首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular form of the prion protein (PrPC) is found in both full-length and several different cleaved forms in vivo. Although the precise functions of the PrPC proteolytic products are not known, cleavage between the unstructured N-terminal domain and the structured C-terminal domain at Lys-109↓His-110 (mouse sequence), termed α-cleavage, has been shown to produce the anti-apoptotic N1 and the scrapie-resistant C1 peptide fragments. β-Cleavage, residing adjacent to the octarepeat domain and N-terminal to the α-cleavage site, is thought to arise from the action of reactive oxygen species produced from redox cycling of coordinated copper. We sought to elucidate the role of key members of the ADAM (a disintegrin and metalloproteinase) enzyme family, as well as Cu2+ redox cycling, in recombinant mouse PrP (MoPrP) cleavage through LC/MS analysis. Our findings show that although Cu2+ redox-generated reactive oxygen species do produce fragmentation corresponding to β-cleavage, ADAM8 also cleaves MoPrP in the octarepeat domain in a Cu2+- and Zn2+-dependent manner. Additional cleavage by ADAM8 was observed at the previously proposed location of α-cleavage, Lys-109↓His-110 (MoPrP sequencing); however, upon addition of Cu2+, the location of α-cleavage shifted by several amino acids toward the C terminus. ADAM10 and ADAM17 have also been implicated in α-cleavage at Lys-109↓His-110; however, we observed that they instead cleaved MoPrP at a novel location, Ala-119↓Val-120, with additional cleavage by ADAM10 at Gly-227↓Arg-228 near the C terminus. Together, our results show that MoPrP cleavage is far more complex than previously thought and suggest a mechanism by which PrPC fragmentation responds to Cu2+ and Zn2+.  相似文献   

2.
Peptide deformylases (PDFs) catalyze the removal of the N-terminal formyl group from nascent polypeptides. In spite of the vast amount of literature on PDF, no information whatsoever is available on its use in organic synthesis. To be able to explore the potential of E. coli PDF (EcPDF) in biocatalytic applications, a simple and efficient purification procedure was developed. This method, which was based on one affinity chromatographic step, furnished about 200 mg of pure EcPDF from 1 L of E. coli culture. The enzyme combined a good activity (tof ≥5 s−1) with an almost complete enantioselectivity (E ratio >500) in the resolution of N-formylated α- and β-amino acids, α-amino acid amides and α-aminonitriles. N-Formyl derivatives of non-functionalized amines and β-amino alcohols were hydrolyzed with low to moderate activity and enantioselectivity. EcPDF was also successfully applied in the enantioselective formylation of α-aminonitriles, yielding, e.g. (S)-N-formyl-phenylalanine nitrile with >99.5% ee. The enzyme also proved very suitable for the mild and selective deprotection of N-formyl peptides as was shown for N-formyl-Leu-Tle-NHCH3. This deprotection increased the diastereomeric excess of the dipeptide, which was unsatisfactory because of racemization of the N-terminal amino acid in the chemical peptide coupling step.  相似文献   

3.
A sensitive method for the determination of S- and R-3-methyl-2-oxopentanoate enantiomers (KMV, (α-keto-β-methylval-erate) in physiological fluids suitable for isotope enrichment analysis is described: after extraction with acid, 2-oxo acids are separated from interfering amino acids by cation-exchange chromatography. Reductive amination of the branched-chain 2-oxo acids by use of - leucine dehydrogenase yields the corresponding -amino acids. -Isoleucine and -alloisoleucine which are formed from S- and R-3-methyl-2-oxopentanoate, respectively, are then quantified by amino acid analysis. The method was used for determination of the R-/S-3-methyl-2-oxopentanoate ratio in plasma of healthy subjects and patients with diabetes mellitus and maple syrup urine disease. Applicability for gas chromatographic-mass spectrometric analysis of 13C-label enrichment in plasma S-3-methyl-2-oxopentanoate is demonstrated.  相似文献   

