首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In developing G-quadruplex interactive telomerase inhibitors two main features have to be taken into account: the hydrophobic interactions with the G-quartet plane and the electrostatic interactions with the negatively charged phosphates of the four grooves. In this paper, we report the synthesis of four hydrosoluble coronene derivatives, which are characterized by a large hydrophobic aromatic core and four orthogonal hydrophilic side chains. We have studied their ability to induce both inter- and intramolecular G-quadruplex structures and found a significant selectivity of all the coronene derivatives for the intramolecular G-quadruplex. The efficiency in inhibiting human telomerase has been evaluated in a cell-free system and the experimental results correlate with the relative affinities of these compounds for the G-quadruplex monomeric structure, as derived by molecular modelling simulations. Thus, the coronene derivatives can be considered as a new class of telomerase inhibitors, although further investigations are surely necessary to fully exploit their features.  相似文献   

2.
Telomerase is responsible for the immortal phenotype of cancer cells and telomerase inhibition may specifically target cancer cell proliferation. Ligands able to selectively bind to G-quadruplex telomeric DNA have been considered as telomerase inhibitors but their mechanisms of action have often been deduced from a non-quantitative telomerase activity assay (TRAP assay) that involves a PCR step and that does not provide insight on the mechanism of inhibition. Furthermore, quadruplex ligands have also been shown to exert their effects by affecting association of telomere binding proteins with telomeres. Here, we use quantitative direct telomerase activity assays to evaluate the strength and mechanism of action of hydrosoluble perylene diimides (HPDIs). HPDIs contain a perylene moiety and different numbers of positively charged side chains. Side chain features vary with regard to number and distances of the charges. IC50 values of HPDIs were in the low micromolar (0.5–5 μM) range depending on the number and features of the side chains. HPDIs having four side chains emerged as the best compounds of this series. Analysis of primer elongation products demonstrated that at low HPDI concentrations, telomerase inhibition involved formation of telomeric G-quadruplex structures, which inhibited further elongation by telomerase. At high HPDI concentrations, telomerase inhibition occurred independently of G-quadruplex formation of the substrate. The mechanism of action of HPDIs and their specific binding to G-quadruplex DNA was supported by PAGE analysis, CD spectroscopy and ESI-MS. Finally, competition Telospot experiments with duplex DNA indicated specific binding of HPDIs to the single-stranded telomeric substrates over double stranded DNA, a result supported by competitive ESI-MS. Altogether, our results indicate that HPDIs act by stabilizing G-quadruplex structures in single-stranded telomeric DNA, which in turn prevents repeat addition processivity of telomerase.  相似文献   

3.
Telomere forms t-loop and G-quadruplex as the protective structure and the formation of these structures hinder the telomerase enzyme action. The binding affinities of ligand which stabilize the G-quadruplex represent good correlation with telomerase inhibition depicted in the anti-cancerous action. Most of the potent G-quadruplex stabilizing compounds suffer from the poor drug like properties. Herein, natural dietary compounds isoflavones were taken for the theoretical study to examine their stabilizing effect on G-quadruplex structure. The experimental G-quadruplex complexes were reproduced to obtain and validate the theoretical parameters. The obtained theoretical binding energies are in significant correlation with the experimental data. Analysis of binding shows isoflavones to be groove binders, and differential nature of quadruplex grooves might be beneficial in the selectivity aspects. Among all, derrubone was found to have better selectivity as well as affinity for the G-quadruplex comparable to well known ligand TMPyP4. The GBSA rescoring result enlightens the various interaction terms involved in the binding process. Cumulative stabilizing effects coming from VDW, ES, and GB energy terms attest to optimal binding of derrubone molecule which can be considered as a lead for the higher phases of drug designing. These findings are of great value in terms of unexplored groove binding modes and the studied natural compounds might be helpful to direct the focus of synthetic chemists in designing of new generation of antitumor agents.  相似文献   

