首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In expanding populations, individuals that produce dormant offspring when conditions are otherwise suitable for growth and reproduction incur a cost, since the dormant life stage delays reproduction. These individuals are at a disadvantage unless (1) there is not enough time for reproduction to occur before the environment degrades, or (2) the probability of death in the non-dormant state is high. Here we investigate resting stages of the freshwater bryozoan Plumatella emarginata to test the prediction that delayed emergence from dormancy can be related to seasonal fluctuations in mortality. Our results show that emergence in late spring and summer occurs at much lower frequencies than in early spring and is strongly associated with high mortality, at least in part due to predation. We document significant reductions in the growth and survival of plumatellid colonies during the summer in the presence of the crayfish Orconectes limosus. Thus summer dormancy provides a significant refuge from predation. Dormant resting stages during the winter also experience significant mortality. Our results are consistent with the general notions that (1) the proportion of colonies emerging from dormancy reflects tradeoffs in the relative risks of mortality in dormant versus non-dormant states, and (2) temporal shifts in the risk of mortality influence the timing of life-cycle transitions.  相似文献   

2.
Lizards often respond to increased predation risk by increasing refuge use, but this strategy may entail a loss of thermoregulatory opportunities, which may lead to a loss of body condition. This may be especially important for pregnant oviparous female lizards, because they need to maintain optimal body temperatures as long as possible to maximize developmental embryos rate until laying. However, little is known about how increased time spent at low temperatures in refuges affects body condition and health state of pregnant female lizards. Furthermore, it is not clear how initial body condition affects refuge use. Female Iberian rock lizards forced to increase time spent at low temperatures showed lower body condition and tended to show lower cell-mediated immune responses than control females. Therefore, the loss of thermoregulatory opportunities seems to be an important cost for pregnant females. Nevertheless, thereafter, when we simulated two repeated predatory attacks, females modified refuge use in relation to their body condition, with females with worse condition decreasing time hidden after attacks. In conclusion, female lizards seemed able to compensate increased predation risk with flexible antipredatory strategies, thus minimizing costs for body condition and health state.  相似文献   

3.
Abstract Data from a 12‐year field study have allowed us to quantify ‘costs of reproduction’ in a natural population of water pythons (Liasis fuscus) in tropical Australia. Both sexes of pythons cease feeding during the reproductive season. For males, this involves fasting for a 6 week period. Adult males lose weight rapidly over this period (approximately 17% of their body mass) but regain condition in the following months, and do not experience reduced survival. In contrast, reproductive adult females cease feeding for 3 months, lose an average of 44% of their body mass over this period, and experience increased mortality. A causal link between reproductive output and reduced female survival is supported by (i) a decrease in survival rates at female maturation; (ii) a correlation between survival rates and frequency of reproduction, in a comparison among different size classes of adult pythons; and (iii) a lowered survival rate for females that allocated more energy to reproduction. Hence, both sexes experience substantial energy costs of reproduction, but a relatively higher energy cost translates into a survival cost only in females. Such non‐linearities in the relationship between energy costs and survival costs may be widespread, and challenge the value of simple energy‐based measures of 'reproductive effort’.  相似文献   

4.
Females of many species experience costs associated with mating. Seminal products, including nuptial gifts, may mitigate these mating costs or exacerbate them. For example, nuptial gifts derived from male accessory glands may transfer nutrition or potentially harmful seminal proteins to females. In this study, we assay the costs of multiple mating and the consumption of seminal products in a ladybird beetle. We compared longevity in females mated singly or multiply, while allowing or preventing spermatophore consumption at each mating. In order to distinguish a cost of mating per se from a cost of elevated reproduction, we prevented reproduction by using nutrient‐stressed females. Mating singly or multiply had no effect on female longevity, nor did spermatophore feeding influence longevity. The results imply, first, that intermediate mating rates do not directly harm females, though females may experience other indirect costs of mating (e.g. reduced foraging efficiency) or costs of reproduction; and second, that spermatophores transfer neither food nor directly harmful substances to female ladybirds.  相似文献   