4.
The endosymbiont most likely to have given rise to mitochondria is an aerobic bacterium belonging to the α subdivision of the so-called purple bacteria such as Rickettsia, Bradythizobium and Agrobacterium [1 and 2]. Contents of the -enantiomers of serine, alanine, proline, glutamate and aspartate in rat liver whole mitochondria, mitochondrial outer membranes, inner membranes and matrix, soluble proteins and free amino acids were detected. These values for -amino acid content were compared with those in soluble proteins and free amino acids from the purple bacteria Paracoccus denitrificans, Pseudomonas aeruginosa and Escherichia coli, members, respectively of the α, β, and γ subdivisions, to find any similarity between mitochondria and these purple bacteria. A similarity was observed in protein -amino acid contents which were low (<1.5%, D-type/D-type+L-type) both in the membrane and soluble protein fractions from mitochondria and in soluble protein from bacteria. Oddly, substantial amounts of free -serine and free -aspartate (around 2%) were found for the first time in mitochondria. The contents of -serine and -aspartate were higher than those of -alanine, -proline and -glutamate. In purple bacteria, the concentration of -serine (<2%) was the lowest of the five amino acids examined, and those of -alanine (27–32%) and -glutamate (7–26%) were high. Therefore, no similarity was shown in the free -amino acid content between mitochondria and any of the three purple bacteria.  相似文献   

5.
In anaerobic or aerobic conditions in the presence of 5 mM sodium cyanide, an inhibitor of iron oxidase, cupric ion (Cu2+) was reduced enzymatically with elemental sulfur (S0) by washed intact cells of Thiobacillus ferrooxidans AP19-3 to give cuprous ion (Cu+). The rate of Cu2+ reduction was proportional to the concentrations of S0 and Cu2+ added to the reaction mixture. The pH optimum for the cupric ion-reducing system was 5.0, and the activity was completely destroyed by 10-min incubation of cells at 70°C. The activity of Cu2+ reduction with S0 by this strain was strongly inhibited by inhibitors of hydrogen sulfide: ferric ion oxidoreductase (SFORase), such as α,α′-dipyridyl, 4,5-dihydroxy-m-benzene disulfonic acid disodium salts, and diazine dicarboxylic acid bis-(N, N-dimethylamide). A SFORase purified from this strain, which catalyzes oxidation of both hydrogen sulfide and S0 with Fe3+ or Mo6+ as an electron acceptor in the presence of glutathione, catalyzed a reduction of Cu2+ by S0, and the Michaelis constant of SFORase for Cu2+ was 7.2 mM, indicating that a SFORase catalyzes the reduction of not only Fe3+ and Mo6+ but also Cu2+.  相似文献   

6.
In voltage-dependent Ca2+ channels, the α1 and β subunits interact via two cytoplasmic regions defined as the Alpha Interaction Domain (AID) and Beta Interaction Domain (BID). Several novel amino acids for that interaction have now been mapped in both domains by point mutations. It was found that three of the nine amino acids in AID and four of the eight BID amino acids tested were essential for the interaction. Whereas the important AID amino acids were clustered around five residues, the important BID residues were more widely distributed within a larger 16 amino acid sequence. The affinity of the AIDA GST fusion protein for the four interacting β1b BID mutants was not significantly altered compared with the wild-type β1b despite the close localization of mutated residues to disruptive BID amino acids. Expression of these interactive β mutants with the full-length α1A subunit only slightly modified the stimulation efficiency when compared with the wild-type β1b subunit. Our data suggest that non-disruptive BID sequence alterations do not dramatically affect the β subunit-induced current stimulation.  相似文献   

7.
d-Amino acid oxidase is a FAD-dependent enzyme that catalyses the conversion of the d-enantiomer of amino acids into the corresponding α-keto acid. Substrate specificity of the enzyme from the yeast Rhodotorula gracilis was investigated towards aromatic amino acids, and particularly synthetic α-amino acids.A significant improvement of the activity (Vmax,app) and of the specificity constant (the Vmax,app/Km,app ratio) on a number of the substrates tested was obtained using a single-point mutant enzyme designed by a rational approach. With R. gracilis d-amino acid oxidase the complete resolution of d,l-homo-phenylalanine was obtained with the aim to produce the corresponding pure l-isomer and to use the corresponding α-keto acid as a precursor of the amino acid in the l-form.  相似文献   

