首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Oligomerization and aggregation of α-synuclein molecules play a major role in neuronal dysfunction and loss in Parkinson''s disease [1]. However, α-synuclein oligomerization and aggregation have mostly been detected indirectly in cells using detergent extraction methods [2], [3], [4]. A number of in vitro studies showed that dopamine can modulate the aggregation of α-synuclein by inhibiting the formation of or by disaggregating amyloid fibrils [5], [6], [7].

Methodology/Principal Findings

Here, we show that α-synuclein adopts a variety of conformations in primary neuronal cultures using fluorescence lifetime imaging microscopy (FLIM). Importantly, we found that dopamine, but not dopamine agonists, induced conformational changes in α-synuclein which could be prevented by blocking dopamine transport into the cell. Dopamine also induced conformational changes in α-synuclein expressed in neuronal cell lines, and these changes were also associated with alterations in oligomeric/aggregated species.

Conclusion/Significance

Our results show, for the first time, a direct effect of dopamine on the conformation of α-synuclein in neurons, which may help explain the increased vulnerability of dopaminergic neurons in Parkinson''s disease.  相似文献   

2.
The contention and treatment of Mycobacterium tuberculosis and other bacteria that cause infectious diseases require the use of new type of antibiotics. Pandinin 2 (Pin2) is a scorpion venom antimicrobial peptide highly hemolytic that has a central proline residue. This residue forms a structural “kink” linked to its pore-forming activity towards human erythrocytes. In this work, the residue Pro14 of Pin2 was both substituted and flanked using glycine residues (P14G and P14GPG) based on the low hemolytic activities of antimicrobial peptides with structural motifs Gly and GlyProGly such as magainin 2 and ponericin G1, respectively. The two Pin2 variants showed antimicrobial activity against E. coli, S. aureus, and M. tuberculosis. However, Pin2 [GPG] was less hemolytic (30%) than that of Pin2 [G] variant. In addition, based on the primary structure of Pin2 [G] and Pin2 [GPG], two short peptide variants were designed and chemically synthesized keeping attention to their physicochemical properties such as hydrophobicity and propensity to adopt alpha-helical conformations. The aim to design these two short antimicrobial peptides was to avoid the drawback cost associated to the synthesis of peptides with large sequences. The short Pin2 variants named Pin2 [14] and Pin2 [17] showed antibiotic activity against E. coli and M. tuberculosis. Besides, Pin2 [14] presented only 25% of hemolysis toward human erythrocytes at concentrations as high as 100 µM, while the peptide Pin2 [17] did not show any hemolytic effect at the same concentration. Furthermore, these short antimicrobial peptides had better activity at molar concentrations against multidrug resistance M. tuberculosis than that of the conventional antibiotics ethambutol, isoniazid and rifampicin. Therefore, Pin2 [14] and Pin2 [17] have the potential to be used as an alternative antibiotics and anti-tuberculosis agents with reduced hemolytic effects.  相似文献   

3.

Background

Mutations in the integral membrane protein 2B [1], also known as BRI2 [2], a type II trans-membrane domain protein cause two autosomal dominant neurodegenerative diseases, Familial British and Danish Dementia [3]. In these conditions, accumulation of a C-terminal peptide (ABri and ADan) cleaved off from the mutated precursor protein by the pro-protein convertase furin [4], leads to amyloid deposition in the walls of blood vessels and parenchyma of the brain. Recent advances in the understanding of the generation of amyloid in Alzheimer''s disease has lead to the finding that BRI2 interacts with the Amyloid Precursor Protein (APP), decreasing the efficiency of APP processing to generate Aβ [5], [6], [7]. The interaction between the two precursors, APP and BRI2, and possibly between Aβ and ABri or ADan, could be important in influencing the rate of amyloid production or the tendency of these peptides to aggregate.

Methodology/Principal Findings

We have generated the first BRI2 Danish Knock-In (FDDKI) murine model of FDD, expressing the pathogenic decamer duplication in exon 6 of the BRI2 gene. FDDKI mice do not show any evident abnormal phenotype, with normal brain histology and no detectable amyloid deposition in blood vessel walls or parenchyma.

Conclusions/Significance

This new murine mouse model will be important to further understand the interaction between APP and BRI2, and to provide insights into the molecular basis of FDD.  相似文献   

4.

