首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
BackgroundTraditionally, seeds of Herpetospermum pedunculosum were used to treat liver disease or cholepathy. Up to date, their protecting effect against cholestasis was remain unclarified.PurposeTo investigate the efficacy, possible mechanisms, and active constituents of the ethyl acetate extract from the seeds of Herpetospermum pedunculosum (HPEAE), studies were carried out using cholestasis rat model induced by α-naphthylisothiocyanate (ANIT).MethodsMale rats were intragastrically treated with HPEAE (100, 200 or 400 mg/kg) once a day for 7 days and were modeled with ANIT (60 mg/kg). The levels of serum indicators, bile flow, and histopathology were evaluated. Indices of oxidative stress and inflammatory mediators were detected using the enzyme-linked immunosorbent assay. Western blotting method was employed for analyzing the protein levels in the signal pathways of farnesoid X receptor (FXR), kelch ech associating protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) and nuclear factor κB (NF-κB). The chemical compositions of HPEAE was analyzed by HPLC, and partially chemical components of HPEAE were identified by comparisons of their retention times with the standards. The FXR agonistic activity of the identified compounds was evaluated in l-02 cells induced by guggulsterone using a high-content screening system.ResultsThe cholestasis caused by ANIT can be significantly ameliorated by restoring the liver function indexes of alanine transaminase, aspartate transaminase, alkaline phosphatase, gamma-glutamyltransferase, total bilirubin, direct bilirubin and total bile acid, which are dose-dependent, as well as pathological liver injury and bile flow. Mechanical studies suggested that HPEAE can activate the expression of FXR and then up regulate its downstream proteins (multidrug resistance-associated protein 2, bile salt export pump and Na+/taurocholate cotransporting polypeptide). Moreover, the levels of the active oxygen index glutathione, superoxide dismutase, glutathione peroxidase, catalase and malondialdehyde were markedly restored by treatment with HPEAE. Western blotting further confirmed that HPEAE up regulated the expression of quinone oxidoreductase 1, heme oxygenase 1 and Keap1, lowered the expression of Nrf2 and reduced oxidative stress. HPEAE also up regulated P-glycoprotein 65, phosphorylated P-glycoprotein 65 and inhibitor of NF-κB kinase α expression, down regulated inhibitor of NF-κB (IκB), restored inflammatory mediator tumor necrosis factor-α, interleukin-1β (IL-1β), IL-6 and IL-10, and reduced inflammatory response. Fifteen compounds were identified (12 lignans and 3 coumarins). Among them, five lignans exhibited the significant FXR agonistic activity in vitro.ConclusionHPEAE may alleviate the cholestasis and liver injury caused by ANIT in rats by activating FXR, as well as suppressing the Keap1/Nrf2 and NF-κB signaling pathways and lignans may be its main active components.  相似文献   

3.
4.
Cyp2c70?/? mice with a human-like bile acid (BA) composition, lacking hydrophilic muricholic acids (MCAs), have been reported to display cholangiopathy and biliary fibrosis with female preponderance that can be reversed by ursodeoxycholic acid (UDCA). Obeticholic acid (OCA), a steroidal BA-like FXR agonist, has been shown to improve liver function in patients with primary biliary cholangitis and is approved as second-line treatment for patients with an inadequate response or intolerance to UDCA. Here, we investigated the impact of OCA on BA hydrophobicity and cholangiopathy in Cyp2c70?/? mice. Male and female wild-type (WT) and Cyp2c70?/? mice were fed a chow diet with or without 10 mg/kg/day OCA for 4 weeks. OCA accounted for 1–5% of biliary BAs, with larger enrichments in Cyp2c70?/? than in WT mice. In WT mice, OCA induced a more hydrophilic, MCA-rich BA pool. In Cyp2c70?/? mice, however, BA pool became more hydrophobic with a larger proportion of chenodeoxycholic acid, attributable to a reduction of BA 12α-hydroxylation. OCA treatment reduced fecal BA excretion, indicating repression of hepatic BA synthesis in both WT and Cyp2c70?/? mice. OCA did, however, not impact on markers of liver (dys)function in plasma nor did it ameliorate cholangiopathy and fibrosis in male or female Cyp2c70?/? mice. OCA treatment also did not affect the expression of genes involved in fibrosis, inflammation and cellular senescence. In conclusion, 4 weeks of OCA treatment oppositely modulates the hydrophobicity of the BA pool in WT and Cyp2c70?/? mice, but does not improve or worsen the characteristic sex-dependent liver pathology in Cyp2c70?/? mice.  相似文献   

5.