5.
In mammals, reproduction, especially for females is energetically demanding. Therefore, during the reproductive period females could potentially adjust patterns of thermoregulation and foraging in concert to minimise the energetic constraints associated with pregnancy and lactation. We assessed the influence of pregnancy, lactation, and post-lactation on torpor use and foraging behaviour by female little brown bats, Myotis lucifugus. We measured thermoregulation by recording skin temperature and foraging by tracking bats which carried temperature-sensitive radio-tags. We found that individuals, regardless of reproductive condition, used torpor, but the patterns of torpor use varied significantly between reproductive (pregnant and lactating) females and post-lactating females. As we predicted, reproductive females entered torpor for shorter bouts than post-lactating females. Although all females used torpor frequently, pregnant females spent less time in torpor, and maintained higher skin temperatures than either lactating or post-lactating females. This result suggests that delayed offspring development which has been associated with torpor use during pregnancy, may pose a higher risk to an individual’s reproductive success than reduced milk production during lactation. Conversely, foraging behaviour of radio-tagged bats did not vary with reproductive condition, suggesting that even short, shallow bouts of torpor produce substantial energy savings, likely obviating the need to spend more time foraging. Our data clearly show that torpor use and reproduction are not mutually exclusive and that torpor use (no matter how short or shallow) is an important means of balancing the costs of reproduction for M. lucifugus.  相似文献   

6.
The reproductive value hypothesis predicts that if residual reproductive value declines as a female ages, then young females should allocate less of available energy to current fecundity and more to future reproduction; whereas, older females should allocate more of available energy to current fecundity and less to future reproduction (i.e. survival). We test the prediction that older female Gambusia affinis exhibit higher levels of allocation to reproduction (i.e. fecundity) and consequently experience greater decline in escape performance (survival cost) during pregnancy compared to young females. Old females had relatively larger clutch wet masses and clutch wet mass increased more during pregnancy compared to young females. Correspondingly, old females exhibit a significant decline in escape velocity over the course of pregnancy; whereas young females show no change in escape velocity throughout pregnancy. Old females have higher escape velocities early in pregnancy and their performance only declines to about the level of performance of young females by the end of pregnancy. Thus, although old females exhibit a greater decline in performance they are better able to ameliorate the cost of decreased performance.  相似文献   

7.
Characterizing the cost of oviposition in insects: a dynamic model   总被引:3,自引:0,他引:3  
The development of a consensus model of insect oviposition has been impeded by an unresolved controversy regarding the importance of time costs versus egg costs in mediating the trade-off between current and future reproduction. Here I develop a dynamic optimization model that places time and egg costs in a common currency (opportunity costs expressed as decreased lifetime reproductive success) so that their relative magnitudes can be compared directly. The model incorporates stochasticity in host encounter and mortality risk as well as behavioral plasticity in response to changes in the age and egg load of the ovipositing female. The dynamic model's predictions are congruent with those of a simpler, static model: both time- and egg-mediated costs make important contributions to the overall cost of oviposition. Modest quantitative differences between the costs predicted by the static versus dynamic models show that plasticity of oviposition behavior modulates the opportunity costs incurred by reproducing females. The relative importance of egg-mediated costs increases substantially for oviposition events occurring later in life. I propose that the long debate over how to represent the cost of oviposition should be resolved not by advocating the pre-eminence of one sort of cost above all others, but rather by building models that represent the complementary roles of different costs. In particular, both time and egg costs must be recognized to produce a general model of insect oviposition that incorporates a realistic representation of the cost of reproduction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.

Background and Aims

Plants exhibit a variety of reproductive systems where unisexual (females or males) morphs coexist with hermaphrodites. The maintenance of dimorphic and polymorphic reproductive systems may be problematic. For example, to coexist with hermaphrodites the females of gynodioecious species have to compensate for the lack of male function. In our study species, Geranium sylvaticum, a perennial gynodioecious herb, the relative seed fitness advantage of females varies significantly between years within populations as well as among populations. Differences in reproductive investment between females and hermaphrodites may lead to differences in future survival, growth and reproductive success, i.e. to differential costs of reproduction. Since females of this species produce more seeds, higher costs of reproduction in females than in hermaphrodites were expected. Due to the higher costs of reproduction, the yearly variation in reproductive output of females might be more pronounced than that of hermaphrodites.

