首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the role of non-parametric light effects in entrainment, Djungarian hamsters of two different circadian phenotypes were exposed to skeleton photoperiods, or to light pulses at different circadian times, to compile phase response curves (PRCs). Wild-type (WT) hamsters show daily rhythms of locomotor activity in accord with the ambient light/dark conditions, with activity onset and offset strongly coupled to light-off and light-on, respectively. Hamsters of the delayed activity onset (DAO) phenotype, in contrast, progressively delay their activity onset, whereas activity offset remains coupled to light-on. The present study was performed to better understand the underlying mechanisms of this phenomenon. Hamsters of DAO and WT phenotypes were kept first under standard housing conditions with a 14:10 h light–dark cycle, and then exposed to skeleton photoperiods (one or two 15-min light pulses of 100 lx at the times of the former light–dark and/or dark–light transitions). In a second experiment, hamsters of both phenotypes were transferred to constant darkness and allowed to free-run until the lengths of the active (α) and resting (ρ) periods were equal (α:ρ = 1). At this point, animals were then exposed to light pulses (100 lx, 15 min) at different circadian times (CTs). Phase and period changes were estimated separately for activity onset and offset. When exposed to skeleton-photoperiods with one or two light pulses, the daily activity patterns of DAO and WT hamsters were similar to those obtained under conditions of a complete 14:10 h light–dark cycle. However, in the case of giving only one light pulse at the time of the former light–dark transition, animals temporarily free-ran until activity offset coincided with the light pulse. These results show that photic entrainment of the circadian activity rhythm is attained primarily via non-parametric mechanisms, with the “morning” light pulse being the essential cue. In the second experiment, typical photic PRCs were obtained with phase delays in the first half of the subjective night, phase advances in the second half, and a dead zone during the subjective day. ANOVA indicated no significant differences between WT and DAO animals despite a significantly longer free-running period (tau) in DAO hamsters. Considering the phase shifts induced around CT0 and the different period lengths, it was possible to model the entrainment patterns of both phenotypes. It was shown that light-induced phase shifts of activity offset were sufficient to compensate for the long tau in WT and DAO hamsters, thus enabling a stable entrainment of their activity offsets to be achieved. With respect to activity onsets, phase shifts were sufficient only in WT animals; in DAO hamsters, activity onset showed increasing delays. The results of the present paper clearly demonstrate that, under laboratory conditions, the non-parametric component of light and dark leads to circadian entrainment in Djungarian hamsters. However, a stable entrainment of activity onset can be achieved only if the free-running period does not exceed a certain value. With longer tau values, hamsters reveal a DAO phenotype. Under field conditions, therefore, non-photic cues/zeitgebers must obviously be involved to enable a proper circadian entrainment.  相似文献   

2.
Abstract.  To reveal circadian characteristics and entrainment mechanisms in the Japanese honeybee Apis cerana japonica , the locomotor-activity rhythm of foragers is investigated under programmed light and temperature conditions. After entrainment to an LD 12 : 12 h photoperiodic regime, free-running rhythms are released in constant dark (DD) or light (LL) conditions with different free-running periods. Under the LD 12 : 12 h regime, activity offset occurs approximately 0.4 h after lights-off transition, assigned to circadian time (Ct) 12.4 h. The phase of activity onset, peak and offset, and activity duration depends on the photoperiodic regimes. The circadian rhythm can be entrained to a 24-h period by exposure to submultiple cycles of LD 6 : 6 h, as if the locomotive rhythm is entrained to LD 18 : 6 h. Phase shifts of delay and advance are observed when perturbing single light pulses are presented during free-running under DD conditions. Temperature compensation of the free-running period is demonstrated under DD and LL conditions. Steady-state entrainment of the locomotor rhythm is achieved with square-wave temperature cycles of 10 °C amplitude, but a 5 °C amplitude fails to entrain.  相似文献   