Background

Group A Rotaviruses are a major etiologic agent of gastroenteritis in infants and young children (<5 years) worldwide. Although rotavirus vaccines have been successfully administered in many countries, in India the introduction of rotavirus vaccine in national immunization program was approved in 2014. Since high disease burden and large number of genetic variants have been reported from low income countries including India, monitoring of rotavirus was initiated prior to implementation of the vaccine in the region.

Methods

A total number of 3,582 stool samples were collected from an urban slum community in Kolkata, among which 1,568 samples were obtained from children of ≤5 years of age, with moderate to severe diarrhoea and 2,014 samples were collected from age-sex matched healthy neighbourhood controls. Rotavirus positive samples were typed by multiplex semi-nested PCR and nucleotide sequencing. Circulating strains were phylogenetically analyzed.

Results

Among 1,568 children with diarrhoea, 395 (25.2%), and among 2,014 asymptomatic children, 42 (2%) were rotavirus positive. G1P[8] was identified as the most common strain (32%) followed by G9P[8] (16.9%), G2P[4] (13.5%) and G9P[4] (10.75%). G12 strains with combinations of P[4], P[6] and P[8] comprised 11.9% of total positive strains. The rest (<10%) were rare and uncommon strains like G1P[4], G1P[6], G2P[8] and animal-like strains G4P[6], G6P[14] and G11P[25]. The 42 rotavirus positive samples from asymptomatic children revealed common genotypes like G1, G2 and G9.

Conclusion

This community based case-control study showed increased predominance of genotype G9 in Kolkata. It also confirmed co-circulation of a large number of genetic variants in the community. Asymptomatic rotavirus positive children though low in number can also be a source of dispersal of infection in the community. This study provides background information to the policy makers for implementation of rotavirus vaccines in this region.  相似文献   

5.
6.
7.

Background

Identifying the molecular mechanisms and neural circuits that control learning and memory are major challenges in neuroscience. Mammalian MAGI/S-SCAM is a multi-PDZ domain synaptic scaffolding protein that interacts with a number of postsynaptic signaling proteins and is thereby thought to regulate synaptic plasticity [1], [2], [3].

Principal Findings

While investigating the behavioral defects of C. elegans nematodes carrying a mutation in the single MAGI ortholog magi-1, we have identified specific neurons that require MAGI-1 function for different aspects of associative learning and memory. Various sensory stimuli and a food deprivation signal are associated in RIA interneurons during learning, while additional expression of MAGI-1 in glutamatergic AVA, AVD and possibly AVE interneurons is required for efficient memory consolidation, i.e. the ability to retain the conditioned changes in behavior over time. During associative learning, MAGI-1 in RIA neurons controls in a cell non-autonomous fashion the dynamic remodeling of AVA, AVD and AVE synapses containing the ionotropic glutamate receptor (iGluR) GLR-1 [4]. During memory consolidation, however, MAGI-1 controls GLR-1 clustering in AVA and AVD interneurons cell-autonomously and depends on the ability to interact with the β-catenin HMP-2.

Significance

Together, these results indicate that different aspects of associative learning and memory in C. elegans are likely carried out by distinct subsets of interneurons. The synaptic scaffolding protein MAGI-1 plays a critical role in these processes in part by regulating the clustering of iGluRs at synapses.  相似文献   

8.

Background

A variety of human activities have led to the recent global decline of reef-building corals [1], [2]. The ecological, social, and economic value of coral reefs has made them an international conservation priority [2], [3]. The success of Marine Protected Areas (MPAs) in restoring fish populations [4] has led to optimism that they could also benefit corals by indirectly reducing threats like overfishing, which cause coral degradation and mortality [2], [5]. However, the general efficacy of MPAs in increasing coral reef resilience has never been tested.

Methodology/Principal Findings

We compiled a global database of 8534 live coral cover surveys from 1969–2006 to compare annual changes in coral cover inside 310 MPAs to unprotected areas. We found that on average, coral cover within MPAs remained constant, while coral cover on unprotected reefs declined. Although the short-term differences between unprotected and protected reefs are modest, they could be significant over the long-term if the effects are temporally consistent. Our results also suggest that older MPAs were generally more effective in preventing coral loss. Initially, coral cover continued to decrease after MPA establishment. Several years later, however, rates of coral cover decline slowed and then stabilized so that further losses stopped.

