratio >2. Only the cases showing 3q amplification by aCGH (+3q25.3−3q27.3) showed ≥8 fluorescent signals at FISH evidencing a 3q/3 ratio >2. The remaining cases showed flat genomic portrait at aCGH on chromosome 3. We concluded that: 1) absolute copy number of 3q chromosomal region may harbour false positive interpretation of 3q amplification in squamous cell carcinoma; 2) a case results truly “amplified for chromosome 3q” when showing ≥8 fluorescent 3q signals; 3) trials involving drugs targeting loci on chromosome 3q in squamous lung carcinoma therapy have to consider false versus true 3q chromosomal amplification.  相似文献   

20.

Background

HER2 and TOP2A gene status are assessed for diagnostic and research purposes in breast cancer with fluorescence in situ hybridization (FISH). However, FISH probes do not target only the annotated gene, while chromosome 17 (chr17) is among the most unstable chromosomes in breast cancer. Here we asked whether the status of specifically targeted genes on chr17 might help in refining prognosis of early high-risk breast cancer patients.

Methods

Copy numbers (CN) for 14 genes on chr17, 4 of which were within and 10 outside the core HER2 amplicon (HER2- and non-HER2-genes, respectively) were assessed with qPCR in 485 paraffin-embedded tumor tissue samples from breast cancer patients treated with adjuvant chemotherapy in the frame of two randomized phase III trials.

Principal Findings

HER2-genes CN strongly correlated to each other (Spearman’s rho >0.6) and were concordant with FISH HER2 status (Kappa 0.6697 for ERBB2 CN). TOP2A CN were not concordant with TOP2A FISH status (Kappa 0.1154). CN hierarchical clustering revealed distinct patterns of gains, losses and complex alterations in HER2- and non-HER2-genes associated with IHC4 breast cancer subtypes. Upon multivariate analysis, non-HER2-gene gains independently predicted for shorter disease-free survival (DFS) and overall survival (OS) in patients with triple-negative cancer, as compared to luminal and HER2-positive tumors (interaction p = 0.007 for DFS and p = 0.011 for OS). Similarly, non-HER2-gene gains were associated with worse prognosis in patients who had undergone breast-conserving surgery as compared to modified radical mastectomy (p = 0.004 for both DFS and OS). Non-HER2-gene losses were unfavorable prognosticators in patients with 1–3 metastatic nodes, as compared to those with 4 or more nodes (p = 0.017 for DFS and p = 0.001 for OS).

Conclusions

TOP2A FISH and qPCR may not identify the same pathology on chr17q. Non-HER2 chr17 CN patterns may further predict outcome in breast cancer patients with known favorable and unfavorable prognosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号