8.
In this study we purified and characterized a fibrinolytic protease from the mycelia of Perenniporia fraxinea. The apparent molecular mass of the purified enzyme was estimated to be 42 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), fibrin zymography and size exclusion using fast protein liquid chromatography (FPLC). The first 20 amino acid residues of the N-terminal sequence were ASYRVLPITKELLPPEFFVA, which shows a high degree of similarity with a fungalysin metallopeptidase from Coprinopsis cinerea. The optimal reaction pH value and temperature were pH 6.0 and 35–40 °C, respectively. Results for the fibrinolysis pattern showed that the protease rapidly hydrolyzed the fibrin α-chain followed by the β-chain. The γ–γ chains were also hydrolyzed, but more slowly. The purified protease effectively hydrolyzed fibrinogen, preferentially digesting the Aα-chains of fibrinogen, followed by Bβ- and γ-chains. We found that protease activity was inhibited by Cu2+, Fe3+, and Zn2+, but enhanced by the additions of Mn2+, Mg2+ and Ca2+ metal ions. Furthermore, the protease activity was inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The mycelia of P. fraxinea may thus represent a source of new therapeutic agents to treat thrombosis.  相似文献   

9.
A number of bacteria belonging to the genera Proteus, Providencia, Pseudomonas and Erwinia have been tested for their capacity to oxidize -amino acids to their corresponding α-keto acids. Members of the Proteus and the Providencia genera were active towards various -amino acids. Immobilized cell preparations of Providencia sp. PCM 1298 were shown to form up to 80 mg α-keto-γ-methiol butyric acid from -methionine per g of gel preparation (containing 4% w/w cells) per day. The productivity was highly dependent on the size of the beads. Oxygen appeared to be the rate-limiting substrate and oxygen transfer rates of 3–4 μmol cm−2 h−1 were calculated. The entrapment of activated charcoal to remove H2O2 formed during the oxidation extended the half-life of the immobilized biocatalyst considerably. A decrease in -amino acid oxidase [ -amino acid: oxygen oxidoreductase (deaminating); EC 1.4.3.2] activity during operation could be compensated for by reinoculation of the alginate-entrapped cells in fresh growth medium, allowing use of these preparations of immobilized bacterial cells for more than one month.  相似文献   

10.
The interaction of redox-active copper ions with misfolded amyloid β (Aβ) is linked to production of reactive oxygen species (ROS), which has been associated with oxidative stress and neuronal damages in Alzheimer disease. Despite intensive studies, it is still not conclusive how the interaction of Cu+/Cu2+ with Aβ aggregates leads to ROS production even at the in vitro level. In this study, we examined the interaction between Cu+/Cu2+ and Aβ fibrils by solid-state NMR (SSNMR) and other spectroscopic methods. Our photometric studies confirmed the production of ∼60 μm hydrogen peroxide (H2O2) from a solution of 20 μm Cu2+ ions in complex with Aβ(1–40) in fibrils ([Cu2+]/[Aβ] = 0.4) within 2 h of incubation after addition of biological reducing agent ascorbate at the physiological concentration (∼1 mm). Furthermore, SSNMR 1H T1 measurements demonstrated that during ROS production the conversion of paramagnetic Cu2+ into diamagnetic Cu+ occurs while the reactive Cu+ ions remain bound to the amyloid fibrils. The results also suggest that O2 is required for rapid recycling of Cu+ bound to Aβ back to Cu2+, which allows for continuous production of H2O2. Both 13C and 15N SSNMR results show that Cu+ coordinates to Aβ(1–40) fibrils primarily through the side chain Nδ of both His-13 and His-14, suggesting major rearrangements from the Cu2+ coordination via Nϵ in the redox cycle. 13C SSNMR chemical shift analysis suggests that the overall Aβ conformations are largely unaffected by Cu+ binding. These results present crucial site-specific evidence of how the full-length Aβ in amyloid fibrils offers catalytic Cu+ centers.  相似文献   

11.
The host-specific toxin of Helminthosporium carbonum (C32H50N6O10) was hydrolyzed by 6 n HCl to yield a number of α-amino acids. The common amino acids, proline and alanine, occurred in a ratio of 1:2. Two other unstable α-amino acids that produced lower color values with ninhydrin were also produced. One of these was tentatively identified as 2-amino-2,3-dehydro-3-methylpentanoic acid by electrolytic reduction to isoleucine. Additional ninhydrin-reacting substances were produced in low yield and probably represented secondary hydrolysis products of the unstable amino acids. The finding of an α,β-unsaturated linkage in H. carbonum toxin explains the instability of the compound and may also account for its specific toxicity.  相似文献   