Methods

Using supplemental hand-pollination of females and hermaphrodites of G. sylvaticum we examined if increased reproductive output leads to differential costs of reproduction in terms of survival, probability of flowering, and seed production in the following year.

Key Results

Experimentally increased reproductive output had differential effects on the reproduction of females and hermaphrodites. In hermaphrodites, the probability of flowering decreased significantly in the following year, whereas in females the costs were expressed in terms of decreased future seed production.

Conclusions

When combining the probability of flowering and seed production per plant to estimate the multiplicative change in fitness, female plants showed a 56 % and hermaphrodites showed a 39 % decrease in fitness due to experimentally increased reproduction. Therefore, in total, female plants seem to be more sensitive to the cost of reproduction in terms of seed fitness than hermaphrodites.  相似文献   

9.
Resource heterogeneity across the landscape prompts animals to make behavioral tradeoffs to survive and reproduce. Behavioral thermoregulation can buffer organisms from thermal extremes but may conflict with other essential activities such as predator avoidance or foraging, and necessitate tradeoffs among resource requirements. We evaluated patterns of habitat selection relative to thermal conditions, forage availability, and concealment cover for female eastern wild turkeys (Meleagris gallopavo silvestris) with broods to assess potential tradeoffs among resource requirements. We quantified air temperature (°C), vegetation characteristics (e.g., visual obstruction), and arthropod biomass (g/m2) at locations used by broods across 5 study sites in the southeastern United States during May–July 2019–2020. We used conditional logistic regression to estimate brooding female resource selection at the second (home range) and third (within home range) orders. Specifically, we identified differences in selection between brooding and non-brooding females (second order), and factors influencing selection of sites used by brooding females during the day (when loafing and foraging) and night (roosting; third order). Brooding females selected sites with cooler temperatures (β = −0.22; 95% CI = −0.338–−0.102) and greater ground cover vegetation (β = 0.02; 95% CI = 0.013–0.033) than non-brooding females. Additionally, biomass of large prey (Orthoptera) was positively related to ambient temperature, suggesting that use of thermal refuge by brooding females may limit availability of large prey. Brooding females appeared to balance the tradeoff between thermal refuge and forage availability by altering habitat selection patterns within home ranges. Brooding females selected for herbaceous areas that provided greater biomass of large arthropods during the day, and avoided areas dominated by woody vegetation during both the day and night. We did not observe brooding females using locations where woody cover exceeded 27% of understory vegetation. Thermal refuge is an important component of brood habitat, but within thermally suitable areas brooding females can select sites with greater availability of large prey to meet energetic demands of broods. Evaluation of multiple spatial scales is key when assessing tradeoffs among resource needs and determining the potential of behavioral thermoregulation to buffer an organism's thermal environment and allow persistence in a warming climate.  相似文献   

10.
Optimal mating frequencies differ between sexes as a consequence of the sexual differentiation of reproductive costs per mating, where mating is normally more costly to females than males. In mating systems where sexual reproduction is costly to females, sexual conflict may cause both direct (i.e. by reducing female fecundity or causing mortality) and indirect (i.e. increased risk of mortality, reduced offspring viability) reductions in lifetime reproductive success of females, which have individual and population consequences. We investigated the direct and indirect costs of multiple mating in a traumatically inseminating (TI) predatory Warehouse pirate bug, Xylocoris flavipes (Reuter) (Hemiptera: Anthocoridae), where the male penetrates the female's abdomen during copulation. This study aimed to quantify the effects of TI on female fecundity, egg viability, the lifetime fecundity schedule, longevity and prey consumption in this cosmopolitan biocontrol agent. We found no difference in the total reproductive output between mating treatments in terms of total eggs laid or offspring viability, but there were significant differences found in daily fecundity schedules and adult longevity. In terms of lifetime reproduction, female Warehouse pirate bugs appear to be adapted to compensate for the costs of TI mating to their longevity.  相似文献   

