首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new machine learning method referred to as F-score_ELM was proposed to classify the lying and truth-telling using the electroencephalogram (EEG) signals from 28 guilty and innocent subjects. Thirty-one features were extracted from the probe responses from these subjects. Then, a recently-developed classifier called extreme learning machine (ELM) was combined with F-score, a simple but effective feature selection method, to jointly optimize the number of the hidden nodes of ELM and the feature subset by a grid-searching training procedure. The method was compared to two classification models combining principal component analysis with back-propagation network and support vector machine classifiers. We thoroughly assessed the performance of these classification models including the training and testing time, sensitivity and specificity from the training and testing sets, as well as network size. The experimental results showed that the number of the hidden nodes can be effectively optimized by the proposed method. Also, F-score_ELM obtained the best classification accuracy and required the shortest training and testing time.  相似文献   

2.
《IRBM》2020,41(1):31-38
In this paper, a brain-computer interface (BCI) system for character recognition is proposed based on the P300 signal. A P300 speller is used to spell the word or character without any muscle movement. P300 detection is the first step to detect the character from the electroencephalogram (EEG) signal. The character is recognized from the detected P300 signal. In this paper, sparse autoencoder (SAE) and stacked sparse autoencoder (SSAE) based feature extraction methods are proposed for P300 detection. This work also proposes a fusion of deep-features with the temporal features for P300 detection. A SSAE technique extracts high-level information about input data. The combination of SSAE features with the temporal features provides abstract and temporal information about the signal. An ensemble of weighted artificial neural network (EWANN) is proposed for P300 detection to minimize the variation among different classifiers. To provide more importance to the good classifier for final classification, a higher weightage is assigned to the better performing classifier. These weights are calculated from the cross-validation test. The model is tested on two different publicly available datasets, and the proposed method provides better or comparable character recognition performance than the state-of-the-art methods.  相似文献   

3.
A P300-based brain-computer interface (BCI) enables a wide range of people to control devices that improve their quality of life. Ensemble classifiers with naive partitioning were recently applied to the P300-based BCI and these classification performances were assessed. However, they were usually trained on a large amount of training data (e.g., 15300). In this study, we evaluated ensemble linear discriminant analysis (LDA) classifiers with a newly proposed overlapped partitioning method using 900 training data. In addition, the classification performances of the ensemble classifier with naive partitioning and a single LDA classifier were compared. One of three conditions for dimension reduction was applied: the stepwise method, principal component analysis (PCA), or none. The results show that an ensemble stepwise LDA (SWLDA) classifier with overlapped partitioning achieved a better performance than the commonly used single SWLDA classifier and an ensemble SWLDA classifier with naive partitioning. This result implies that the performance of the SWLDA is improved by overlapped partitioning and the ensemble classifier with overlapped partitioning requires less training data than that with naive partitioning. This study contributes towards reducing the required amount of training data and achieving better classification performance.  相似文献   

4.
癌症的早期诊断能够显著提高癌症患者的存活率,在肝细胞癌患者中这种情况更加明显。机器学习是癌症分类中的有效工具。如何在复杂和高维的癌症数据集中,选择出低维度、高分类精度的特征子集是癌症分类的难题。本文提出了一种二阶段的特征选择方法SC-BPSO:通过组合Spearman相关系数和卡方独立检验作为过滤器的评价函数,设计了一种新型的过滤器方法——SC过滤器,再组合SC过滤器方法和基于二进制粒子群算法(BPSO)的包裹器方法,从而实现两阶段的特征选择。并应用在高维数据的癌症分类问题中,区分正常样本和肝细胞癌样本。首先,对来自美国国家生物信息中心(NCBI)和欧洲生物信息研究所(EBI)的130个肝组织microRNA序列数据(64肝细胞癌,66正常肝组织)进行预处理,使用MiRME算法从原始序列文件中提取microRNA的表达量、编辑水平和编辑后表达量3类特征。然后,调整SC-BPSO算法在肝细胞癌分类场景中的参数,选择出关键特征子集。最后,建立分类模型,预测结果,并与信息增益过滤器、信息增益率过滤器、BPSO包裹器特征选择算法选出的特征子集,使用相同参数的随机森林、支持向量机、决策树、KNN四种分类器分类,对比分类结果。使用SC-BPSO算法选择出的特征子集,分类准确率高达98.4%。研究结果表明,与另外3个特征选择算法相比,SC-BPSO算法能有效地找到尺寸较小和精度更高的特征子集。这对于少量样本高维数据的癌症分类问题可能具有重要意义。  相似文献   

