首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
Two types of synthetic peptidoglycan fragments, diaminopimelic acid (DAP)-containing desmuramylpeptides (DMP) and muramyldipeptide (MDP), induced secretion of interleukin (IL)-8 in a dose-dependent manner in human monocytic THP-1 cells, although high concentrations of compounds are required as compared with chemically synthesized Toll-like receptor (TLR) agonists mimicking bacterial components: TLR2 agonistic lipopeptide (Pam3CSSNA), TLR4 agonistic lipid A (LA-15-PP) and TLR9 agonistic bacterial CpG DNA. We found marked synergistic IL-8 secretion induced by MDP or DAP-containing DMP in combination with synthetic TLR agonists in THP-1 cells. Suppression of the mRNA expression of nucleotide-binding oligomerization domain (NOD)1 and NOD2 by RNA interference specifically inhibited the synergistic IL-8 secretion induced by DMP and MDP with these TLR agonists respectively. In accordance with the above results, enhanced IL-8 mRNA expression and the activation of nuclear factor (NF)-kappaB induced by MDP or DMP in combination with synthetic TLR agonists were markedly suppressed in NOD2- and NOD1-silenced cells respectively. These findings indicated that NOD2 and NOD1 are specifically responsible for the synergistic effects of MDP and DMP with TLR agonists, and suggested that in host innate immune responses to invading bacteria, combinatory dual signalling through extracellular TLRs and intracellular NODs might lead to the synergistic activation of host cells.  相似文献   

2.
Peptidoglycans (PGNs) are ubiquitous constituents of bacterial cell walls and exhibit various immunobiological activities. Two types of minimum essential PGN structures for immunobiological activities were chemically synthesized and designated as muramyldipeptide; N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP) and gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP), which are common constituents of both Gram-positive and Gram-negative bacteria, as well as most Gram-negative and some Gram-positive bacteria, respectively. Recently, intracellular receptors for MDP and iE-DAP have been demonstrated to be nucleotide-binding oligomerization domain (NOD)1 and NOD2, respectively. In this study, we demonstrated that chemically synthesized meso-DAP itself activated human epithelial cells from various tissues, through NOD1 to generate antibacterial factors, PGN recognition proteins and beta-defensin 2, and cytokines in specified cases, although the activities of meso-DAP were generally weaker than those of known NOD agonists. However, stereoisomers of meso-DAP, LL-DAP, and DD-DAP were only slightly activated or remained inactive, respectively. Synthetic meso-lanthionine, which is another diamino-type amino acid specific to PGN of the specified Gram-negative bacteria, was also recognized by NOD1. In human monocytic cells, in the presence of cytochalasin D meso-DAP induced slightly but significantly increased production of cytokines, although the cells did not respond to meso-DAP in the absent of cytochalasin D. Our findings suggest that NOD1 is a special sentinel molecule, especially in the epithelial barrier, allowing the intracellular detection of bacteria through recognizing meso-DAP or comparable moiety of PGN from specified bacteria in cooperation with NOD2, thereby playing a key role in innate immunity.  相似文献   

3.
Kim HS  Shin TH  Yang SR  Seo MS  Kim DJ  Kang SK  Park JH  Kang KS 《PloS one》2010,5(10):e15369
Toll-like receptors (TLRs) and Nod-like receptors (NLRs) are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs), little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs). The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3)CSK(4) for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2) led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3)CSK(4) and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor) restored osteogenic differentiation enhanced by Pam(3)CSK(4). Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3)CSK(4) and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.  相似文献   

4.
Dahiya Y  Pandey RK  Sodhi A 《PloS one》2011,6(11):e27828
Nod2 is a cytosolic pattern recognition receptor. It has been implicated in many inflammatory conditions. Its signaling has been suggested to modulate TLR responses in a variety of ways, yet little is known about the mechanistic details of the process. We show in this study that Nod2 knockdown mouse peritoneal macrophages secrete more IL1β than normal macrophages when stimulated with peptidoglycan (PGN). Muramyl dipeptide (MDP, a Nod2 ligand) + PGN co-stimulated macrophages have lower expression of IL1β than PGN (TLR2/1 ligand) stimulated macrophages. MDP co-stimulation have similar effects on Pam3CSK4 (synthetic TLR2/1 ligand) mediated IL1β expression suggesting that MDP mediated down regulating effects are receptor dependent and ligand independent. MDP mediated down regulation was specific for TLR2/1 signaling as MDP does not affect LPS (TLR4 ligand) or zymosan A (TLR2/6 ligand) mediated IL1β expression. Mechanistically, MDP exerts its down regulating effects by lowering PGN/Pam3CSK4 mediated nuclear cRel levels. Lower nuclear cRel level were observed to be because of enhanced transporting back rather than reduced nuclear translocation of cRel in MDP + PGN stimulated macrophages. These results demonstrate that Nod2 and TLR2/1 signaling pathways are independent and do not interact at the level of MAPK or NF-κB activation.  相似文献   

5.
Multiple genetic variants of CARD15/NOD2 have been associated with susceptibility to Crohn's disease and Blau syndrome. NOD2 recognizes muramyl dipeptide (MDP) derived from bacterial peptidoglycan (PGN), but the molecular basis of recognition remains elusive. We performed systematic mutational analysis to gain insights into the function of NOD2 and molecular mechanisms of disease susceptibility. Using an archive of 519 mutations covering approximately 50% of the amino-acid residues of NOD2, the essential regulatory domains and specific residues of NOD2 involved in recognition of MDP were identified. The analysis revealed distinct roles for N-terminal and C-terminal leucine-rich repeats (LRRs) in the modulation of NOD2 activation and bacterial recognition. Within the C-terminal LRRs, variable residues predicted to form the beta-strand/betaturn structure were found to be essential for the response to MDP. In addition, we analyzed NOD1, a NOD2-related protein, revealing conserved and nonconserved amino-acid residues involved in PGN recognition. These results provide new insights into the molecular function and regulation of NOD2 and related NOD family proteins.  相似文献   