Conclusions/Significance

These findings suggest that MPAs can be a useful tool not only for fisheries management, but also for maintaining coral cover. Furthermore, the benefits of MPAs appear to increase with the number of years since MPA establishment. Given the time needed to maximize MPA benefits, there should be increased emphasis on implementing new MPAs and strengthening the enforcement of existing MPAs.  相似文献   

9.
10.

Background

Reduced TOR signaling has been shown to significantly increase lifespan in a variety of organisms [1], [2], [3], [4]. It was recently demonstrated that long-term treatment with rapamycin, an inhibitor of the mTOR pathway[5], or ablation of the mTOR target p70S6K[6] extends lifespan in mice, possibly by delaying aging. Whether inhibition of the mTOR pathway would delay or prevent age-associated disease such as AD remained to be determined.

Methodology/Principal Findings

We used rapamycin administration and behavioral tools in a mouse model of AD as well as standard biochemical and immunohistochemical measures in brain tissue to provide answers for this question. Here we show that long-term inhibition of mTOR by rapamycin prevented AD-like cognitive deficits and lowered levels of Aβ42, a major toxic species in AD[7], in the PDAPP transgenic mouse model. These data indicate that inhibition of the mTOR pathway can reduce Aβ42 levels in vivo and block or delay AD in mice. As expected from the inhibition of mTOR, autophagy was increased in neurons of rapamycin-treated transgenic, but not in non-transgenic, PDAPP mice, suggesting that the reduction in Aβ and the improvement in cognitive function are due in part to increased autophagy, possibly as a response to high levels of Aβ.

Conclusions/Significance

Our data suggest that inhibition of mTOR by rapamycin, an intervention that extends lifespan in mice, can slow or block AD progression in a transgenic mouse model of the disease. Rapamycin, already used in clinical settings, may be a potentially effective therapeutic agent for the treatment of AD.  相似文献   

11.

Background

Prevention of catheter-associated urinary tract infection (CAUTI), a leading cause of nosocomial disease, is complicated by the propensity of bacteria to form biofilms on indwelling medical devices [1], [2], [3], [4], [5].

Methodology/Principal Findings

To better understand the microbial diversity of these communities, we report the results of a culture-independent bacterial survey of Foley urinary catheters obtained from patients following total prostatectomy. Two patient subsets were analyzed, based on treatment or no treatment with systemic fluoroquinolone antibiotics during convalescence. Results indicate the presence of diverse polymicrobial assemblages that were most commonly observed in patients who did not receive systemic antibiotics. The communities typically contained both Gram-positive and Gram-negative microorganisms that included multiple potential pathogens.

Conclusion/Significance

Prevention and treatment of CAUTI must take into consideration the possible polymicrobial nature of any particular infection.  相似文献   

12.
The latitudinal biodiversity gradient remains one of the most widely recognized yet puzzling patterns in nature [1]. Presently, the high level of extinction of tropical species, referred to as the “tropical biodiversity crisis”, has the potential to erode this pattern. While the connection between species richness, extinction, and speciation has long intrigued biologists [2], [3], these interactions have experienced increased poignancy due to their relevancy to where we should concentrate our conservation efforts. Natural extinction is a phenomenon thought to have its own latitudinal gradient, with lower extinction rates in the tropics being reported in beetles, birds, mammals, and bivalves [4][7]. Processes that have buffered ecosystems from high extinction rates in the past may also buffer ecosystems against disturbance of anthropogenic origin. While potential parallels between historical and present-day extinction patterns have been acknowledged, they remain only superficially explored and plant extinction patterns have been particularly neglected. Studies on the disappearances of animal species have reached conflicting conclusions, with the rate of extinction appearing either higher [8] or lower [9] in species richness hotspots. Our global study of extinction risk in vascular plants finds disproportionately higher extinction risk in tropical countries, even when indicators of human pressure (GDP, population density, forest cover change) are taken into account. Our results are at odds with the notion that the tropics represent a museum of plant biodiversity (places of historically lowered extinction) and we discuss mechanisms that may reconcile this apparent contradiction.  相似文献   

13.