4.
While the importance of the aromatic core in small organic molecules, studied as G-quadruplex mediated telomerase inhibitors, appears well studied by a number of researches, the role of side chains has been less well characterized. In this paper, we have studied the ability of six perylene derivatives with different side chains to induce both inter- and intramolecular G-quadruplex structures. The distance between the aromatic core and the positive charges in the side chains emerges as a significant molecular feature in G-quadruplex formation. Furthermore, the G-quadruplex formation appears also related to drugs 'self-association', influenced by the side chains basicity. The different efficiencies of the six perylene derivatives in interacting both with inter- and intramolecular G-quadruplex structures satisfactorily correlate with telomerase inhibition in cell-free systems.  相似文献   

5.
6.
Four N,N'-disubstituted perylene diimides, having different side chains, have been studied for their ability in inducing G-quadruplex DNA structures. We found that electrostatic interactions between ligands side chains and DNA grooves play a main role not only in the amount of G-quadruplex formed, but also in selecting its topology. Moreover, such compounds show also a different ability to inhibit telomerase. The correlation of these findings suggests the intriguing possibility that different G-quadruplex structures could differently inhibit the enzyme.  相似文献   

7.
Telomerase is important in tumor initiation and cellular immortalization. Given the striking correlations between telomerase activity and proliferation capacity in tumor cells, telomerase had been considered as a potentially important molecular target in cancer therapeutics. A series of 2,7-diamidoanthraquinone were designed and synthesized. They were evaluated for their effects on telomerase activity, hTERT expression, cell proliferations, and cytotoxicity. In the series, compounds (6, 10, 13, 16, 18, 19, 20-22, and 24) showed potent telomerase inhibitory activity, while compounds 19, 21, and 22 activated hTERT expression in normal human fibroblasts. The results indicated that 2,7-diamidoanthraquinones represent an important class of compounds for telomerase-related drug developments. Compounds 8, 16, 18, 26, and 32 were also selected by the NCI for Screening Program and demonstrated high anti-proliferative activity against 60 human cancer cell lines. Structure-activity relationships (SAR) study revealed that the test compounds with side chains two carbon spacer between amido and amine are important structural moiety for telomerase inhibition. Although the exact mechanism of how this amine group contributes to its activity is still unclear, however, the amine group in the extended arm of the bis-substituted anthraquinone might contribute to proper binding to the residues within the grove of G-quadruplex structure. Our results indicated that the 2,7-disubstituted amido-anthraquinones are potent telomerase inhibitors that have the potential to be further developed into novel anticancer chemotherapeutic agents.  相似文献   

8.
G-quadruplex structures of DNA represent a potentially useful target for anticancer drugs. Stabilisation of this arrangement at the ends of chromosomes may inhibit the action of telomerase, an enzyme involved in immortalization of cancer cells. Appropriately substituted amido anthracenediones are effective G-quadruplex stabilizers, but no information is available as yet on the possible modulation of G-quadruplex recognition and telomerase inhibition produced by the direction of the amide bond. To understand the basis of amido anthracenedione selectivity, we have synthesized a number of derivatives bearing the -CO-NH- or -NH-CO- group linked to the planar anthraquinone (AQ) moiety at 2,6 and 2,7 positions. The various isomers were tested in terms of telomerase inhibition, determined by the TRAP assay, G-quadruplex stabilisation measured by the increase in melting temperature of the appropriately folded oligonucleotide using FRET, and conformational and G4 binding properties examined by molecular modelling techniques. In all cases, enzymatic inhibition and G-quadruplex stabilization were directly related, which strongly supports the proposed molecular mechanism of telomerase interference. Interestingly, the AQ-NH-CO- arrangement performs invariantly better than the AQ-CO-NH- arrangement, showing a clear preference among isomeric derivatives. Theoretical calculations suggest that the former amide arrangement is co-planar with the aromatic system, whereas the latter is tilted by about 30 degrees when considering the most stable conformation. A more extended planar surface would allow more efficient stacking interactions with the quadruplex structure, hence more effective telomerase inhibition.  相似文献   

9.
We have synthesized eight polyamine perylene diimides to conjugate the efficiency of perylene derivatives in stabilizing G-quadruplex structures and the polyamines' biological activity, due to specific interactions with different DNA domains. Our study was carried out by investigating the ability of these derivatives to induce inter- and intramolecular G-quadruplex structures by polyacrylamide gel electrophoresis (PAGE) and to inhibit telomerase in a modified TRAP assay. The two properties appear to be satisfactorily correlated and they show that the number and distances of positive charges in the side chains dramatically influence both these features. Although our previous studies on perylene derivatives with mono-positively charged side chains indicated that self assembly in aqueous solution leads to a major efficiency, the result observed with the spermine derivative suggests that a too strong aggregation is unfavourable, because it determines a lower solubility of the compounds.  相似文献   