11.
In cooperatively breeding species, many individuals only start breeding long after reaching physiological maturity [1], and this delay is expected to reduce lifetime reproductive success (LRS) [1-3]. Although many studies have investigated how nonbreeding helpers might mitigate the assumed cost of delayed breeding (reviewed in [3]), few have directly quantified the cost itself [4, 5] (but see [6, 7]). Moreover, although life-history tradeoffs frequently influence the sexes in profoundly different ways [8, 9], it has been generally assumed that males and females are similarly affected by a delayed start to breeding [7]. Here, we use 24 years of data to investigate the sex-specific cost of delayed breeding in the cooperatively breeding green woodhoopoe (Phoeniculus purpureus) and show that age at first breeding is related to LRS differently in males and females. As is traditionally expected, males that started to breed earlier in life had greater LRS than those that started later. However, females showed the opposite pattern: Those individuals that started to breed later in life actually had greater LRS than those that started earlier. In both sexes, the association between age at first breeding and LRS was driven by differences in breeding-career length, rather than per-season productivity. We hypothesize that the high mortality rate of young female breeders, and thus their short breeding careers, is related to a reduced ability to deal with the high physiological costs of reproduction in this species. These results demonstrate the importance of considering sex-specific reproductive costs when estimating the payoffs of life-history decisions and bring into question the long-held assumption that delayed breeding is necessarily costly.  相似文献   

12.
Costs of reproduction are any aspect of current reproduction that has the potential to reduce survivorship or reproductive output, and may include physiological costs or increased risks. Females of many species experience increased body mass, and increased girth, when gravid. Increased body mass reduces running speed and increases the cost of locomotion during pregnancy, but few studies have examined the cost of increased girth. If increased girth of gravid females reduces access to shelter from predators or the elements, increased girth could constitute a cost of reproduction. In the laboratory, we experimentally tested whether access to crevices was limited in viviparous, saxicolous female lizards (Eulamprus brachysoma), which use crevices for shelter, by measuring access to artificial crevices of known widths, and body height during and after pregnancy. Gravid E. brachysoma had significantly greater body height (11.2% on average), and as a result were forced to use significantly wider crevices (18.4% wider on average) than post‐parturition. Females with larger clutch sizes had wider mid‐bodies and required larger crevices. Control females, which were not gravid at either time of testing, showed no significant change in the size of crevice they could enter over time. If access to narrow crevices provides advantages such as protection from predators, or is important for thermoregulation, then gravid females may suffer a cost of reproduction because their access to narrower crevices is limited.  相似文献   

13.
Pair-living and socially monogamous primates typically do not reproduce before dispersing. It is currently unclear whether this reproductive suppression is due to endocrine or behavioral mechanisms. Cooperatively breeding taxa, like callitrichids, may forego reproduction in natal groups because they reap inclusive fitness benefits and/or they are avoiding inbreeding. However, neither of these benefits of delayed reproduction appear to adequately explain the lack of reproduction prior to leaving the natal group in pair-living monogamous species. In this study, we determined whether wild Azara's owl monkeys (Aotus azarae) in the Argentinean Chaco establish reproductive maturity prior to dispersing. We utilized 635 fecal extracts to characterize reproductive hormone profiles of 11 wild juvenile and subadult females using enzyme immunoassays. Subadult females showed hormone profiles indicative of ovulatory cycling and had mean PdG and E1G concentrations approximately five times higher than juveniles. Contrary to expectations from the inbreeding avoidance hypothesis, female owl monkeys do not delay puberty, but rather commence ovarian cycling while residing in their natal group. Still, subadults appear to have a period during which they experience irregular, non-conceptive cycles prior to reproducing. Commencing these irregular cycles in the natal group may allow them to develop a state of suspended readiness, which could be essential to securing a mate, while avoiding costs of ranging solitarily. Our results indicate that reproductive suppression in female owl monkeys is not due to endocrine suppression. We suggest that adults likely use behavioral mechanisms to prevent subadults from reproducing with unrelated adult males in their natal group.  相似文献   