Background

Understanding the dynamics of the human range expansion across northeastern Eurasia during the late Pleistocene is central to establishing empirical temporal constraints on the colonization of the Americas [1]. Opinions vary widely on how and when the Americas were colonized, with advocates supporting either a pre-[2] or post-[1], [3], [4], [5], [6] last glacial maximum (LGM) colonization, via either a land bridge across Beringia [3], [4], [5], a sea-faring Pacific Rim coastal route [1], [3], a trans-Arctic route [4], or a trans-Atlantic oceanic route [5]. Here we analyze a large sample of radiocarbon dates from the northeast Eurasian Upper Paleolithic to identify the origin of this expansion, and estimate the velocity of colonization wave as it moved across northern Eurasia and into the Americas.

Methodology/Principal Findings

We use diffusion models [6], [7] to quantify these dynamics. Our results show the expansion originated in the Altai region of southern Siberia ∼46kBP , and from there expanded across northern Eurasia at an average velocity of 0.16 km per year. However, the movement of the colonizing wave was not continuous but underwent three distinct phases: 1) an initial expansion from 47-32k calBP; 2) a hiatus from ∼32-16k calBP, and 3) a second expansion after the LGM ∼16k calBP. These results provide archaeological support for the recently proposed three-stage model of the colonization of the Americas [8], [9]. Our results falsify the hypothesis of a pre-LGM terrestrial colonization of the Americas and we discuss the importance of these empirical results in the light of alternative models.

Conclusions/Significance

Our results demonstrate that the radiocarbon record of Upper Paleolithic northeastern Eurasia supports a post-LGM terrestrial colonization of the Americas falsifying the proposed pre-LGM terrestrial colonization of the Americas. We show that this expansion was not a simple process, but proceeded in three phases, consistent with genetic data, largely in response to the variable climatic conditions of late Pleistocene northeast Eurasia. Further, the constraints imposed by the spatiotemporal gradient in the empirical radiocarbon record across this entire region suggests that North America cannot have been colonized much before the existing Clovis radiocarbon record suggests.  相似文献   

14.
Chronic beryllium disease (CBD) is characterized by a CD4+ T cell alveolitis and granulomatous inflammation in the lung. Genetic susceptibility to this disease has been linked with HLA-DP alleles, particularly those possessing a glutamic acid at position 69 (Glu69) of the beta-chain. However, 15% of CBD patients do not possess a Glu69-containing HLA-DP allele, suggesting that other MHC class II alleles may be involved in disease susceptibility. In CBD patients without a Glu69-containing HLA-DP allele, an increased frequency of HLA-DR13 alleles has been described, and these alleles possess a glutamic acid at position 71 of the beta-chain (which corresponds to position 69 of HLA-DP). Thus, we hypothesized that beryllium presentation to CD4+ T cells was dependent on a glutamic acid residue at the identical position of both HLA-DP and -DR. The results show that HLA-DP Glu69- and HLA-DR Glu71-expressing molecules are capable of inducing beryllium-specific proliferation and IFN-gamma expression by lung CD4+ T cells. Using fibroblasts expressing mutated HLA-DP2 and -DR13 molecules, beryllium recognition was dependent on the glutamic acid at position 69 of HLA-DP and 71 of HLA-DR, suggesting a critical role for this amino acid in beryllium presentation to Ag-specific CD4+ T cells. Thus, these results demonstrate that a single amino acid residue of the MHC class II beta-chain dictates beryllium presentation and potentially, disease susceptibility.  相似文献   

15.

Background

In early vertebrate development, embryonic tissues modulate cell adhesiveness and acto-myosin contractility to correctly orchestrate the complex processes of gastrulation. E-cadherin (E-cadh) is the earliest expressed cadherin and is needed in the mesendodermal progenitors for efficient migration [1], [2]. Regulatory mechanisms involving directed E-cadh trafficking have been invoked downstream of Wnt11/5 signaling [3]. This non-canonical Wnt pathway regulates RhoA-ROK/DAAM1 to control the acto-myosin network. However, in this context nothing is known of the intracellular signals that participate in the correct localization of E-cadh, other than a need for Rab5c signaling [3].