5.
ABSTRACT: BACKGROUND: Many problems in bioinformatics involve classification based on features such as sequence, structure or morphology. Given multiple classifiers, two crucial questions arise: how does their performance compare, and how can they best be combined to produce a better classifier? A classifier can be evaluated in terms of sensitivity and specificity using benchmark, or gold standard, data, that is, data for which the true classification is known. However, a gold standard is not always available. Here we demonstrate that a Bayesian model for comparing medical diagnostics without a gold standard can be successfully applied in the bioinformatics domain, to genomic scale data sets. We present a new implementation, which unlike previous implementations is applicable to any number of classifiers. We apply this model, for the first time, to the problem of finding the globally optimal logical combination of classifiers. RESULTS: We compared three classifiers of protein subcellular localisation, and evaluated our estimates of sensitivity and specificity against estimates obtained using a gold standard. The method overestimated sensitivity and specificity with only a small discrepancy, and correctly ranked the classifiers. Diagnostic tests for swine flu were then compared on a small data set. Lastly, classifiers for a genome-wide association study of macular degeneration with 541094 SNPs were analysed. In all cases, run times were feasible, and results precise. The optimal logical combination of classifiers was also determined for all three data sets. Code and data are available from http://bioinformatics.monash.edu.au/downloads/. CONCLUSIONS: The examples demonstrate the methods are suitable for both small and large data sets, applicable to the wide range of bioinformatics classification problems, and robust to dependence between classifiers. In all three test cases, the globally optimal logical combination of the classifiers was found to be their union, according to three out of four ranking criteria. We propose as a general rule of thumb that the union of classifiers will be close to optimal.  相似文献   

6.
根据支持向量机的基本原理,给出一种推广误差上界估计判据,并利用该判据进行最优核参数的自动选取。对三种不同意识任务的脑电信号进行多变量自回归模型参数估计,作为意识任务的特征向量,利用支持向量机进行训练和分类测试。分类结果表明,优化核参数的支持向量机分类器取得了最佳的分类效果,分类正确率明显高于径向基函数神经网络。  相似文献   

7.
In this paper, a high quality handprinted character recognition system is presented. Four classifiers based on simple features work in parallel and their co-operation is used for quality improvement. The four classifiers are based on two different normalization sequences, two different feature extraction methods and two different classification techniques. The results of the classifiers are combined using a multilayer perceptron as a supervisor, which extracts the overall information contained in the output of the classifiers. The results obtained on the NIST Test Data 1 are reported using the uppercase letters in the NIST Special Database 3 as a training set; the error rate is 3·68% when no rejection is allowed.  相似文献   

8.

Background

Detailed knowledge of the subcellular location of each expressed protein is critical to a full understanding of its function. Fluorescence microscopy, in combination with methods for fluorescent tagging, is the most suitable current method for proteome-wide determination of subcellular location. Previous work has shown that neural network classifiers can distinguish all major protein subcellular location patterns in both 2D and 3D fluorescence microscope images. Building on these results, we evaluate here new classifiers and features to improve the recognition of protein subcellular location patterns in both 2D and 3D fluorescence microscope images.

Results

We report here a thorough comparison of the performance on this problem of eight different state-of-the-art classification methods, including neural networks, support vector machines with linear, polynomial, radial basis, and exponential radial basis kernel functions, and ensemble methods such as AdaBoost, Bagging, and Mixtures-of-Experts. Ten-fold cross validation was used to evaluate each classifier with various parameters on different Subcellular Location Feature sets representing both 2D and 3D fluorescence microscope images, including new feature sets incorporating features derived from Gabor and Daubechies wavelet transforms. After optimal parameters were chosen for each of the eight classifiers, optimal majority-voting ensemble classifiers were formed for each feature set. Comparison of results for each image for all eight classifiers permits estimation of the lower bound classification error rate for each subcellular pattern, which we interpret to reflect the fraction of cells whose patterns are distorted by mitosis, cell death or acquisition errors. Overall, we obtained statistically significant improvements in classification accuracy over the best previously published results, with the overall error rate being reduced by one-third to one-half and with the average accuracy for single 2D images being higher than 90% for the first time. In particular, the classification accuracy for the easily confused endomembrane compartments (endoplasmic reticulum, Golgi, endosomes, lysosomes) was improved by 5–15%. We achieved further improvements when classification was conducted on image sets rather than on individual cell images.