14.
Life history strategies reflect trade-offs that tend to maximize fitness, such as investment in a few large or many small offspring. We compared life histories of two temperate livebearing fishes Gambusia affinis and G. nobilis, an endangered species which is virtually unstudied. The two species persist in environments that differ widely in abiotic and biotic factors in the same local area. Gambusia affinis were typically found in habitats with high productivity and wide fluctuations in temperature, salinity and dissolved oxygen, whereas G. nobilis occurred in more stable spring-fed habitats. We collected data on life-history traits: embryo mass, brood size (number of embryos), total maternal reproductive effort, population sex ratios, and size (mass and length) distributions of adults and juveniles. There was no difference between species in reproductive effort per brood, but they differed in investment strategy. Gambusia affinis females produced large broods with small embryos, whereas G. nobilis females produced broods of fewer, larger embryos. These differences in life history strategies reflect a tradeoff between individual productivity and differential mortality rates in different environments. At our field site G. affinis persists as an annual species with relatively high growth rates and corresponding reproductive patterns, whereas G. nobilis females have a slower reproductive tempo and may live multiple years.  相似文献   

15.
Female mate choice is fundamental to sexual selection, and determining molecular underpinnings of female preference variation is important for understanding mating character evolution. Previously it was shown that whole‐brain expression of a synaptic plasticity marker, neuroserpin, positively correlates with mating bias in the female choice poeciliid, Xiphophorus nigrensis, when exposed to conspecific courting males, whereas this relationship is reversed in Gambusia affinis, a mate coercive poeciliid with no courting males. Here we explore whether species‐level differences in female behavioral and brain molecular responses represent ‘canalized’ or ‘plastic’ traits. We expose female G. affinis to conspecific males and females, as well as coercive and courting male Poecilia latipinna, for preference assays followed by whole‐brain gene expression analyses of neuroserpin, egr‐1 and early B. We find positive correlations between gene expression and female preference strength during exposure to courting heterospecific males, but a reversed pattern following exposure to coercive heterospecific males. This suggests that the neuromolecular processes associated with female preference behavior are plastic and responsive to different male phenotypes (courting or coercive) rather than a canalized response linked to mating system. Further, we propose that female behavioral plasticity may involve learning because female association patterns shifted with experience. Compared to younger females, we found larger, more experienced females spend less time near coercive males but associate more with males in the presence of courters. We thus suggest a conserved learning‐based neuromolecular process underlying the diversity of female mate preference across the mate choice and coercion‐driven mating systems.  相似文献   

16.
In female roe deerCapreolus capreolus (Linnaeus, 1758), like in several deer species, first reproduction occurs before they have reached their full body size. This study quantifies, in young females, the energetic costs induced by the contemporaneously occurring events: growth and first reproduction. Resting metabolic rate and body mass were measured in young primiparous females from first mating to 4 months after parturition, and compared to values measured in fully-grown adult multiparous females. Throughout the 10-month period from mating to fawning, body mass increased in yearlings. Prior to the blastocyst implantation (month −5 before parturition) young females were lighter than adult females whereas after parturition they had the same body mass. Our results suggest that body growth was reinitiated during pregnancy in primiparous females. From mating to fawning, except in the first part of pregnancy, mass-specific metabolism was higher in primiparous females than in multiparous individuals indicating the occurrence of an additional cost due to growth in young females. The depressed level observed at the beginning of gestation could allow the resumption of growth at lower cost. Thus, the allocation of resources to both reproduction and growth was not detrimental to first reproduction in young female roe deer under experimental conditions withad lib feeding.  相似文献   

