首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP合酶既可在跨膜质子势的推动下催化合成ATP,也可以利用水解ATP释放的化学能而充当质子泵,把质子从线粒体基质中输送到内膜外侧,其能量转化效率却高得惊人,几乎达到100%。在旋转分子马达ATP合酶结构为基础上,结合随机主方程方法,提出了描述旋转分子马达ATPase合酶四态随机跃迁不等距旋转催化运动的理论模型;得到其角速度、扩散系数与ATP浓度之间的变化关系,并且得出了符合旋转分子马达生物机理的结果,定性半定量地解释了其动力学行为。  相似文献   

2.
线粒体是真核细胞中动态双层膜结构的细胞器,由外至内可以划分为四个功能区,分别是线粒体外膜(OMM),线粒体膜间隙,线粒体内膜(IMM)和线粒体基质。在线粒体内膜上的复合体V(complex V)即为ATP合酶,其主要功能是合成ATP。实际上,ATP合酶既合成也水解ATP,对细胞ATP水平有双向调节作用。ATP合酶的活性受抑制因子(ATPIF1)的调节。ATPIF1与ATP合酶结合后,对其ATP合成和水解功能进行抑制,从而影响线粒体和细胞内ATP水平。ATPIF1活性受到组氨酸质子化状态和丝氨酸磷酸化修饰的调节。在缺氧,交感神经兴奋和肿瘤等条件下,ATPIF1发挥重要代谢调节作用,但其在代谢紊乱疾病中的作用尚不明确。本文在综述ATPIF1文献的基础上,对其在糖脂代谢紊乱疾病中的作用进行分析及展望。  相似文献   

3.
杨光影  赵彤  田静涵  翁俊  曾小美 《菌物学报》2018,37(11):1424-1440
线粒体ATP合酶是线粒体氧化磷酸化的关键酶,其功能缺陷会导致能量代谢障碍相关的线粒体疾病。线粒体ATP合酶是由多个亚基组成的蛋白复合物,其生物合成和组装是个复杂的生物过程。酵母是研究线粒体ATP合酶结构、生物合成和组装机制的模式实验材料之一,且相关研究取得了很多进展。本文概述了国内外用酿酒酵母研究线粒体ATP合酶的结构、调控线粒体ATP合酶亚基生物合成和组装的辅助蛋白及合酶的模块化组装过程的研究进展,以期为线粒体ATP合酶的工作机制及相关线粒体疾病的研究提供理论借鉴和参考依据。  相似文献   

4.
冬小麦籽粒淀粉合成相关酶活性的日变化   总被引:5,自引:0,他引:5  
蔗糖向淀粉的转化是决定小麦籽粒产量的重要因素。田间条件下研究了两个小麦(TriticumaestivumL.)品种“鲁麦22”和“鲁麦14”籽粒淀粉合成相关酶:蔗糖合酶(sucrosesynthase,SS)、腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucosepyrophosphorylase,ADPGPPase)、可溶性淀粉合酶(solublestarchsynthase,SSS)、束缚态淀粉合酶(starchgranule-boundsynthase,GBSS)的活性以及籽粒ATP含量的日变化。结果表明,上述酶活性呈现明显的昼夜变化特征,酶活性一般在白天较低,而在夜间呈现较高活性,而籽粒ATP含量趋势相反。相关分析表明,白天较低的酶活性可能与气温超过其适宜温度有关。对籽粒淀粉合成相关酶活性日变化的可能因子进行了讨论。  相似文献   

5.
ATP除了为细胞提供能量外,还发挥重要的信号作用。因此,细胞内ATP水平的调节机制引起了越来越多的关注。ATP合成酶抑制因子(ATPase inhibitory factor 1,ATPIF1,简称IF1)是线粒体基质中的一个蛋白,其与呼吸链中的F_1Fo-ATP合酶结合,调控后者合成和水解ATP的活性。该分子在肿瘤研究方面已有综述,但是在糖脂代谢领域还缺乏相关综述。该综述从能量代谢角度出发,阐明IF1分子在调节细胞ATP水平中的作用。IF1蛋白半衰期较短,其表达呈现组织特异性,活性受基因表达和蛋白修饰的双重调节。IF1活性在其质子化后或过表达条件下升高,使线粒体ATP合成减少,引起细胞能量代谢重新编程,糖酵解合成ATP增多,并且线粒体产生活性氧增加。这些作用可解释IF1促进癌细胞生长和提高细胞炎症反应的作用。相反,IF1活性在蛋白磷酸化后或基因敲除条件下降低,由此介导的代谢编程提高细胞对恶劣环境的适应能力,提高细胞的生存力,增加局部组织的抗炎能力。总之,IF1的这些作用为探索细胞内ATP水平调节机制和细胞能量代谢稳态机制提供了重要的指导意义。  相似文献   