Conclusions

The availability of accurate, fast, automated classification systems for protein location patterns in conjunction with high throughput fluorescence microscope imaging techniques enables a new subfield of proteomics, location proteomics. The accuracy and sensitivity of this approach represents an important alternative to low-resolution assignments by curation or sequence-based prediction.
  相似文献   

9.
10.
Dabney AR  Storey JD 《PloS one》2007,2(10):e1002
Nearest-centroid classifiers have recently been successfully employed in high-dimensional applications, such as in genomics. A necessary step when building a classifier for high-dimensional data is feature selection. Feature selection is frequently carried out by computing univariate scores for each feature individually, without consideration for how a subset of features performs as a whole. We introduce a new feature selection approach for high-dimensional nearest centroid classifiers that instead is based on the theoretically optimal choice of a given number of features, which we determine directly here. This allows us to develop a new greedy algorithm to estimate this optimal nearest-centroid classifier with a given number of features. In addition, whereas the centroids are usually formed from maximum likelihood estimates, we investigate the applicability of high-dimensional shrinkage estimates of centroids. We apply the proposed method to clinical classification based on gene-expression microarrays, demonstrating that the proposed method can outperform existing nearest centroid classifiers.  相似文献   

11.
《Genomics》2020,112(5):3089-3096
Automatic classification of glaucoma from fundus images is a vital diagnostic tool for Computer-Aided Diagnosis System (CAD). In this work, a novel fused feature extraction technique and ensemble classifier fusion is proposed for diagnosis of glaucoma. The proposed method comprises of three stages. Initially, the fundus images are subjected to preprocessing followed by feature extraction and feature fusion by Intra-Class and Extra-Class Discriminative Correlation Analysis (IEDCA). The feature fusion approach eliminates between-class correlation while retaining sufficient Feature Dimension (FD) for Correlation Analysis (CA). The fused features are then fed to the classifiers namely Support Vector Machine (SVM), Random Forest (RF) and K-Nearest Neighbor (KNN) for classification individually. Finally, Classifier fusion is also designed which combines the decision of the ensemble of classifiers based on Consensus-based Combining Method (CCM). CCM based Classifier fusion adjusts the weights iteratively after comparing the outputs of all the classifiers. The proposed fusion classifier provides a better improvement in accuracy and convergence when compared to the individual algorithms. A classification accuracy of 99.2% is accomplished by the two-level hybrid fusion approach. The method is evaluated on the public datasets High Resolution Fundus (HRF) and DRIVE datasets with cross dataset validation.  相似文献   

12.
The classification of cancer subtypes, which is critical for successful treatment, has been studied extensively with the use of gene expression profiles from oligonucleotide chips or cDNA microarrays. Various pattern recognition methods have been successfully applied to gene expression data. However, these methods are not optimal, rather they are high-performance classifiers that emphasize only classification accuracy. In this paper, we propose an approach for the construction of the optimal linear classifier using gene expression data. Two linear classification methods, linear discriminant analysis (LDA) and discriminant partial least-squares (DPLS), are applied to distinguish acute leukemia subtypes. These methods are shown to give satisfactory accuracy. Moreover, we determined optimally the number of genes participating in the classification (a remarkably small number compared to previous results) on the basis of the statistical significance test. Thus, the proposed method constructs the optimal classifier that is composed of a small size predictor and provides high accuracy.  相似文献   

13.
Nowadays, brain signals are employed in various scientific and practical fields such as Medical Science, Cognitive Science, Neuroscience, and Brain Computer Interfaces. Hence, the need for robust signal analysis methods with adequate accuracy and generalizability is inevitable. The brain signal analysis is faced with complex challenges including small sample size, high dimensionality and noisy signals. Moreover, because of the non-stationarity of brain signals and the impacts of mental states on brain function, the brain signals are associated with an inherent uncertainty. In this paper, an evidence-based combining classifiers method is proposed for brain signal analysis. This method exploits the power of combining classifiers for solving complex problems and the ability of evidence theory to model as well as to reduce the existing uncertainty. The proposed method models the uncertainty in the labels of training samples in each feature space by assigning soft and crisp labels to them. Then, some classifiers are employed to approximate the belief function corresponding to each feature space. By combining the evidence raised from each classifier through the evidence theory, more confident decisions about testing samples can be made. The obtained results by the proposed method compared to some other evidence-based and fixed rule combining methods on artificial and real datasets exhibit the ability of the proposed method in dealing with complex and uncertain classification problems.  相似文献   