17.
Costs of reproduction in a population of European adders   总被引:2,自引:0,他引:2  
Eleven years of data on a small population of adders (Vipera berus) in southern Sweden provide quantitative information on the nature and degree of costs faced by reproducing animals. Reproduction imposes both an energy cost (measured by loss in body mass) and a mortality cost on adders of both sexes. The extent of the energy cost is broadly independent of levels of reproductive activity in males, but mortality costs are highest for large males, perhaps because they are more obvious to predators. In females, energy costs include a high ‘fixed’ (fecundity-independent) component, such that a large litter may cost little more to produce than would a small litter. Energy costs and mortality costs are separate in males, but inter-related in females. Mortality of reproducing females is high (40% per year), primarily because post-parturient females are emaciated and must forage actively, hence increasing their vulnerability to predators. Females producing relatively large litters (high Relative Clutch Mass) lose more body mass, and are less likely to survive after reproducing. The observed low reproductive frequencies of female adders may result from the presence of high fecundity-independent costs of reproduction.  相似文献   

18.
The costs of reproduction are expected to be higher under unfavourable conditions, so that breeding in years of low food supply should have important costs. In addition, the costs of reproduction may be contingent on the age of individuals, and young growing and old senescent individuals should suffer higher costs than the prime-age ones. We tested these predictions by investigating the costs of reproduction as a function of food availability and age in female North American red squirrels using the long-term data on survival and reproduction. We found that the costs of reproduction were independent of food supply, and we did not detect any trade-off between the current and future reproduction. We also did not detect any survival cost of reproduction for the prime-age females, but found evidence for survival costs in yearlings and old (6 years or above) females with successfully breeding individuals having a lower chance of survival compared with unsuccessful or non-breeding ones. These results supported our prediction that the costs of reproduction depended on the age of female red squirrels and were higher in young growing and old senescent individuals. Our study also indicated that, in contrast to large herbivores, heterogeneity in individual quality and viability selection in red squirrels do not affect the study of trade-offs and of the age variation in life-history traits.  相似文献   

19.
Predator density, refuge availability, and body size of prey can all affect the mortality rate of prey. We assume that more predators will lead to an increase in prey mortality rate, but behavioral interactions between predators and prey, and availability of refuge, may lead to nonlinear effects of increased number of predators on prey mortality rates. We tested for nonlinear effects in prey mortality rates in a mesocosm experiment with different size classes of western mosquitofish (Gambusia affinis) as the prey, different numbers of green sunfish (Lepomis cyanellus) as the predators, and different levels of refuge. Predator number and size class of prey, but not refuge availability, had significant effects on the mortality rate of prey. Change in mortality rate of prey was linear and equal across the range of predator numbers. Each new predator increased the mortality rate by about 10% overall, and mortality rates were higher for smaller size classes. Predator–prey interactions at the individual level may not scale up to create nonlinearity in prey mortality rates with increasing predator density at the population level.  相似文献   

20.
Organisms are selected to maximize lifetime reproductive success by balancing the costs of current reproduction with costs to future survival and fecundity. Males and females typically face different reproductive costs, which makes comparisons of their reproductive strategies difficult. Burying beetles provide a unique system that allows us to compare the costs of reproduction between the sexes because males and females are capable of raising offspring together or alone and carcass preparation and offspring care represent the majority of reproductive costs for both sexes. Because both sexes perform the same functions of carcass preparation and offspring care, we predict that they would experience similar costs and have similar life history patterns. In this study we assess the cost of reproduction in male Nicrophorus orbicollis and compare to patterns observed in females. We compare the reproductive strategies of single males and females that provided pre- and post-hatching parental care. There is a cost to reproduction for both males and females, but the sexes respond to these costs differently. Females match brood size with carcass size, and thus maximize the lifetime number of offspring on a given size carcass. Males cull proportionately more offspring on all carcass sizes, and thus have a lower lifetime number of offspring compared to females. Females exhibit an adaptive reproductive strategy based on resource availability, but male reproductive strategies are not adaptive in relation to resource availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号