6.
蔗糖向淀粉的转化是决定小麦籽粒产量的重要因素.田间条件下研究了两个小麦(Triticum aestivum L.)品种"鲁麦22"和"鲁麦14"籽粒淀粉合成相关酶:蔗糖合酶(sucrose synthase,SS)、腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,ADPGPPase)、可溶性淀粉合酶(soluble starch synthase,SSS)、束缚态淀粉合酶(starch granule-bound synthase,GBSS)的活性以及籽粒ATP含量的日变化.结果表明,上述酶活性呈现明显的昼夜变化特征,酶活性一般在白天较低,而在夜间呈现较高活性,而籽粒ATP含量趋势相反.相关分析表明,白天较低的酶活性可能与气温超过其适宜温度有关.对籽粒淀粉合成相关酶活性日变化的可能因子进行了讨论.  相似文献   

7.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的“能源货币”,是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在“设定点”水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

8.
ATP合酶利用跨膜离子(主要是质子)梯度提供的能量,催化由ADP和Pi(磷酸)合成ATP的反应.已有证据表明,这种催化反应通过ATP合酶内部亚基之间的相对旋转而实现.然而,现有的基于整合在细胞膜内的c环及附着于其上的中心杆(由?和?亚基组成)转动的ATP合酶旋转模型存在多方面的理论缺陷,也与某些实验数据不符.本文提出了一种新的ATP合酶旋转催化模型,其中发生旋转的是?3?3六聚体.具体而言,质子的跨膜转运引起c环的周期性构象改变,从而使得附着在c环上的中心杆产生往复运动,这种往复运动驱动?3?3六聚体的连续转动.这种工作模式与按压式伸缩圆珠笔中推杆的往复运动驱动凸轮产生连续转动的工作机理十分相似.新模型不仅避免了现有模型的理论缺陷,而且更好地解释了已有实验数据.  相似文献   

9.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的“能源货币”,是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在“设定点”水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

10.
线粒体是细胞的代谢中心之一,不仅产生大量的ATP为细胞提供能量,还参与多种生物分子(例如核酸、氨基酸、胆固醇和脂肪酸)合成及代谢废物的处理。ATP是细胞重要的"能源货币",是能量载体和信号分子,参与调节细胞的各种生命活动。动物与人在激烈运动时,ATP消耗速率增加数十倍,但细胞内的ATP仍维持在"设定点"水平,不出现降低。因此,传统生理学观点认为,动物细胞内ATP水平保持恒定。但新的研究结果表明,生物细胞内ATP水平存在波动。生理条件下,增加能量物资(糖、脂和氨基酸等)和氧供,促进线粒体ATP合成,可使细胞内ATP水平出现一过性升高。新的研究证明,在肥胖情况下,由于能量物质的过多供应,细胞内ATP水平出现持续性升高,构成代谢紊乱的源头信号。线粒体ATP合成受多种因素影响,如氧化应激、钙超载、缺氧、线粒体膜通透性增加和线粒体DNA突变等。这些因素与疾病条件下细胞内ATP水平持续降低相关,常见的疾病包括阿尔茨海默症、帕金森疾病、精神分裂症、肿瘤、心衰、全身炎症反应综合征等。本综述简要概述线粒体调节细胞内ATP水平的研究进展,重点讨论造成ATP波动的因素、机制及病理生理学意义。  相似文献   

11.
CO2对NaCl胁迫下蓝藻固氮的影响   总被引:1,自引:1,他引:0  
培养系统中CO2浓度增高时,蓝藻的固氮活性成倍增长,NaCl对固氮的胁迫明显减弱。能量供应受限(添加ATP形成抑制剂或暗处理)、厌氧环境(Ar或N2中)和在分子氧下,CO2的有益作用减弱或消失,反之或改善合成固氨酶蛋白所需物质的供应(CO2和N2以及地和O2的加合)时则有促进。在CO2浓度提高的情况下,外源蔗糖对NaCI胁迫蓝藻固氮无明显的缓解效应。  相似文献   

12.
PreperationofCF_1DeficientintheδSubunitbyHydrophobicColumnChro-matographyRENHut-Miao,WEIJia-Mian(ShanghaiInstituteofPlantPhysiology,TheChineseAcademyofSciences.Shanghai200032)叶绿体类囊体膜上H-ATPase在光合作用的能量转换过程中起着重要的作用。光合磷酸化就是H”-ATPase利用光合电子传递产生的跨膜电化学质子梯度,把ADP和Pi合成ATP的过程。但是人们对H”-ATPase催化合成ATP的机理、CF;和CF。的连接、各个亚基的功能以及该酶的调节等几个关键性的问题还没有了解得十分清楚。而制备获得缺…  相似文献   

13.
固氮生物普遍存在着氢酶,氢酶能催化最简单分子,即氢的可逆氧还化原反应。氢酶是生物固氮在能量利用过程中的关键酶。这一过程可以回收因固氮酶催化需ATP的放氢而消耗掉的部分能量。由于它涉及到生物固氨的效率,因此倍受  相似文献   