12.
Alzheimer disease coincides with the formation of extracellular amyloid plaques composed of the amyloid-β (Aβ) peptide. Aβ is typically 40 residues long (Aβ(1–40)) but can have variable C and N termini. Naturally occurring N-terminally truncated Aβ(11–40/42) is found in the cerebrospinal fluid and has a similar abundance to Aβ(1–42), constituting one-fifth of the plaque load. Based on its specific N-terminal sequence we hypothesized that truncated Aβ(11–40/42) would have an elevated affinity for Cu2+. Various spectroscopic techniques, complemented with transmission electron microscopy, were used to determine the properties of the Cu2+-Aβ(11–40/42) interaction and how Cu2+ influences amyloid fiber formation. We show that Cu2+-Aβ(11–40) forms a tetragonal complex with a 34 ± 5 fm dissociation constant at pH 7.4. This affinity is 3 orders of magnitude tighter than Cu2+ binding to Aβ(1–40/42) and more than an order of magnitude tighter than that of serum albumin, the extracellular Cu2+ transport protein. Furthermore, Aβ(11–40/42) forms fibers twice as fast as Aβ(1–40) with a very different morphology, forming bundles of very short amyloid rods. Substoichiometric Cu2+ drastically perturbs Aβ(11–40/42) assembly, stabilizing much longer fibers. The very tight fm affinity of Cu2+ for Aβ(11–40/42) explains the high levels of Cu2+ observed in Alzheimer disease plaques.  相似文献   

13.
1. Diaminopimelate decarboxylase from a soluble extract of Escherichia coli A.T.C.C. 9637 was purified 200-fold by precipitation of nucleic acids, fractionation with acetone and then with ammonium sulphate, adsorption on calcium phosphate gel and chromatography on DEAE-cellulose or DEAE-Sephadex. 2. The purified enzyme showed only one component in the ultracentrifuge, with a sedimentation coefficient of 5·4s. One major peak and three much smaller peaks were observed on electrophoresis of the enzyme at pH8·9. 3. The mol.wt. of the enzyme was approx. 200000. The catalytic constant was 2000mol. of meso-diaminopimelic acid decomposed/min./mol. of enzyme, at 37°. The relative rates of decarboxylation at 25°, 37° and 45° were 0·17:1·0:1·6. At 37° the Michaelis constant was 1·7mm and the optimum pH was 6·7–6·8. 4. There was an excess of acidic amino acids over basic amino acids in the enzyme, which was bound only on basic cellulose derivatives at pH6·8. 5. The enzyme had an absolute requirement for pyridoxal phosphate as a cofactor; no other derivative of pyridoxine had activity. A thiol compound (of which 2,3-dimercaptopropan-1-ol was the most effective) was also needed as an activator. 6. In the presence of 2,3-dimercaptopropan-1-ol (1mm), heavy-metal ions (Cu2+, Hg2+) did not inhibit the enzyme, but there was inhibition by several amino acids with analogous structures to diaminopimelate, generally at high concentrations relative to the substrate. Penicillamine was inhibitory at relatively low concentrations; its action was prevented by pyridoxal phosphate.  相似文献   

14.
The principal antioxidant in human LDL, α-tocopherol, is converted to the α-tocopheroxyl radical after reaction with peroxyl radicals or Cu2+, and, if it does not terminate with peroxyl radicals, could initiate lipid peroxidation; a phenomenon called ‘tocopherol mediated peroxidation’. Only in the presence of Cu2+ and low levels of lipid hydroperoxides was an α-tocopherol dependent decrease in the resistance of LDL to oxidation detected. This suggests that tocopherol mediated peroxidation will probably not contribute significantly as a pro-oxidant process in those individuals most at risk of developing atherosclerosis through an oxidative mechanism.  相似文献   