14.
The brain is a large-scale complex network often referred to as the “connectome”. Cognitive functions and information processing are mainly based on the interactions between distant brain regions. However, most of the ‘feature extraction’ methods used in the context of Brain Computer Interface (BCI) ignored the possible functional relationships between different signals recorded from distinct brain areas. In this paper, the functional connectivity quantified by the phase locking value (PLV) was introduced to characterize the evoked responses (ERPs) obtained in the case of target and non-targets visual stimuli. We also tested the possibility of using the functional connectivity in the context of ‘P300 speller’. The proposed approach was compared to the well-known methods proposed in the state of the art of “P300 Speller”, mainly the peak picking, the area, time/frequency based features, the xDAWN spatial filtering and the stepwise linear discriminant analysis (SWLDA). The electroencephalographic (EEG) signals recorded from ten subjects were analyzed offline. The results indicated that phase synchrony offers relevant information for the classification in a P300 speller. High synchronization between the brain regions was clearly observed during target trials, although no significant synchronization was detected for a non-target trial. The results showed also that phase synchrony provides higher performance than some existing methods for letter classification in a P300 speller principally when large number of trials is available. Finally, we tested the possible combination of both approaches (classical features and phase synchrony). Our findings showed an overall improvement of the performance of the P300-speller when using Peak picking, the area and frequency based features. Similar performances were obtained compared to xDAWN and SWLDA when using large number of trials.  相似文献   

15.
准确对事件诱发电位(ERPs)进行分类,对于各种人类认知研究和临床医学评估非常有意义.由于ERPs信号是非常高维的数据,而且其中包含非常多的与分类无关的信息,从ERPs信号中提取特征尤显重要.分析了共空间模式(CSP)的原理和不足,引入自回归(AR)模型与白化变换相结合,提出了针对ERPs分类的时空特征提取方法,并设计了验证该方法的认知实验,在认知实验数据上分别用时空特征提取方法与CSP提取特征,用同样的分类器支持向量机(SVM)训练分类器,比较它们的分类效果.实验表明,在ERPs分类问题上,时空特征提取方法与CSP相比具有明显的优势,在参数确定合理的情况下,时空特征提取方法可使分类准确率达到90%以上.  相似文献   

16.
MOTIVATION: Microarrays are capable of determining the expression levels of thousands of genes simultaneously. In combination with classification methods, this technology can be useful to support clinical management decisions for individual patients, e.g. in oncology. The aim of this paper is to systematically benchmark the role of non-linear versus linear techniques and dimensionality reduction methods. RESULTS: A systematic benchmarking study is performed by comparing linear versions of standard classification and dimensionality reduction techniques with their non-linear versions based on non-linear kernel functions with a radial basis function (RBF) kernel. A total of 9 binary cancer classification problems, derived from 7 publicly available microarray datasets, and 20 randomizations of each problem are examined. CONCLUSIONS: Three main conclusions can be formulated based on the performances on independent test sets. (1) When performing classification with least squares support vector machines (LS-SVMs) (without dimensionality reduction), RBF kernels can be used without risking too much overfitting. The results obtained with well-tuned RBF kernels are never worse and sometimes even statistically significantly better compared to results obtained with a linear kernel in terms of test set receiver operating characteristic and test set accuracy performances. (2) Even for classification with linear classifiers like LS-SVM with linear kernel, using regularization is very important. (3) When performing kernel principal component analysis (kernel PCA) before classification, using an RBF kernel for kernel PCA tends to result in overfitting, especially when using supervised feature selection. It has been observed that an optimal selection of a large number of features is often an indication for overfitting. Kernel PCA with linear kernel gives better results.  相似文献   