10.
Human chromosomes terminate with telomeres, which contain double-stranded G-rich, repetitive DNA followed by a single-stranded overhang of the G-rich sequence. Single-stranded oligonucleotides containing G-rich telomeric repeats have been observed in vitro to fold into a variety of G-quadruplex topologies depending on the solution conditions. G-quadruplex structures are notable in part because G-quadruplex ligands inhibit both the enzyme telomerase and other telomere-binding proteins. Because telomerase is required for growth by the majority of cancers, G-quadruplex-stabilizing ligands have become an attractive platform for anticancer drug discovery. Here, we present the preparation and biochemical activities of a novel series of 3,6-disubstituted acridine dimers modeled after the known G-quadruplex ligand BRACO19. These BRACO19 Analog Dimer (BAD) ligands were shown to bind to human telomeric DNA and promote the formation of intramolecular G-quadruplexes in the absence of monovalent cations. As expected, the BAD ligands bound to telomeric DNA with a 1:1 stoichiometry, whereas the parent compound BRACO19, a monomer, bound with a 2:1 stoichiometry. The BAD ligands exhibited potent inhibition of human telomerase with IC50 values similar to or lower than those of BRACO19. Furthermore, the BAD ligands displayed greater potency in the inhibition of hPot1 and increased selectivity for G-quadruplex DNA when compared to BRACO19. Collectively, these experiments support the hypothesis that there is an increased potency and selectivity to be gained in the design of G-quadruplex-stabilizing agents that incorporate multiple interactions.  相似文献   

11.
G-Quadruplex DNA ligands are promising novel anticancer agents with potentially fewer side effects and greater selectivity than standard anticancer drugs. However, the design of G-quadruplex ligands remains challenging since known chemical features increasing selectivity have often compromised drugability. Three C-11 diamino cryptolepine derivatives, with significant chemical differences between the side chains, low cytotoxicity to mammalian non-tumor cells (Vero cells) and drug-like properties, were selected for anticancer drug screening in the NCI Developmental Therapeutics Program. The three compounds showed good in vitro anticancer profiles with GI50 averages at sub-micromolar concentrations (0.32–0.78 μM), cytostatic effects (TGI) at micromolar concentrations (1.3–6.9 μM) and moderate cytotoxic effects to cancer cells (LC50) also at micromolar concentrations (4.7–33 μM), but only the compound with a linear alkylamine side chain (NSC748393) showed a good score in the in vivo anticancer Hollow Fiber assay. compare analysis of growth inhibition profile of NSC748393 suggested a multi-target mechanism. G-Quadruplex DNA binding affinity and selectivity studies by FRET-melting assays showed that NSC748392 and NSC478393, with aliphatic amine side chains, are good G-quadruplex ligands but not selective, whereas a C-11 aromatic side chain, as in NSC748394, increases selectivity although with decreasing binding affinity. Overall, NSC748393 can be considered a lead molecule for the design of effective but more selective anticancer drugs targeting telomeric G-quadruplexes.  相似文献   