Background and aims

Cholangiocarcinoma (CCA) is an aggressive tumor type affecting cholangiocytes. CCAs frequently arise under certain cholestatic liver conditions. Intrahepatic accumulation of bile acids may facilitate cocarcinogenic effects by triggering an inflammatory response and cholangiocyte proliferation. Here, the role of bile acid receptors FXR and TGR5 in CCA progression was evaluated.

Methods

FXR and TGR5 expression was determined in human CCA tissues and cell lines. An orthotopic model of CCA was established in immunodeficient mice and tumor volume was monitored by magnetic resonance imaging under chronic administration of the specific FXR or TGR5 agonists, obeticholic acid (OCA) or INT-777 (0,03% in chow; Intercept Pharmaceuticals), respectively. Functional effects of FXR or TGR5 activation were evaluated on CCA cells in vitro.

Results

FXR was downregulated whereas TGR5 was upregulated in human CCA tissues compared to surrounding normal liver tissue. FXR expression correlated with tumor differentiation and TGR5 correlated with perineural invasion. TGR5 expression was higher in perihilar than in intrahepatic CCAs. In vitro, FXR was downregulated and TGR5 was upregulated in human CCA cells compared to normal human cholangiocytes. OCA halted CCA growth in vivo, whereas INT-777 showed no effect. In vitro, OCA inhibited CCA cell proliferation and migration which was associated with decreased mitochondrial energy metabolism. INT-777, by contrast, stimulated CCA cell proliferation and migration, linked to increased mitochondrial energy metabolism.

Conclusion

Activation of FXR inhibits, whereas TGR5 activation may promote, CCA progression by regulating proliferation, migration and mitochondrial energy metabolism. Modulation of FXR or TGR5 activities may represent potential therapeutic strategies for CCA.  相似文献   

6.
BackgroudCholestasis, accompanied by the accumulation of bile acids in body, may ultimately cause liver failure and cirrhosis. There have been limited therapies for cholesteric disorders. Therefore, development of appropriate therapeutic drugs for cholestasis is required. Picroside II is a bioactive component isolated from Picrorhiza scrophulariiflora Pennell, its mechanistic contributions to the anti-cholestasis effect have not been fully elucidated, especially the role of picroside II on bile acid homeostasis via nuclear receptors remains unclear.PurposeThis study was designed to investigate the hepatoprotective effect of picroside II against alpha-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury and elucidate the mechanisms in vivo and in vitro.MethodsThe ANIT-induced cholestatic mouse model was used with or without picroside II treatment. Serum and bile biochemical indicators, as well as liver histopathological changes were examined. siRNA, Dual-luciferase reporter, quantitative real-time PCR and Western blot assay were used to demonstrate the farnesoid X receptor (FXR) pathway in the anti-cholestasis effects of picroside II in vivo and in vitro.ResultsPicroside II exerted hepatoprotective effect against ANIT-induced cholestasis by impaired hepatic function and tissue damage. Picroside II increased bile acid efflux transporter bile salt export pump (Bsep), uptake transporter sodium taurocholate cotransporting polypeptide (Ntcp), and bile acid metabolizing enzymes sulfate transferase 2a1 (Sult2a1) and UDP-glucuronosyltransferase 1a1 (Ugt1a1), whereas decreased the bile acid synthesis enzymes cholesterol 7α-hydroxylase (Cyp7a1) and oxysterol 12α-hydroxylase (Cyp8b1). In addition, expression of FXR and the target gene Bsep was increased, whereas aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARα) and their corresponding target genes were not significantly influenced by picroside II under cholestatic conditions. Furthermore, regulation of transporters and enzymes involved in bile acid homeostasis by picroside II were abrogated by FXR silencing in mouse primary cultured hepatocytes. Dual-luciferase reporter assay performed in HepG2 cells demonstrated FXR activation by picroside II.ConclusionOur findings demonstrate that picroside II exerts protective effect on ANIT-induced cholestasis possibly through FXR activation that regulates the transporters and enzymes involved in bile acid homeostasis. Picroside II might be an effective approach for the prevention and treatment of cholestatic liver diseases.  相似文献   

7.
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR−/−) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR−/− mice fed MCD diet (FXR−/−/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR−/−/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR−/−/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR−/−/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.  相似文献   