17.
Ecologists collect their data manually by visiting multiple sampling sites. Since there can be multiple species in the multiple sampling sites, manually classifying them can be a daunting task. Much work in literature has focused mostly on statistical methods for classification of single species and very few studies on classification of multiple species. In addition to looking at multiple species, we noted that classification of multiple species result in multi-class imbalanced problem. This study proposes to use machine learning approach to classify multiple species in population ecology. In particular, bagging (random forests (RF) and bagging classification trees (bagCART)) and boosting (boosting classification trees (bootCART), gradient boosting machines (GBM) and adaptive boosting classification trees (AdaBoost)) classifiers were evaluated for their performances on imbalanced multiple fish species dataset. The recall and F1-score performance metrics were used to select the best classifier for the dataset. The bagging classifiers (RF and bagCART) achieved high performances on the imbalanced dataset while the boosting classifiers (bootCART, GBM and AdaBoost) achieved lower performances on the imbalanced dataset. We found that some machine learning classifiers were sensitive to imbalanced dataset hence they require data resampling to improve their performances. After resampling, the bagging classifiers (RF and bagCART) had high performances compared to boosting classifiers (bootCART, GBM and AdaBoost). The strong performances shown by bagging classifiers (RF and bagCART) suggest that they can be used for classifying multiple species in ecological studies.  相似文献   

18.
Multi-category classification methods were used to detect SNP-mortality associations in broilers. The objective was to select a subset of whole genome SNPs associated with chick mortality. This was done by categorizing mortality rates and using a filter-wrapper feature selection procedure in each of the classification methods evaluated. Different numbers of categories (2, 3, 4, 5 and 10) and three classification algorithms (naïve Bayes classifiers, Bayesian networks and neural networks) were compared, using early and late chick mortality rates in low and high hygiene environments. Evaluation of SNPs selected by each classification method was done by predicted residual sum of squares and a significance test-related metric. A naïve Bayes classifier, coupled with discretization into two or three categories generated the SNP subset with greatest predictive ability. Further, an alternative categorization scheme, which used only two extreme portions of the empirical distribution of mortality rates, was considered. This scheme selected SNPs with greater predictive ability than those chosen by the methods described previously. Use of extreme samples seems to enhance the ability of feature selection procedures to select influential SNPs in genetic association studies.  相似文献   

19.
《IRBM》2014,35(5):244-254
ObjectiveThe overall goal of the study is to detect coronary artery lesions regardless their nature, calcified or hypo-dense. To avoid explicit modelling of heterogeneous lesions, we adopted an approach based on machine learning and using unsupervised or semi-supervised classifiers. The success of the classifiers based on machine learning strongly depends on the appropriate choice of features differentiating between lesions and regular appearance. The specific goal of this article is to propose a novel strategy devised to select the best feature set for the classifiers used, out of a given set of candidate features.Materials and methodsThe features are calculated in image planes orthogonal to the artery centerline, and the classifier assigns to each of these cross-sections a label “healthy” or “diseased”. The contribution of this article is a feature-selection strategy based on the empirical risk function that is used as a criterion in the initial feature ranking and in the selection process itself. We have assessed this strategy in association with two classifiers based on the density-level detection approach that seeks outliers from the distribution corresponding to the regular appearance. The method was evaluated using a total of 13,687 cross-sections extracted from 53 coronary arteries in 15 patients.ResultsUsing the feature subset selected by the risk-based strategy, balanced error rates achieved by the unsupervised and semi-supervised classifiers respectively were equal to 13.5% and 15.4%. These results were substantially better than the rates achieved using feature subsets selected by supervised strategies. The unsupervised and semi-supervised methods also outperformed supervised classifiers using feature subsets selected by the corresponding supervised strategies.DiscussionSupervised methods require large data sets annotated by experts, both to select the features and to train the classifiers, and collecting these annotations is time-consuming. With these methods, lesions whose appearance differs from the training data may remain undetected. Lesion-detection problem is highly imbalanced, since healthy cross-sections usually are much more numerous than the diseased ones. Training the classifiers based on the density-level detection approach needs a small number of annotations or no annotations at all. The same annotations are sufficient to compute the empirical risk and to perform the selection. Therefore, our strategy associated with an unsupervised or semi-supervised classifier requires a considerably smaller number of annotations as compared to conventional supervised selection strategies. The approach proposed is also better suited for highly imbalanced problems and can detect lesions differing from the training set.ConclusionThe risk-based selection strategy, associated with classifiers using the density-level detection approach, outperformed other strategies and classifiers when used to detect coronary artery lesions. It is well suited for highly imbalanced problems, where the lesions are represented as low-density regions of the feature space, and it can be used in other anomaly detection problems interpretable as a binary classification problem where the empirical risk can be calculated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号