15.
An N-carbamoyl-β-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (βcarAt) has been characterized. βcarAt is most active at 30°C and pH 8.0 with N-carbamoyl-β-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn2+, Ni2+, and Co2+. The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-α-, -β-, -γ-, and -δ-amino acids, with the greatest catalytic efficiency for N-carbamoyl-β-alanine. βcarAt also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the β-amino acids taurine and ciliatine, respectively. βcarAt is able to produce monosubstituted β2- and β3-amino acids, showing better catalytic efficiency (kcat/Km) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-β-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make βcarAt an outstanding candidate for application in the biotechnology industry.N-Carbamoyl-β-alanine amidohydrolase (NCβAA) (EC 3.5.1.6), also known as β-alanine synthase or β-ureidopropionase, catalyzes the third and final step of reductive pyrimidine degradation. In this reaction, N-carbamoyl-β-alanine or N-carbamoyl-β-aminoisobutyric acid is irreversibly hydrolyzed to CO2, NH3, and β-alanine or β-aminoisobutyric acid, respectively (43). Eukaryotic NCβAAs have been purified from several sources (10, 25, 33, 39, 42, 44). Nevertheless, only two prokaryotic NCβAAs, belonging to the Clostridium and Pseudomonas genera (4, 29), have been purified to date, although this activity has been inferred for several microorganisms due to the appearance of the reductive pathway of pyrimidine degradation (38, 45). Pseudomonas NCβAA is also able to hydrolyze l-N-carbamoyl-α-amino acids, and indeed, this activity is widespread in the bacterial kingdom (3, 23, 26, 46).β-Amino acids have unique pharmacological properties, and their utility as building blocks of β-peptides, pharmaceutical compounds, and natural products is of growing interest (14). β-Alanine, a natural β-amino acid, is a precursor of coenzyme A and pantothenic acid in bacteria and fungi (vitamin B5) (7). β-Alanine is widely distributed in the central nervous systems of vertebrates and is a structural analogue of γ-amino-n-butyric acid and glycine, major inhibitory neurotransmitters, suggesting that it may be involved in synaptic transmissions (20). Another important natural β-amino acid is taurine (2-aminoethanesulfonic acid), which plays an important role in several essential processes, such as membrane stabilization, osmoregulation, glucose metabolism, antioxidation, and development of the central nervous system and the retina (9, 28, 33). 2-Aminoethylphosphonate, the most common naturally occurring phosphonate, also known as ciliatine, is an important precursor used in the biosynthesis of phosphonolipids, phosphonoproteins, and phosphonoglycans (5). β-Homoalanine (β-aminobutyric acid) has been used successfully for the design of nonnatural ligands for therapeutic application against autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, or autoimmune uveitis (30). Substituted β-amino acids can be denominated β2, β3, and β2,3, depending on the position of the side chain(s) (R) on the amino acid skeleton (18). β2-Amino acids are not yet as readily available as their β3-counterparts, as they must be prepared using multistep procedures (17).We decided to characterize NCβAA (β-carbamoylase) from Agrobacterium tumefaciens C58 (βcarAt) after showing that some dihydropyrimidinases belonging to the Arthrobacter and Sinorhizobium genera are able to hydrolyze different 5- or 6-substituted dihydrouracils to the corresponding N-carbamoyl-β-amino acids (18, 22). If βcarAt could decarbamoylate the reaction products of dihydrouracils, different β-amino acids would be obtained enzymatically in the same way that α-amino acids are produced via the hydantoinase process (6, 21). We therefore describe the physical, biochemical, kinetic, and substrate specificity properties of recombinant βcarAt.  相似文献   

16.
An N-carbamoyl-β-alanine amidohydrolase of industrial interest from Agrobacterium tumefaciens C58 (βcarAt) has been characterized. βcarAt is most active at 30°C and pH 8.0 with N-carbamoyl-β-alanine as a substrate. The purified enzyme is completely inactivated by the metal-chelating agent 8-hydroxyquinoline-5-sulfonic acid (HQSA), and activity is restored by the addition of divalent metal ions, such as Mn2+, Ni2+, and Co2+. The native enzyme is a homodimer with a molecular mass of 90 kDa from pH 5.5 to 9.0. The enzyme has a broad substrate spectrum and hydrolyzes nonsubstituted N-carbamoyl-α-, -β-, -γ-, and -δ-amino acids, with the greatest catalytic efficiency for N-carbamoyl-β-alanine. βcarAt also recognizes substrate analogues substituted with sulfonic and phosphonic acid groups to produce the β-amino acids taurine and ciliatine, respectively. βcarAt is able to produce monosubstituted β2- and β3-amino acids, showing better catalytic efficiency (kcat/Km) for the production of the former. For both types of monosubstituted substrates, the enzyme hydrolyzes N-carbamoyl-β-amino acids with a short aliphatic side chain better than those with aromatic rings. These properties make βcarAt an outstanding candidate for application in the biotechnology industry.  相似文献   