12.
Kern JT  Thomas PW  Kerwin SM 《Biochemistry》2002,41(38):11379-11389
Human telomeres are comprised of d(TTAGGG) repeats that are capable of forming G-quadruplex DNA structures. Ligands that bind to and stabilize these G-quadruplex DNA structures are potential inhibitors of the cancer cell-associated enzyme telomerase. Other potential biological uses of G-quadruplex targeting ligands have been proposed. One particularly challenging aspect of the contemplated uses of G-quadruplex targeting ligands is their selectivity for G-quadruplex DNA versus double-stranded DNA structures. We have previously reported the observation that two structurally related 3,4,9,10-perylenetetracarboxylic acid diimide-based G-quadruplex DNA ligands, PIPER [N,N'-bis(2-(1-piperidino)ethyl)-3,4,9,10-perylenetetracarboxylic acid diimide] and Tel01 [N,N'-bis(3-(4-morpholino)propyl)-3,4,9,10-perylenetetracarboxylic acid diimide], have different levels of G-quadruplex DNA binding selectivity at pH 7 as determined by absorbance changes in the presence of different DNA structures [Kerwin, S. M., Chen, G., Kern, J. T., and Thomas, P. W. (2002) Bioorg. Med. Chem. Lett. 12, 447-450]. Here we report that the less G-quadruplex DNA selective ligand PIPER can unwind double-stranded, closed circular plasmid DNA, as determined by a topoisomerase I assay. A model for the interaction of Tel01 with the G-quadruplex DNA structure formed by d(TAGGGTTA) was determined from NMR experiments. This model is similar to the previously published model for PIPER bound to the same G-quadruplex DNA and failed to provide a structural basis for the observed increased selectivity of Tel01 interaction with G-quadruplex DNA. In contrast, investigation into the aggregation state of Tel01 and PIPER as well as other 3,4,9,10-perylenetetracarboxylic acid diimide analogues bearing basic side chains demonstrates that ligand aggregation is correlated with G-quadruplex DNA binding selectivity. For all six analogues examined, those ligands that were aggregated at pH 7 in 70 mM potassium phosphate, 100 mM KCl, 1 mM EDTA buffer also demonstrated G-quadruplex DNA binding selectivity under these buffer conditions. Ligands that were not aggregated under these conditions display much lower levels of G-quadruplex DNA selectivity. The aggregation state of these ligands is extremely sensitive to the buffer pH. Tel01, which is aggregated at pH 7, is not aggregated at pH 6.4, where it demonstrates only modest G-quadruplex DNA binding selectivity, and PIPER in pH 8.5 buffer is both aggregated and highly G-quadruplex DNA-selective. To our knowledge, these studies demonstrate the first DNA structure selectivity as achieved through pH-mediated ligand aggregation. The potential impact of these findings on the selectivity of other classes of G-quadruplex DNA ligands is discussed.  相似文献   

13.
A series of trisubstituted naphthalimides have been synthesized and evaluated as telomeric G-quadruplex ligands by biophysical methods. Affinity for telomeric G-quadruplex AGGG(TTAGGG)(3) binding was first screened by fluorescence titrations. Subsequently, the interaction of the telomeric G-quadruplex with compounds showing the best affinity has been studied by isothermal titration calorimetry and UV-melting experiments. The two best compounds of the series tightly bind the telomeric quadruplex with a 2:1 drug/DNA stoichiometry. These derivatives have been further evaluated for their ability to inhibit telomerase by a TRAP assay and their pharmacological properties by treating melanoma (M14) and human lung cancer (A549) cell lines with increasing drug concentrations. A dose-dependent inhibition of cell proliferation was observed for all cellular lines during short-term treatment.  相似文献   

14.
Four novel 4-(1H-imidazo[4,5-f]-1,10-phenanthrolin-2-yl)phenol derivatives 14 have been synthesized, and their G-quadruplex DNA-binding interactions, telomerase inhibition, antiproliferative activity, cell cycle arrest, and apoptotic induction were studied. All compounds show the preferential h-telo, c-myc, and c-kit2 G-quadruplex binding affinity and the G-quadruplex versus duplex selectivity. In the case of the same G-quadruplex target, the compound 1 exhibits better stabilization effect (ΔTm) than the other three compounds and also gives 80.2% inhibition of telomerase activity at 7.5 μM. All compounds can promote selectively the formation of parallel G-quadruplex structure of both c-myc and c-kit2 without addition of any cations. Four compounds display the cytotoxicity activities against HeLa and HepG2 cells by MTT assay with IC50 values of about 10?6 and 10?5 M, respectively, and cause a substantial decrease in the G2/M-phase cell population and a significant increase in the number of apoptotic cells.  相似文献   

15.
The design and synthesis of 2,6-diphenylthiazolo[3,2-b][1,2,4]triazoles characterized by a large aromatic building block bearing cationic side chains are reported. These molecules are evaluated as telomeric G-quadruplex stabilizers and for their selectivity towards duplex DNA by competition experiments. Two compounds (14a, 19) were found active with high selectivity for telomeric G-quadruplex over duplex DNA.  相似文献   