3.
The supratidal amphipod Talorchestia longicornis Say has a circadian rhythm in activity, in which it is active on the substrate surface at night and inactive in burrows during the day. The present study determined: (1) the circadian rhythms in individual versus groups of amphipods; (2) the range of temperature cycles that entrain the circadian rhythm; (3) entrainment by high-temperature cycles versus light?:?dark cycles, and (4) seasonal substrate temperature cycles. The circadian rhythm was determined by monitoring temporal changes in surface activity using a video system. Individual and groups of amphipods have similar circadian rhythms. Entrainment occurred only to temperature cycles that included temperatures below 20°C (10–20, 15–20, 17–19, 15–25°C) but not to temperatures above 20°C (20–25, 20–30°C), and required only a 2°C temperature cycle (17–19°C). Diel substrate temperatures were above 20°C in the summer and below 20°C during the winter. Upon simultaneous exposure to a diel high-temperature cycle (20–30°C) and a light?:?dark cycle phased differently, amphipods entrained to the light?:?dark cycle. Past studies found that a temperature cycle below 20°C overrode the light?:?dark cycle for entrainment. The functional significance of this change in entrainment cues may be that while buried during the winter, the activity rhythm remains in phase with the day?:?night cycle by the substrate temperature cycles. During the summer, T. longicornis switches to the light?:?dark cycle for entrainment, perhaps as a mechanism to phase activity precisely to the short summer nights.  相似文献   

4.
Light and temperature entrainment of a locomotor rhythm in honeybees   总被引:1,自引:0,他引:1  
Abstract. The circadian locomotor (walking) rhythms of forager honeybees (Apis mellifera ligustica L.) were entrained to eight different 24 h light-dark cycles. The phases of activity onset, peak activity, and offset were correlated with the lights-off transition, suggesting lights-off as the primary zeitgeber for the rhythm. Further support for this hypothesis was provided by LD 1:23 experiments, in which entrainment occurred when the light pulse was situated at the end, but not at the beginning, of the subjective photophase. Steady-state entrainment of the locomotor rhythm was achieved with square-wave temperature cycles of 10oC amplitude under constant dark: most of the activity occurred within the early thermophase. Smaller amplitude temperature cycles yielded relative coordination of the rhythm. Interactions of temperature and light-dark cycles resulted in entrainment patterns different from those elicited in response to either cycle alone or those formed by a simple combination of the two separate responses. Furthermore, temperature cycles having amplitudes insufficient for entrainment of the rhythm nevertheless modified the pattern of entrainment to light - dark cycles, suggesting a synergism of light and temperature effects on the underlying circadian clock system.  相似文献   

5.
Light and serotonin were found to cause phase shifts of the circadian neural activity rhythm in the optic lobe of the cricket Gryllus bimaculatus cultured in vitro. The two phase-shifting agents yielded phase-response curves different in shape. Light induced phase delay and advance in the early and late subjective night, respectively, and almost no shifts in the subjective day, whereas serotonin phase-advances the clock during the subjective day and induced delay shifts during the subjective night. The largest phase advance and delay occurred at circadian time 21 and 12, respectively, for light, and circadian time 3 and 18, respectively, for serotonin. Quipazine, a nonspecific serotonin agonist, induced phase advance and phase delay at circadian time 3 and 18, respectively, like serotonin. (±)8-OH-DPAT, a specific 5-HT1A agonist, phase delayed by 2 h at the subjective night, but produced no significant phase shifts at the subjective day. When NAN-190, a specific 5-HT1A antagonist, was applied together with quipazine, it completely blocked the phase delay at circadian time 18, whereas it had no effect on the advance shifts induced by quipazine. The results suggest that the phase dependency of serotonin-induced phase shifts of the clock may be partly attributable to the daily change in receptor type. Accepted: 4 July 1999  相似文献   

6.
Under free-running conditions, the grey lesser mouse lemur expresses a circadian activity–rest rhythm with a period particularly short (22.50 ± 0.6 h) for a mammal. Light exerts a strong suppressive effect upon activity. After transfer from nycthemeral to free-running conditions the duration of activity was systematically increased. This extension took place in the first cycle and was characterized by both a phase advance in activity onset and an even larger phase delay in activity offset. This phenomenon was more pronounced after long day entrainment. Any shift of the light–dark cycle was followed the next day by a corresponding shift in activity onset. The phase response curve pattern was similar to that already described for nocturnal mammals. Due to the strength of light as a zeitgeber and the plasticity of the response to photic conditions, the mouse lemur appears as a convenient species for chronobiological studies on non-human primates.  相似文献   

7.