17.
An efficient simultaneous synthesis of enantiopure (S)-amino acids and chiral (R)-amines was achieved using α/ω-aminotransferase (α/ω-AT) coupling reaction with two-liquid phase system. As, among the enzyme components in the α/ω-AT coupling reaction systems, only ω-AT is severely hampered by product inhibition by ketone product, the coupled reaction cannot be carried out above 60 mM substrates. To overcome this problem, a two-liquid phase reaction was chosen, where dioctylphthalate was selected as the solvent based upon biocompatibility, partition coefficient and effect on enzyme activity. Using 100 mM of substrates, the AroAT/ω-AT and the AlaAT/ω-AT coupling reactions asymmetrically synthesized (S)-phenylalanine and (S)-2-aminobutyrate with 93% (>99% eeS) and 95% (>99% eeS) of conversion yield, and resolved the racemic α-methylbenzylamine with 56% (95% eeR) and 54% (96% eeR) of conversion yield, respectively. Moreover, using 300 mM of 2-oxobutyrate and 300 mM of racemic α-methylbenzylamine as substrates, the coupling reactions yielded 276 mM of (S)-2-aminobutyrate (>99% ee) and 144 mM of (R)-α-methylbenzylamine (>96% ee) in 9 h. Here, most of the reactions take place in the aqueous phase, and acetophenone mainly moved to the organic phase according to its partition coefficient.  相似文献   

18.

Background

Protein turnover in skeletal muscle tissue is highly responsive to nutrient intake in healthy adults.

Objective

To provide a comprehensive overview of post-prandial protein handling, ranging from dietary protein digestion and amino acid absorption, the uptake of dietary protein derived amino acids over the leg, the post-prandial stimulation of muscle protein synthesis rates, to the incorporation of dietary protein derived amino acids in de novo muscle protein.

Design

12 healthy young males ingested 20 g intrinsically [1-13C]-phenylalanine labeled protein. In addition, primed continuous L-[ring-2H5]-phenylalanine, L-[ring-2H2]-tyrosine, and L-[1-13C]-leucine infusions were applied, with frequent collection of arterial and venous blood samples, and muscle biopsies throughout a 5 h post-prandial period. Dietary protein digestion, amino acid absorption, splanchnic amino acid extraction, amino acid uptake over the leg, and subsequent muscle protein synthesis were measured within a single in vivo human experiment.

Results

55.3±2.7% of the protein-derived phenylalanine was released in the circulation during the 5 h post-prandial period. The post-prandial rise in plasma essential amino acid availability improved leg muscle protein balance (from -291±72 to 103±66 μM·min-1·100 mL leg volume-1; P<0.001). Muscle protein synthesis rates increased significantly following protein ingestion (0.029±0.002 vs 0.044±0.004%·h-1 based upon the muscle protein bound L-[ring-2H5]-phenylalanine enrichments (P<0.01)), with substantial incorporation of dietary protein derived L-[1-13C]-phenylalanine into de novo muscle protein (from 0 to 0.0201±0.0025 MPE).

Conclusion

Ingestion of a single meal-like amount of protein allows ~55% of the protein derived amino acids to become available in the circulation, thereby improving whole-body and leg protein balance. About 20% of the dietary protein derived amino acids released in the circulation are taken up in skeletal muscle tissue following protein ingestion, thereby stimulating muscle protein synthesis rates and providing precursors for de novo muscle protein synthesis.