16.
A series of 4,7-diamino-1,10-phenanthroline derivatives carrying positively charged side chains has been synthesized, and their G-quadruplex interaction evaluated by circular dichroism (CD) and surface plasmon resonance (SPR). In absence of side chains, 4,7-diamino-1,10-phenanthroline exhibits a weak but significant G-quadruplex stabilizing effect, compared to no stabilization by 1,10-phenanthroline. We hypothesize that this effect is due to increased basicity of the phenanthroline nitrogens and protonation or ion chelation to form a central positive charge which stack on the G-tetrad above the central ionic column. Introduction of positively charged side chains results in compounds with appreciable G-quadruplex stabilizing properties and high aqueous solubility, with the longer side chains giving more potent compounds. Ligands carrying guanidine side chains in general show higher quadruplex stabilizing activity and distinctly slower kinetic properties than their amino and dimethylamino analogues, possibly due to specific hydrogen bond interactions with the G-quadruplex loops.  相似文献   

17.
Macrocyclic hexaoxazoles having one or two lysinyl side chains in which the terminal nitrogen is either a primary amine, N,N-dimethylamine, or an acetamide have been synthesized. Sodium ion has been found to be beneficial to the macrocyclization step by acting as a template around which the linear polyoxazole can organize. Each of the targeted compounds selectivity stabilizes G-quadruplex versus duplex DNA. Compounds with one valine and one lysine residue display the best combination of G-quadruplex stabilizing ability with no detectable stabilization of duplex DNA.  相似文献   

18.
Tang J  Kan ZY  Yao Y  Wang Q  Hao YH  Tan Z 《Nucleic acids research》2008,36(4):1200-1208
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3′ end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity in vivo and telomerase inhibition via G-quadruplex stabilization is considered a therapeutic strategy against cancer. Theoretically G-quadruplex can form anywhere along the long G-rich strand. Where G-quadruplex forms determines whether the 3′ telomere end is accessible to telomerase and may have implications in other functions telomere plays. We investigated G-quadruplex formation at different positions by DMS footprinting and exonuclease hydrolysis. We show that G-quadruplex preferentially forms at the very 3′ end than at internal positions. This property provides a molecular basis for telomerase inhibition by G-quadruplex formation. Moreover, it may also regulate those processes that depend on the structure of the very 3′ telomere end, for instance, the alternative lengthening of telomere mechanism, telomere T-loop formation, telomere end protection and the replication of bulky telomere DNA. Therefore, targeting telomere G-quadruplex may influence more telomere functions than simply inhibiting telomerase.  相似文献   

19.
Benzoindoloquinolines interact with DNA tetraplexes and inhibit telomerase   总被引:4,自引:0,他引:4  
Telomeric G-rich single-stranded DNA can adopt a G-tetraplex structure which has been shown to inhibit telomerase activity. We have examined benzoindoloquinolines derivatives for their ability to stabilize an intramolecular G-quadruplex. The increase in T(m) value of the G-quadruplex was associated with telomerase inhibition in vitro.  相似文献   

20.
Inhibition of telomerase by inducing/stabilizing G-quadruplex formation is a promising strategy to design new anticancer drugs. We synthesized and characterized a new dinuclear complex [(dmb)2Ru(obip)Ru(dmb)2]4+ (dmb = 4,4’-dimethyl-2,2’-bipyridine, obip = (2-(2-pyridyl)imidazo[4,5-f][1,10]phenanthroline) with high affinity for both antiparallel and mixed parallel / antiparallel G-quadruplex DNA. This complex can promote the formation and stabilize G-quadruplex DNA. Dialysis and TRAP experiments indicated that [(dmb)2Ru(obip)Ru(dmb)2]4+ acted as an excellent telomerase inhibitor due to its obvious selectivity for G-quadruplex DNA rather than double stranded DNA. In vitro co-culture experiments implied that [(dmb)2Ru(obip)Ru(dmb)2]4+ inhibited telomerase activity and hindered cancer cell proliferation without side effects to normal fibroblast cells. TUNEL assay indicated that inhibition of telomerase activity induced DNA cleavage further apoptosis in cancer cells. Therefore, RuII complex represents an exciting opportunity for anticancer drug design by specifically targeting cancer cell G-quadruplexes DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号