Food availability is a potent environmental cue that directs circadian locomotor activity in rodents. Daily scheduled restricted feeding (RF), in which the food available time is restricted for several hours each day, elicits anticipatory activity. This food-anticipatory activity (FAA) is controlled by a food-entrainable oscillator (FEO) that is distinct from the suprachiasmatic nucleus (SCN), the master pacemaker in mammals. In an earlier report, we described generation of transgenic (Tg) mice ubiquitously overexpressing cysteine414-alanine mutant mCRY1. The Tg mice displayed long locomotor free-running periods (approximately 28 h) with rhythm splitting. Furthermore, their locomotor activity immediately re-adjusted to the advance of light–dark cycles (LD), suggesting some disorder in the coupling of SCN neurons. The present study examined the restricted feeding cycle (RF)-induced entrainment of locomotor activity in Tg mice in various light conditions. In LD, wild-type controls showed both FAA and LD-entrained activities. In Tg mice, almost all activity was eventually consolidated to a single bout before the feeding time. The result suggests a possibility that in Tg mice the feeding cycle dominates the LD cycle as an entrainment agent. In constant darkness (DD), wild-type mice exhibited robust free-run activity and FAA during RF. For Tg mice, only the rhythm entrained to RF was observed in DD. Furthermore, after returning to free feeding, the free-run started from the RF-entrained phase. These results suggest that the SCN of Tg mice is entrainable to RF and that the mCRY1 mutation alters the sensitivity of SCN to the cycle of nonphotic zeitgebers.

  相似文献   

8.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8-10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

9.
The daily rhythm of the adrenocortical cyclic nucleotides (cyclic AMP and cyclic GIMP) was studied in infant male and female Wistar rats before and after the establishment of an adult-like daily rhythm of plasma corticosterone. As in this strain the rhythm of corticosterone is known to be present on postnatal day 18, pups of 2 and 3 weeks of age were studied. The dams and the pups as well as the young adult animals were kept on a controlled 12L-12D photoperiod. Groups of 8–10 pups were killed at 4-hr intervals throughout the day. Plasma corticosterone levels and adrenal cyclic AMP and cyclic GMP concentrations were simultaneously measured and the daily patterns established. Pups of 2 weeks of age showed neither plasma corticosterone nor adrenal cyclic AMP rhythms whereas pups of 3 weeks of age exhibited a typical adult-like circadian rhythm for both variables. The patterns for adrenal cyclic GMP differed according to sex: In female pups no cyclic GMP circadian rhythm could be detected at either 2 or 3 wk. In male pups of 3 wk a typical mature rhythm for adrenal cyclic GMP was evident whereas in younger male pups (2 wk) a circadian rhythm was detected. This circadian rhythm, however, differed from mature circadian rhythm in that its peak was located at 1300 hr instead of 0700 hr. These results demonstrate that, unlike that of cyclic AMP the adrenal cyclic GMP circadian rhythm does not appear at the same time as the plasma corticosterone circadian rhythm. Moreover, a circadian rhythmicity for adrenal cyclic GMP can be found in the absence of any corticosterone circadian rhythm. These facts argue against the view of cyclic GMP being a mediator of ACTH-stimulated steroidogenesis.  相似文献   

10.
11.
The effects of chronic (14 day) intracerebroventricular infusion of various amounts of ovine corticotropin-releasing factor (oCRF) on the circadian blood corticosterone rhythm in male rats were examined. Control (saline-infused) rats showed distinct blood corticosterone rhythms over 48 h with nadirs at 0900 h and peaks at 2100 h on days 6-7 and 13-14. oCRF at 3 pmol/h did not affect the circadian corticosterone rhythm on these days. When oCRF was infused at a rate of 12 pmol/h, blood corticosterone was increased throughout the 48 h periods. A significant circadian rhythm remained at days 6-7, but continuous infusion for an additional 7 days disrupted the rhythm. Higher doses of oCRF (48 and 240 pmol/h) obliterated the rhythm during both periods; the disruption was characterized by an increase in corticosterone during the lights-on period without a substantial change in the evening maximum. Thus, the blood corticosterone concentration was eventually confined within a narrow range, not exceeding the normal circadian peak, over a wide dose range of centrally administered CRF. Significant effects of oCRF on body and adrenal weight were observed only at the two highest doses used. These findings may provide some insight into the state of the hypothalamic-pituitary-adrenal axis in animals exposed to chronic stress and in patients with depression.  相似文献   