Trial Registration

trialregister.nl 3638  相似文献   

19.
This study investigated the characteristics of exudates from mangrove plant Avicennia marina seedling roots under 0, 200 and 600?mM NaCl treatments and their complexation behavior with trace metals using excitation emission matrix (EEM) fluorescence spectrometry. Two fulvic-like fluorescence peaks, namely peak A (Em = 440?nm, Ex = 250?nm, UV fulvic-like compounds) and peak B (Em = 440?nm, Ex = 340?nm, visible fulvic-like compounds) were identified. The fluorescence intensities of peak A and peak B were enhanced by increasing salinity. Furthermore, the fluorescence of both peaks could be quenched by the ions of copper (Cu2+), manganese (Mn2+) and cadmium (Cd2+). Conditional stability constant (logKa) exhibited that binding capacity of both peak A and peak B with trace metals are Cu2+?>?Mn2+?>?Cd2+ in the range from 2.21 to 4.01. Besides, Hill coefficient (n) >1 for Cu2+ but n?<?1 for Mn2+ and Cd2+. The results of high n and high logKa for Cu2+ rather than Mn2+ and Cd2+ indicate that the fulvic-like compounds in root exudates of A. marina have maximum potential for Cu2+ complexation compared to Mn2+ and Cd2+, suggesting the fulvic acids in root exudates of A. marina have strong complexation with Cu2+ rather than Mn2+ and Cd2+.  相似文献   

20.
The recently defined versus straight-line plots for L = pyridine-type (PyN) and ortho-aminopyridine-type (oPyN) ligands now allow the evaluation in a quantitative manner of the stability of the 1:1 complexes formed between cytidine (Cyd) and Ca2+, Mg2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+ or Cd2+ (M2+); the corresponding stability constants, , including the acidity constant, , for the deprotonation of the (N3)H+ site had been determined previously under exactly the same conditions as the mentioned plots. Since the stabilities of the M(PyN)2+ and M(oPyN)2+ complexes of Ca2+ and Mg2+ are practically identical, it is concluded that complex formation occurs in an outer-sphere manner, and this is in accord with the fact that in the pKa range 3–7 metal ion binding is independent of or . Ca(Cyd)2+ and Mg(Cyd)2+ are more stable than the corresponding (outer-sphere) M(PyN)2+ complexes and this means that the C2 carbonyl group of Cyd must participate, next to N3 which is most likely outer-sphere, in metal ion binding, leading thus to chelates; these have formation degrees of about 50% and 35%, respectively. Co(Cyd)2+ and Ni(Cyd)2+ show no increased stability based on the hence, the (C2)O group does not participate in metal ion binding, but the inner-sphere coordination to N3 is strongly inhibited by the (C4)NH2 group. In the M(Cyd)2+ complexes of Mn2+, Cu2+, Zn2+ and Cd2+, this inhibiting effect on M2+ binding at N3 is partially compensated by participation of the (C2)O group in complex formation and the corresponding chelates have formation degrees between about 30% (Zn2+) and 83% (Cu2+). The different structures of the mentioned chelates are discussed in relation to available crystal structure analyses. (1) There is evidence (crystal structure studies: Cu2+, Zn2+, Cd2+) that four-membered rings form, i.e. there is a strong M2+ bond to N3 and a weak one to (C2)O. (2) By hydrogen bond formation to (C2)O of a metal ion-bound water molecule, six-membered rings, so-called semichelates, may form. (3) For Ca2+ and Mg2+, and possibly Mn2+, and their Cyd complexes, six-membered chelates are also likely with (C2)O being inner-sphere (crystal structure) and N3 outer-sphere. (4) Finally, for these metal ions also complexes with a sole outer-sphere interaction may occur. All these types of chelates are expected to be in equilibrium with each other in solution, but, depending on the metal ion, either the one or the other form will dominate. Clearly, the cytidine residue is an ambivalent binding site which adjusts well to the requirements of the metal ion to be bound and this observation is of relevance for single-stranded nucleic acids and their interactions with metal ions. In addition, the antisyn energy barrier has been estimated as being in the order of 6–7.5 kJ/mol for cytidine derivatives in aqueous solution at 25 °C.Abbreviations ADP3– adenosine 5-diphosphate - AMP2– adenosine 5-monophosphate - ATP4– adenosine 5-triphosphate - CDP3– cytidine 5-diphosphate - cl closed - CMP2– cytidine 5-monophosphate - 3-CMP2– cytidine 3-monophosphate - CTP4– cytidine 5-triphosphate - Cyd cytidine - DNA deoxyribonucleic acid - I ionic strength - Ka acidity constant - KI intramolecular equilibrium constant - L general ligand - M2+ general divalent metal ion - NTP4– nucleoside 5-triphosphate - op open - oPyN ortho-aminopyridine-type ligand - PyN pyridine-type ligand - t-RNA transfer ribonucleic acid - Tu tubercidin (7-deazaadenosine)In honor of Professor Liang-Nian Ji on the occasion of his 70th birthday in friendship and with best wishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号