Methodology/Principal Findings

By studying loss of Chp induced by morpholino-oligonucleotide injection in zebrafish, we find that the vertebrate atypical Rho-GTPase Chp is essential for the proper disposition of cells in the early embryo. The underlying defect is not leading edge F-actin assembly (prominent in the cells of the envelope layer), but rather the failure to localize E-cadh and β-catenin at the adherens junctions. Loss of Chp results in delayed epiboly that can be rescued by mRNA co-injection, and phenocopies zebrafish E-cadh mutants [4], [5]. This new signaling pathway involves activation of an effector kinase PAK, and involvement of the adaptor PAK-interacting exchange factor PIX. Loss of signaling by any of the three components results in similar underlying defects, which is most prominent in the epithelial-like envelope layer.

Conclusions/Significance

Our current study uncovers a developmental pathway involving Chp/PAK/PIX signaling, which helps co-ordinate E-cadh disposition to promote proper cell adhesiveness, and coordinate movements of the three major cell layers in epiboly. Our data shows that without Chp signaling, E-cadh shifts to intracellular vesicles rather than the adhesive contacts needed for directed cell movement. These events may mirror the requirement for PAK2 signaling essential for the proper formation of the blood-brain barrier [6], [7].  相似文献   

16.

Background

The familial and sporadic forms of Alzheimer''s disease (AD) have an identical pathology with a severe disparity in the time of onset [1]. The pathological similarity suggests that epigenetic processes may phenocopy the Familial Alzheimer''s disease (FAD) mutations within sporadic AD. Numerous groups have demonstrated that FAD mutations in presenilin result in ‘loss of function’ of γ-secretase mediated APP cleavage [2], [3], [4], [5]. Accordingly, ER stress is prominent within the pathologically impacted brain regions in AD patients [6] and is reported to inhibit APP trafficking through the secretory pathway [7], [8]. As the maturation of APP and the cleaving secretases requires trafficking through the secretory pathway [9], [10], [11], we hypothesized that ER stress may block trafficking requisite for normal levels of APP cleavage and that the small molecular chaperone 4-phenylbutyrate (PBA) may rescue the proteolytic deficit.

Methodology/Principal Findings

The APP-Gal4VP16/Gal4-reporter screen was stably incorporated into neuroblastoma cells in order to assay γ-secretase mediated APP proteolysis under normal and pharmacologically induced ER stress conditions. Three unrelated pharmacological agents (tunicamycin, thapsigargin and brefeldin A) all repressed APP proteolysis in parallel with activation of unfolded protein response (UPR) signaling—a biochemical marker of ER stress. Co-treatment of the γ-secretase reporter cells with PBA blocked the repressive effects of tunicamycin and thapsigargin upon APP proteolysis, UPR activation, and apoptosis. In unstressed cells, PBA stimulated γ-secretase mediated cleavage of APP by 8–10 fold, in the absence of any significant effects upon amyloid production, by promoting APP trafficking through the secretory pathway and the stimulation of the non-pathogenic α/γ-cleavage.

Conclusions/Significance

ER stress represses γ-secretase mediated APP proteolysis, which replicates some of the proteolytic deficits associated with the FAD mutations. The small molecular chaperone PBA can reverse ER stress induced effects upon APP proteolysis, trafficking and cellular viability. Pharmaceutical agents, such as PBA, that stimulate α/γ-cleavage of APP by modifying intracellular trafficking should be explored as AD therapeutics.  相似文献   

17.
Occupational exposure to small molecules, such as metals, is frequently associated with hypersensitivity reactions. Chronic beryllium (Be) disease (CBD) is a multisystem granulomatous disease that primarily affects the lung, and occurs in approximately 3% of individuals exposed to this element. Immunogenetic studies have demonstrated a strong association between CBD and possession of alleles of HLA-DP containing glutamic acid (Glu) at position 69 in the HLA-DP beta-chain. T cell clones were raised from three patients with CBD in whom exposure occurred 10 and 30 years previously. Of 25 Be-specific clones that were obtained, all were restricted by HLA-DP alleles with Glu at DP beta69. Furthermore, the proliferative responses of the clones were absolutely dependent upon DP beta Glu(69) in that a single amino acid substitution at this position abolished the response. As befits a disease whose pathogenesis involves a delayed type hypersensitivity response, the large majority of Be-specific clones secreted IFN-gamma (Th1) and little or no IL-4 (Th2) cytokines. This study provides insights into the molecular basis of DP2-associated susceptibility to CBD.  相似文献   

18.