12.
We examined the effects of pinealectomy and blinding (bilateral ocular enucleation) on the circadian locomotor activity rhythm in the Japanese newt, Cynops pyrrhogaster. The pinealectomized newts were entrained to a light-dark cycle of 12 h light and 12 h darkness. After transfer to constant darkness they showed residual rhythmicity for at least several days which was gradually disrupted in prolonged constant darkness. Blinded newts were also entrained to a 12 h light/12 h dark cycle. In subsequent constant darkness they showed free-running rhythms of locomotor activity. However, the freerunning periods noticeably increased compared with those observed in the previous period of constant darkness before blinding. In blinded newts entrained to the light/dark cycle the activity rhythms were gradually disrupted after pinealectomy even in the presence of the light/dark cycle. These results suggest that both the pineal and the eyes are involved in the newt's circadian system, and also suggest that the pineal of the newt acts as an extraretinal photoreceptor which mediates the entrainment of the locomotor activity rhythm.Abbreviations circadian period - DD constant darkness - LD cycle, light-dark cycle - LD 12:12 light-dark cycle of 12 h light and 12 h darkness  相似文献   

13.
The mammalian circadian clock lying in suprachiasmatic nucleus (SCN) is synchronized to about 24 h by the environmental light-dark cycle (LD). The circadian clock exhibits limits of entrainment above and below 24 h, beyond which it will not entrain. Little is known about the mechanisms regulating the limits of entrainment. In this study, we show that wild-type mice entrain to only an LD 24 h cycle, whereas Clock mutant mice can entrain to an LD 24, 28, and 32 h except for LD 20 h and LD 36 h cycle. Under an LD 28 h cycle, Clock mutant mice showed a clear rhythm in Per2 mRNA expression in the SCN and behavior. Light response was also increased. This is the first report to show that the Clock mutation makes it possible to adapt the circadian oscillator to a long period cycle and indicates that the clock gene may have an important role for the limits of entrainment of the SCN to LD cycle.  相似文献   

14.
In small laboratory species, steroid measures can be obtained more frequently and less invasively from urine than blood. Insofar as urinary levels reflect systemic levels, they could provide advantages particularly for measurement of glucocorticoids, whose blood levels react rapidly to handling and stress. In Experiment 1, urinary samples were collected from male mice every second hour over a 14:10 h light:dark cycle. Samples were analyzed via enzyme immunoassay for corticosterone, testosterone, and creatinine. Corticosterone had peak concentrations 1 h after light offset and a trough 1 h after light onset. Testosterone showed peak concentrations 5-7 h after light onset and lowest concentrations during the dark phase of the cycle. Creatinine showed some variation over the light-dark cycle, but steroid measures showed similar trends with and without adjustment for creatinine. In Experiment 2, mice were stressed via an injection at times close to the determined peak and trough levels of corticosterone. In urinary samples taken 90 min after injection, corticosterone was significantly higher in injected animals at both times relative to levels in control animals, but testosterone was unaffected by injection stress. In Experiment 3, serum and urine samples were collected from mice every sixth hour across the diurnal cycle. Corticosterone peaked in urine and serum immediately after light offset, and urinary measures predicted those in serum. These data indicate that urinary corticosterone reflects systemic levels in mice, document circadian variation in urinary testosterone, and indicate that circadian variation in creatinine is minimal, but potentially relevant in stressed animals.  相似文献   