14.
ATP合酶的结构与催化机理   总被引:18,自引:0,他引:18  
ATP合酶 (F1Fo 复合物) 是生物体内进行氧化磷酸化和光合磷酸化的关键酶.随着核磁共振、X射线晶体衍射、遗传学、化学交联等技术在ATP合酶研究中的广泛应用,ATP合酶的整体结构及其各组成亚基结构的研究都有很大的进展.其中细菌ATP合酶结构的研究更为深入.目前对质子通过Fo的转运方式提出两种模型:单通道和双半通道模型.对扭力矩的形成以及旋转催化也有了进一步的认识.Boyer提出的结合改变机理推动了ATP合酶催化机制的研究,现在主要有两点催化机制和三点催化机制.ATP合酶的催化反应受酶的构象变化和外在条件的调节.  相似文献   

15.
ATP是细胞的重要能源。传统观点认为细胞内ATP水平相对恒定,不会出现持续升高。而新的研究提示:在能量过剩状态下,ATP水平在多种组织中持续升高,这种升高与能量过剩引起的代谢紊乱密切相关,但其升高机制尚不清楚。本文通过回顾本研究组前期实验结果和文献,论述调节细胞内ATP水平的多种因素,其中涉及超氧离子、线粒体炫、抗氧化剂、抗凋亡蛋白(Bcl-xL)、AMP活化的蛋白激酶以及二甲双胍等,重点讨论这些因素改变ATP设定点的作用及其潜在机制,评估它们在细胞内ATP水平升高或降低中扮演的角色。本文以能量过剩的分子机制为中心,探讨细胞内ATP水平升高导致胰岛素抵抗的分子机制,同时阐明新的实验结果与ATP传统观点之间发生矛盾的可能原因。作者认为在肥胖条件下,ATP水平升高是细胞能量过剩的重要信号,该信号通过激活反馈通路抑制线粒体功能,造成糖脂代谢紊乱。  相似文献   

16.
陈月艳 《生物学通报》2006,41(11):31-34
2.3细胞内的物质转变和能量转换——细胞代谢狭义上的细胞代谢,专指生物体细胞内进行的一系列高效而有序的酶促反应的总称,即细胞内的物质转变和能量转换。细胞内的物质转变主要是指原生质的合成与分解,细胞内的能量转换主要是指能量转化(或释放、转移)、贮存和利用。酶和ATP是细胞代谢必需  相似文献   

17.
答:新陈代谢所需要的能量是由细胞内的ATP直接提供的,ATP是新陈代谢所需能量的直接来源,但体内有些合成反应不一定都直接利用ATP供能,而可以利用其他三磷酸核苷。例如UTP(三磷酸尿苷)用于多糖合成、CTP(三磷酸胞苷1用于磷脂合成、GTP(三磷酸鸟苷)用于蛋白质合成等。但物质氧化时释放的能量大都是必须先合成ATP。然后ATP可使UDP、CDP或GDP生成相应的UTP、CTP或GTP。  相似文献   

18.
甘蔗ATP合酶基因的电子克隆及生物信息学分析   总被引:2,自引:0,他引:2  
目的:运用电子克隆的方法获得甘蔗中的ATP合酶基因。方法:以小麦中一个ATP合酶基因为种子序列,对甘蔗的EST数据库进行搜索,应用相关软件进行聚类分析、拼接组装和延长。结果:获得一个ATP合酶基因SATPC1的cDNA序列全长,该序列长1 415bp,包含一个完整的1 077bp的ORF,编码358个氨基酸,且与水稻、玉米、高粱和葡萄等其他植物的ATP合酶具有高度的同源性。结论:电子克隆获得的cDNA序列为完整的甘蔗ATP合酶基因全长cDNA。  相似文献   

19.
微生物代谢过程中,环磷酸腺苷(cAMP)由ATP直接环化形成,强化ATP合成有利于产物的积累。在分批发酵24h添加3g/L-broth丙酮酸钠(辅助能量物质),cAMP浓度达到4.13g/L,比对照批次提高了24.4%,发酵性能得到明显改善。对关键酶活性及能量代谢水平的测定结果表明,由于丙酮酸钠的添加,丙酮酸激酶的活性显著下降,而6-磷酸葡萄糖脱氢酶、琥珀腺苷酸合成酶和腺苷酸环化酶等产物合成途径中酶的活性均明显提高;异柠檬酸脱氢酶、琥珀酸脱氢酶和呼吸链脱氢酶等酶活性,以及辅因子NADH/NAD +、ATP/AMP均明显提高。表明添加丙酮酸钠改变了糖酵解和磷酸戊糖途径间的碳流分配,使更多碳流向产物合成途径,同时提高了整体能量代谢水平,更利于ATP的生成,为产物的合成提供了物质和能量基础,进而促进了cAMP的合成与积累。  相似文献   

20.
ATP显著提高RuBP羧化酶在低温下贮存的稳定性,并抑制RuBP羧化酶在贮存期间巯基数的减少及高分子聚合体的出现。ATP对RuBP羧化酶的活化作用影响不大,但对催化反应有明显的抑制作用,它是一种相对底物RuBP的竞争性抑制剂。凝胶过滤法显示同位素标记的ATP与酶分子相结合。结果说明:ATP与底物RuBP在酶的催化部位上有共同的结合位置。ATP对RuBP羧化酶的稳定效应以及对酶分子构象变化的影响是通过与RuBP催化部位的结合而起作用的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号