8.
9.
10.
BackgroundCholestasis is characterized by accumulation of bile components in liver and systemic circulation. Restoration of bile acid homeostasis via activating farnesoid x receptor (FXR) is a promising strategy for the treatment of cholestasis. FXR-SHP (small heterodimer partner) axis plays an important role in maintaining bile acid homeostasis.PurposeTo investigate the anti-cholestasis effect of Dolomiaea souliei (Franch.) C.Shih (D. souliei) and clarify its underlying mechanism against α-naphthylisothiocyanate (ANIT) induced acute intrahepatic cholestasis.MethodsANIT-induced Sprague-Dawley rats were employed to investigate the anti-cholestasis effect of D. souliei ethyl acetate extract (DSE). Ursodeoxycholic acid (UDCA) was used as positive control. Bile flow and blood biochemical parameters were measured. Liver histopathological examination was conducted via hematoxylin-eosin staining. Western blot analysis was carried out to evaluate the protein levels related to bile acids metabolism and inflammation. The interactions between FXR and costunolide or dehydrocostus lactone, were conducted by molecular docking experiments. The effect of costunolide and dehydrocostus lactone on aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and FXR expression were also evaluated using guggulsterone-induced L02 cells.ResultsDSE could promote bile excretions and protect against ANIT-induced liver damage in cholestasis rats. Protein levels of FXR, SHP, Na+/taurocholate cotransporter (NTCP), bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2) were increased and the expressions of cholesterol 7α-hydroxylase (CYP7A1) and sterol 27-hydroxylase (CYP27A1) were decreased by DSE. Meanwhile, the anti-inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) were also significantly increased, and the pro-inflammatory factor, interleukin-10 (IL-10), was significantly decreased in rats of DSE groups. Molecular docking revealed that costunolide and dehydrocostus lactone could be well docked into the FXR protein molecule, and hydrophobic interactions played the main function. Costunolide could reverse the increased AST and ALT levels and increase the FXR expression in guggulsterone-induced L02 cells.ConclusionDSE had an anti-cholestasis effect by activating FXR-SHP axis, inhibiting synthesis of bile acid, and increasing bile secretion, together with inflammatory response and improving liver injury. Costunolide may be the main active component. This study provided a potential therapeutic mechanism for D. souliei as an anti-cholestasis medicine in the treatment of cholestasis liver diseases.  相似文献   

11.
The bile acid receptor farnesoid X receptor (FXR) is expressed in adipose tissue, but its function remains poorly defined. Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipocyte differentiation and function. The aim of this study was to analyze the role of FXR in adipocyte function and to assess whether it modulates PPARγ action. Therefore, we tested the responsiveness of FXR-deficient mice (FXR−/−) and cells to the PPARγ activator rosiglitazone. Our results show that genetically obese FXR−/−/ob/ob mice displayed a resistance to rosiglitazone treatment. In vitro, rosiglitazone treatment did not induce normal adipocyte differentiation and lipid droplet formation in FXR−/− mouse embryonic fibroblasts (MEFs) and preadipocytes. Moreover, FXR−/− MEFs displayed both an increased lipolysis and a decreased de novo lipogenesis, resulting in reduced intracellular triglyceride content, even upon PPARγ activation. Retroviral-mediated FXR re-expression in FXR−/− MEFs restored the induction of adipogenic marker genes during rosiglitazone-forced adipocyte differentiation. The expression of Wnt/β-catenin pathway and target genes was increased in FXR−/− adipose tissue and MEFs. Moreover, the expression of several endogenous inhibitors of this pathway was decreased early during the adipocyte differentiation of FXR−/− MEFs. These findings demonstrate that FXR regulates adipocyte differentiation and function by regulating two counteracting pathways of adipocyte differentiation, the PPARγ and Wnt/β-catenin pathways.  相似文献   

12.
13.
Alcoholic liver disease (ALD) is a common cause of advanced liver disease, and considered as a major risk factor of morbidity and mortality worldwide. Hepatic cholestasis is a pathophysiological feature observed in all stages of ALD. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily, and plays an essential role in the regulation of bile acid, lipid and glucose homeostasis. However, the role of FXR in the pathogenesis and progression of ALD remains largely unknown. Mice were fed Lieber-DeCarli ethanol diet or an isocaloric control diet. We used a specific agonist of FXR WAY-362450 to study the effect of pharmacological activation of FXR in alcoholic liver disease. In this study, we demonstrated that FXR activity was impaired by chronic ethanol ingestion in a murine model of ALD. Activation of FXR by specific agonist WAY-362450 protected mice from the development of ALD. We also found that WAY-362450 treatment rescued FXR activity, suppressed ethanol-induced Cyp2e1 up-regulation and attenuated oxidative stress in liver. Our results highlight a key role of FXR in the modulation of ALD development, and propose specific FXR agonists for the treatment of ALD patients.  相似文献   