15.
An inbred lineage of Ph. sungorus was established at our institute showing some unusual characteristics of the circadian system that appear incompatible with an adequate adaptation to the periodic environment. We identified a hamster for which activity onset was delayed under light‐dark conditions (L:D=14∶10 h) by about 4 h in relation to the light‐dark transition. As the activity offset remained synchronized with the time of light‐on, the activity period (α) became compressed to 6 h. By means of a special breeding program, the percentage of animals showing such a phenomenon increased, indicating that it has a genetic component. Also, it is possible now to breed a larger number of hamsters to further investigate the rhythm deviations and the underlying mechanisms. Activity rhythms were investigated using passive infrared motion sensors. Whereas some of the hamsters showed a rather stable phase delay of activity onset relative to the onset of darkness, some animals progressively delayed their activity onset up to a critical, minimal length of α (3.03±0.02 h). Thereafter, the rest‐activity rhythm started to free‐run with a remarkably long period (τ=25.02 h) or became arrhythmic. Some hamsters showed several consecutive cycles alternating between a free‐running rhythm and entrainment, with increasing τ and reducing the phases of temporary entrainment. Finally, these hamsters became arrhythmic. The total amount of activity per day was similar in the wild type and delayed activity onset hamsters. The latter did increase the intensity of activity, thereby compensating for the shorter α. The period length in constant darkness was significantly longer in the delayed hamsters compared to wild type animals (24.37±0.03 h vs. 24.24±0.02 h; p<0.001). However, this difference seems too small to cause the later activity onset. The phase response following a light pulse (100 lux, 15′ at CT14 where CT12=activity onset) was similar in delayed and wild type hamsters (?1.66±0.12 h and ?1.82±0.16 h). As access to running wheels is known to influence the circadian pacemaker, particularly to strengthen oscillator coupling, a set of further experiments was conducted. The free‐running period was significantly shorter when the hamsters were provided with running wheels (24.25±0.04 h and 24.07±0.04 h in wild type and delayed hamsters, respectively; p<0.005 and p<0.05). However, the effect on the activity onset was not unequivocal. In many hamsters it was still delayed, whereas in others the unlocking of the wheels led to an expansion of α. The described inbred lineage appears to be an excellent model to further investigate the properties and the interaction of the two oscillators underlying the daily activity pattern.  相似文献   

16.
The range of entrainment of the circadian rhythm of locomotor activity was compared in four groups of Syrian hamsters (eight animals per group) initially exposed to daily light-dark (LD) cycles with either abrupt transitions between light and darkness (LD-rectangular) or simulated twilights (LD-twilight). Lighting was provided by arrays of white light-emitting diodes; daytime illuminance (10 lux) and the total amount of light emitted per day were the same in the two conditions. The period (T) of the LD cycles was then gradually increased to 26.5 h or gradually decreased to 21.5 h, at the rate of 5 min/day. Under LD-rectangular, the upper and lower limits of entrainment were 25.0 to 25.5 h and 22.0 to 22.5 h, respectively, whereas under LD-twilight, 50% of the animals exposed to the lengthening cycles were still entrained at T = 26.5 h and 50% of those exposed to the shortening cycles were still entrained at T = 21.5 h. In a second experiment, two groups of hamsters were exposed to fixed T = 25 h LD-rectangular (n = 15) or LD-twilight cycles (n = 7). Only 33% of the animals entrained in LD-rectangular, whereas 86% of the animals entrained in LD-twilight. Free-running periods in constant darkness were longer following successful entrainment to T = 25 h but did not differ between the animals that entrained to LD-rectangular and those that entrained to LD-twilight. The widening of the range of entrainment observed in LD-twilight indicates that twilight transitions increase the strength of the LD zeitgeber. In LD-twilight, successful entrainment to T = 26.5 h was accompanied by an expansion of activity time to 16.52+/-1.22 h, with activity onsets preceding mid-dusk by 12.56+/-2.15 h. Together with earlier data showing similar phase response curves for hour-long dawn, dusk, and rectangular light pulses, these results suggest that the effect of twilights on the range of entrainment may involve parametric rather than nonparametric mechanisms.  相似文献   