Background

Replacement of wild-type mosquito populations with genetically modified versions is being explored as a potential strategy to control vector-borne diseases. Due to lower expected relative fitness of transgenic individuals, transgenes must be driven into populations for these scenarios to be successful. Several gene drive mechanisms exist in a theoretical sense but none are currently workable in mosquitoes. Even if strategies were workable, it would be very difficult to recall released transgenes in the event of unforeseen consequences. What is needed is a way to test transgenes in the field for feasibility, efficacy and safety prior to releasing an active drive mechanism.

Methodology/Principal Findings

We outline a method, termed Multi-locus assortment (MLA), to spread transgenes into vector populations by the release of genetically-modified mosquitoes carrying multiple stable transgene inserts. Simulations indicate that [1] insects do not have to carry transgenes at more than 4 loci, [2] transgenes can be maintained at high levels by sequential small releases, the frequency of which depends on the construct fitness cost, and [3] in the case of unforeseen negative non-target effects, transgenes can be eliminated from the population by halting transgenic releases and/or mass releases of wild-type insects. We also discuss potential methods to create MLA mosquito strains in the laboratory.

Conclusions/Significance

While not as efficient as active drive mechanisms, MLA has other advantages: [1] MLA strains can be constructed for some mosquito species with currently-available technology, [2] MLA will allow the ecological components of transgenic mosquito releases to be tested before actual gene drive mechanisms are ready to be deployed, [3] since MLA is not self-propagating, the risk of an accidental premature release into nature is minimized, and [4] in the case that active gene drive mechanisms prove impossible to develop, the MLA approach can be used as a back-up transgene dispersal mechanism for disease control efforts in some systems.  相似文献   

19.
Histone deacetylase 4 (HDAC4) has been associated with muscle & bone development [1][6]. N-terminal MEF2 and RUNX2 binding domains of HDAC4 have been shown to mediate these effects in vitro. A complete gene knockout has been reported to result in premature ossification and associated defects resulting in postnatal lethality [6]. We report a viral insertion mutation that deletes the putative deacetylase domain, while preserving the N-terminal portion of the protein. Western blot and immuno-precipitation analysis confirm expression of truncated HDAC4 containing N-terminal amino acids 1-747. These mutant mice are viable, living to at least one year of age with no gross defects in muscle or bone. At 2–4 months of age no behavioral or physiological abnormalities were detected except for an increased latency to respond to a thermal nociceptive stimulus. As the mutant mice aged past 5 months, convulsions appeared, often elicited by handling. Our findings confirm the sufficiency of the N-terminal domain for muscle and bone development, while revealing other roles of HDAC4.  相似文献   

20.

Background

Minor histocompatibility antigens (mHA) mediate much of the graft vs. leukemia (GvL) effect and graft vs. host disease (GvHD) in patients who undergo allogeneic stem cell transplantation (SCT) [1], [2], [3], [4]. Therapeutic decision making and treatments [5] based upon mHAs will require the evaluation of multiple candidate mHAs and the selection of those with the potential to have the greatest impact on clinical outcomes. We hypothesized that common, immunodominant mHAs, which are presented by HLA-A, B, and C molecules, can mediate clinically significant GvL and/or GvHD, and that these mHAs can be identified through association of genomic data with clinical outcomes.

Methodology/Principal Findings

Because most mHAs result from donor/recipient cSNP disparities, we genotyped 57 myeloid leukemia patients and their donors at 13,917 cSNPs [6]. We correlated the frequency of genetically predicted mHA disparities with clinical evidence of an immune response and then computationally screened all peptides mapping to the highly associated cSNPs for their ability to bind to HLA molecules. As proof-of-concept, we analyzed one predicted antigen, T4A, whose mHA mismatch trended towards improved overall and disease free survival in our cohort. T4A mHA mismatches occurred at the maximum theoretical frequency for any given SCT. T4A-specific CD8+ T lymphocytes (CTLs) were detected in 3 of 4 evaluable post-transplant patients predicted to have a T4A mismatch.

Conclusions/Significance

Our method is the first to combine clinical outcomes data with genomics and bioinformatics methods to predict and confirm a mHA. Refinement of this method should enable the discovery of clinically relevant mHAs in the majority of transplant patients and possibly lead to novel immunotherapeutics [5].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号