14.
BackgroundIn our previous study, we demonstrated the hepatoprotective effect of Herpetospermum pedunculosum in cholestatic rats. A bioassay-guided study also led to the identification and isolation of a lignan, dihydrodiconiferyl alcohol (DA) from the seeds of H. pedunculosum.PurposeTo investigate whether DA could alleviate cholestasis and determine the mechanisms underlying such action.MethodsMale Sprague-Dawley (SD) rats were administered with DA (10, 20 or 40 mg/kg) intragastrically once daily for 7 days prior to treatment with α-naphthylisothiocyanate (ANIT) (60 mg/kg). We then evaluated the levels of a range of serum indicators, determined bile flow, and carried out histopathological analyses. Western blotting was then used to investigate the levels of inflammatory mediators and the Farnesoid X Receptor (FXR), proteins involved in the downstream biosynthesis of bile acids, and a range of transport proteins. Molecular docking was used to simulate the interaction between DA and FXR. Cell viability of human hepatocytes (L-02) cells was determined by MTT. Then, we treated guggulsterone-inhibited L-02 cells, Si-FXR L-02 cells, and FXR-overexpression cells with the FXR agonist GW4064 (6 μM) or DA (25, 50 and 100 μM) for 24 h before detecting gene and protein expression by RT-PCR and western blotting, respectively.ResultsDA significantly attenuated ANIT-induced cholestasis in SD rats by reducing liver function indicators in the serum, increasing bile flow, improving the recovery of histopathological injuries in the liver, and by alleviating pro-inflammatory cytokines in the liver. DA also increased the expression levels of FXR and altered the levels of downstream proteins in the liver tissues, thus indicating that DA might alleviate cholestasis by regulating the FXR. Molecular docking simulations predicted that DA was as an agonist of FXR. In vitro mechanical studies further showed that DA increased the mRNA and protein expression levels of FXR, Small Heterodimer Partner 1/2, Bile Salt Export Pump, Multidrug Resistance-associated Protein 2, and Na+/taurocholate Co-transporting Polypeptide, in both guggulsterone-inhibited and Si-FXR L-02 cells. Moreover, DA enhanced the mRNA and protein expression of FXR, and its downstream genes and proteins, in L-02 cells containing an FXR-overexpression plasmid.ConclusionDA may represent an effective agonist for FXR has significant therapeutic potential for the treatment of cholestatic liver injury.  相似文献   

15.
The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR−/−) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of alterations of glucose homeostasis during fasting, with FXR−/− mice displaying an early, accelerated hypoglycaemia response. Basal hepatic glucose production rate was lower in FXR−/− mice, together with a decrease in hepatic glycogen content. Moreover, hepatic PEPCK gene expression was transiently lower in FXR−/−mice after 6 h of fasting and was decreased in FXR−/−hepatocytes. FXR therefore plays an unexpected role in the control of fuel availability upon fasting.  相似文献   

16.

Background

The farnesoid-x-receptor (FXR) is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated genes and biological functions.

Principal Findings

Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic FXR agonists on FXR-regulated genes, including SHP, OSTα, BSEP and MRP4. A proof-of-concept study carried out to investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed to rescue from liver injury and downregulated the expression of MRP4.

Conclusions

FXR antagonism in vivo results in a positive modulation of MRP4 expression in the liver and is a feasible strategy to target obstructive cholestasis.  相似文献   

17.
18.

Background

We previously showed that activation of the bile salt nuclear receptor Farnesoid X Receptor (FXR) protects against intestinal inflammation in mice. Reciprocally, these inflammatory mediators may decrease FXR activation. We investigated whether FXR activation is repressed in the ileum and colon of inflammatory bowel disease (IBD) patients in remission. Additionally, we evaluated whether genetic variation in FXR is associated with IBD.

Methods

mRNA expression of FXR and FXR target gene SHP was determined in ileal and colonic biopsies of patients with Crohn''s colitis (n = 15) and ulcerative colitis (UC; n = 12), all in clinical remission, and healthy controls (n = 17). Seven common tagging SNPs and two functional SNPs in FXR were genotyped in 2355 Dutch IBD patients (1162 Crohn''s disease (CD) and 1193 UC) and in 853 healthy controls.