17.
Circadian clocks in many brain regions and peripheral tissues are entrained by the daily rhythm of food intake. Clocks in one or more of these locations generate a daily rhythm of locomotor activity that anticipates a regular mealtime. Rats and mice can also anticipate two daily meals. Whether this involves 1 or 2 circadian clocks is unknown. To gain insight into how the circadian system adjusts to 2 daily mealtimes, male rats in a 12∶12 light-dark cycle were fed a 2 h meal either 4 h after lights-on or 4 h after lights-off, or a 1 h meal at both times. After 30 days, brain, blood, adrenal and stomach tissue were collected at 6 time points. Multiple clock genes from adrenals and stomachs were assayed by RT-PCR. Blood was assayed for corticosterone and ghrelin. Bmal1 expression was quantified in 14 brain regions by in situ hybridization. Clock gene rhythms in adrenal and stomach from day-fed rats oscillated in antiphase with the rhythms in night-fed rats, and at an intermediate phase in rats fed twice daily. Corticosterone and ghrelin in 1-meal rats peaked at or prior to the expected mealtime. In 2-meal rats, corticosterone peaked only prior the nighttime meal, while ghrelin peaked prior to the daytime meal and then remained elevated. The olfactory bulb, nucleus accumbens, dorsal striatum, cerebellum and arcuate nucleus exhibited significant daily rhythms of Bmal1 in the night-fed groups that were approximately in antiphase in the day-fed groups, and at intermediate levels (arrhythmic) in rats anticipating 2 daily meals. The dissociations between anticipatory activity and the peripheral clocks and hormones in rats anticipating 2 daily meals argue against a role for these signals in the timing of behavioral rhythms. The absence of rhythmicity at the tissue level in brain regions from rats anticipating 2 daily meals support behavioral evidence that circadian clock cells in these tissues may reorganize into two populations coupled to different meals.  相似文献   

18.
An efficient separation of corticosteroids in plasma of rats was obtained by reversed-phase high-performance liquid chromatography (HPLC). Plasma corticosteroid assays with HPLC separation were used to determine the circadian rhythm of 18-hydroxycorticosterone (18-OHB) and its possible relationship to aldosterone or corticosterone in conscious rats under standard conditions (regular diet; 12-hour light and 12-hour dark cycle). Significant circadian rhythms of plasma corticosterone, 18-OHB and aldosterone were observed with peak values at 20.00 h and nadir values at 08.00 h. The mean ratio of plasma 18-OHB to aldosterone during 24 h was 2.4. The circadian rhythm of 18-OHB was also correlated with that of plasma aldosterone or corticosterone.  相似文献   

19.
Carbon monoxide (CO), generated in neurons by the enzyme heme oxygenase-2 (HO2), is postulated to be a gaseous signaling molecule in the mammalian brain. Because of the recent evidence suggesting an important role of another endogenously produced gas, nitric oxide (NO), in entrainment of circadian rhythms in mammals, we hypothesized that CO may also be involved in regulating these rhythms. Consistent with this idea, others have found a circadian rhythm of heme turnover and CO synthesis can be induced by bright light. Furthermore, HO2 is co-localized with guanylyl cyclase, the putative target of CO, throughout the brain, with high amounts of staining in the suprachiasmatic nucleus (SCN) of the hypothalamus. The goal of the present study was to evaluate the role of CO in photic entrainment in wild-type and HO2 deficient mice. HO2–/– mice did not display any abnormalities in circadian rhythmicity. Entrainment to a light–dark cycle, the ability to phase delay locomotor activity after a four hour phase shift in photoperiod, and the period of the free running rhythm (t) were similar between HO2–/– and wild-type mice. Taken together, these data suggest that CO does not play a major role in regulating circadian activity rhythms in mice.  相似文献   

20.
Lycosa tarentula is a ground-living spider that inhabits a burrow where it awaits the appearance of prey or conspecifics. In this study, circadian rhythms of locomotor activity were examined as well as the ocular pathway of entrainment. Thirty-three adult virgin females were examined under constant darkness (DD); all of them exhibited robust circadian rhythms of locomotor activity with a period averaging 24.1h. Fourteen of these spiders were studied afterwards under an LD 12:12 cycle; they usually entrained to in the first or second day, even when the light intensity was as low as 1 lx. During the LD cycle, locomotor activity was generally restrained to the darkness phase, although several animals showed a small amount of diurnal activity. Ten males were also examined under LD; they were also nocturnal, but were much more active than the females. Seven females were examined under constant light (LL); under this they became arrhythmic. Except for the anterior median eyes (OMAs), all the eyes were capable of entraining the locomotor activity to an LD cycle. These results demonstrate that under laboratory conditions and low light intensities locomotor activity of Lycosa tarentula is circadian and in accordance with Aschoff's 'rule'. Only OMAs are unable to entrain the rhythm; the possible localization of circadian clock is therefore discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号