Results

mRNA expression of SHP in the ileum is reduced in patients with Crohn''s colitis but not in patients with UC compared to controls. mRNA expression of villus marker Villin was correlated with FXR and SHP in healthy controls, a correlation that was weaker in UC patients and absent in CD patients. None of the SNPs was associated with IBD, UC or CD, nor with clinical subgroups of CD.

Conclusions

FXR activation in the ileum is decreased in patients with Crohn''s colitis. This may be secondary to altered enterohepatic circulation of bile salts or transrepression by inflammatory signals but does not seem to be caused by the studied SNPs in FXR. Increasing FXR activity by synthetic FXR agonists may have benefit in CD patients.  相似文献   

19.

Background

Infectious complications often occur in acute pancreatitis, related to impaired intestinal barrier function, with prolonged disease course and even mortality as a result. The bile salt nuclear receptor farnesoid X receptor (FXR), which is expressed in the ileum, liver and other organs including the pancreas, exhibits anti-inflammatory effects by inhibiting NF-κB activation and is implicated in maintaining intestinal barrier integrity and preventing bacterial overgrowth and translocation. Here we explore, with the aid of complementary animal and human experiments, the potential role of FXR in acute pancreatitis.

Methods

Experimental acute pancreatitis was induced using the CCK-analogue cerulein in wild-type and Fxr-/- mice. Severity of acute pancreatitis was assessed using histology and a semi-quantitative scoring system. Ileal permeability was analyzed in vitro by Ussing chambers and an in vivo permeability assay. Gene expression of Fxr and Fxr target genes was studied by quantitative RT-PCR. Serum FGF19 levels were determined by ELISA in acute pancreatitis patients and healthy volunteers. A genetic association study in 387 acute pancreatitis patients and 853 controls was performed using 9 tagging single nucleotide polymorphisms (SNPs) covering the complete FXR gene and two additional functional SNPs.

Results

In wild-type mice with acute pancreatitis, ileal transepithelial resistance was reduced and ileal mRNA expression of Fxr target genes Fgf15, SHP, and IBABP was decreased. Nevertheless, Fxr-/- mice did not exhibit a more severe acute pancreatitis than wild-type mice. In patients with acute pancreatitis, FGF19 levels were lower than in controls. However, there were no associations of FXR SNPs or haplotypes with susceptibility to acute pancreatitis, or its course, outcome or etiology.

Conclusion

We found no evidence for a major role of FXR in acute human or murine pancreatitis. The observed altered Fxr activity during the course of disease may be a secondary phenomenon.  相似文献   

20.
Cholestatic patients often present with clinical features suggestive of adrenal insufficiency. In the bile duct-ligated (BDL) model of cholestasis, the hypothalamic-pituitary-adrenal (HPA) axis is suppressed. The consequences of this suppression on cholangiocyte proliferation are unknown. We evaluated 1) HPA axis activity in various rat models of cholestasis and 2) effects of HPA axis modulation on cholangiocyte proliferation. Expression of regulatory molecules of the HPA axis was determined after BDL, partial BDL, and α-naphthylisothiocyanate (ANIT) intoxication. The HPA axis was suppressed by inhibition of hypothalamic corticotropin-releasing hormone (CRH) expression by central administration of CRH-specific Vivo-morpholinos or by adrenalectomy. After BDL, the HPA axis was reactivated by 1) central administration of CRH, 2) systemic ACTH treatment, or 3) treatment with cortisol or corticosterone for 7 days postsurgery. There was decreased expression of 1) hypothalamic CRH, 2) pituitary ACTH, and 3) key glucocorticoid synthesis enzymes in the adrenal glands. Serum corticosterone and cortisol remained low after BDL (but not partial BDL) compared with sham surgery and after 2 wk of ANIT feeding. Experimental suppression of the HPA axis increased cholangiocyte proliferation, shown by increased cytokeratin-19- and proliferating cell nuclear antigen-positive cholangiocytes. Conversely, restoration of HPA axis activity inhibited BDL-induced cholangiocyte proliferation. Suppression of the HPA axis is an early event following BDL and induces cholangiocyte proliferation. Knowledge of the role of the HPA axis during cholestasis may lead to development of innovative treatment paradigms for chronic liver disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号