6.
7.
Bacterial peptidoglycan (PGN) has been reported to be sensed by cell-surface Toll-like receptor (TLR)2. On the other hand, intracellular NOD-like receptors recognize PGN partial structures: NOD1 and NOD2 recognize the peptide moiety containing diaminopimelic acid, and the muramyldipeptide (MDP) moiety, respectively. In this study, we examined in human monocytic THP-1 cells the pro-inflammatory cytokine-inducing abilities of PGNs and their fragments enzymatically prepared from Staphylococcus epidermidis ATCC 155: a polymer-type water-soluble PGN possessing an intact glycan chain (SEPS) and a monomer-type PGN (SEPS-M). The water-soluble PGN polymer, SEPS, exhibited considerably stronger activities to induce pro-inflammatory cytokines than parent PGNs and the PGN monomer, SEPS-M. Short interference RNA targeting TLR2 and NOD2 markedly reduced the activities of SEPS. In the same experiments, the activities of PGNs were mainly reduced in TLR2-silenced cells, whereas the activities of SEPS-M as well as a synthetic MDP were markedly reduced in NOD2-silenced cells. Furthermore, the PGNs and a reference PGN from Staphylococcus aureus in combination with MDP synergistically induced interleukin-8 in THP-1 cells. These findings strongly suggested that a polymer-type water-soluble PGN fragment, SEPS, exhibits both TLR2-and NOD2-agonistic activities, which induced the synergistic activation of human monocytic cells.  相似文献   

8.
Induction and localization of NOD2 protein in human endothelial cells   总被引:3,自引:0,他引:3  
  相似文献   

9.
Peptidoglycan recognition proteins (PGRPs) play crucial role in innate immunity for both invertebrates and vertebrates, owing to their prominent ability in detecting and eliminating invading bacteria. In the present study, two short PGRPs from mollusk Solen grandis (designated as SgPGRP-S1 and SgPGRP-S2) were identified, and their expression patterns, both in tissues and toward three PAMPs stimulation, were then characterized. The full-length cDNA of SgPGRP-S1 and SgPGRP-S2 was 1672 and 1285 bp, containing an open reading frame (ORF) of 813 and 426 bp, respectively, and deduced amino acid sequences showed high similarity to other members of PGRP superfamily. Both SgPGRP-S1 and SgPGRP-S2 encoded a PGRP domain. The motif of Zn2+ binding sites and amidase catalytic sites were well conserved in SgPGRP-S1, but partially conserved in SgPGRP-S2. The two PGRPs exhibited different tissue expression pattern. SgPGRP-S1 was highly expressed in muscle and hepatopancreas, while SgPGRP-S2 was highly in gill and mantle. The mRNA expression of SgPGRP-S1 could be induced acutely by stimulation of PGN, and also moderately by β-1,3-glucan, but not by LPS, while expression of SgPGRP-S2 was significantly up-regulated (P < 0.01) when S. grandis was stimulated by all the three PAMPs, though the expression levels were relatively lower than SgPGRP-S1. Our results suggested SgPGRP-S1 and SgPGRP-S2 could serve as pattern recognition receptors (PRRs) involved in the immune recognition of S. grandis, and they might perform different functions in the immune defense against invaders.  相似文献   

10.
11.
Although the basis for the high mortality rate for patients with mixed bacterial infections is likely to be multifactorial, there is evidence for a synergistic effect of muramyldipeptide (MDP) with lipopolysaccharide (LPS) on the synthesis of proinflammatory cytokines by mononuclear phagocytes. In this study, co-incubation of human Mono Mac 6 cells with MDP and either LPS or peptidoglycan (PGN) resulted in an apparent synergistic effect on tumor necrosis factor-alpha (TNF-alpha) secretion. Although incubation of cells with MDP alone produced minimal TNF-alpha, it caused significant expression of TNF-alpha mRNA. These findings suggest that the majority of TNF-alpha mRNA induced by MDP alone is not translated into protein. Furthermore, simultaneous incubation of cells with MDP and either LPS or PGN resulted in TNF-alpha mRNA expression that approximated the sum of the amounts expressed in response to MDP, LPS, and PGN individually. These findings indicate that the apparent synergistic effect of MDP on TNF-alpha production induced by either LPS or PGN is due to removal of a block in translation of the mRNA expressed in response to MDP. In subsequent studies, the effects of MDP alone and its effect on the production of TNF-alpha by LPS and PGN were determined to be independent of CD14, Toll-like receptor 2, and Toll-like receptor 4. These findings indicate that MDP acts through receptor(s) other than those primarily responsible for transducing the effects of LPS and PGN. Successful treatment of patients having mixed bacterial infections is likely to require interventions that address the mechanisms involved in responses induced by a variety of bacterial cell wall components.  相似文献   

12.
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors that specifically bind to peptidoglycans, a major component of bacterial cell wall. Generally, PGRPs are responsible for recognition of bacterial invasion in invertebrates. Full length cDNAs of PGRP, designated as CgPGRP-S1S, -S1L, -S2 and -S3, were identified from the Pacific oyster, Crassostrea gigas. Homology and domain searches classified these CgPGRPs as short-type PGRPs for extracellular PGN recognition. Amidase activity was predicted in all CgPGRPs, and defensin-like domains were found in CgPGRP-S1S and -S1L, suggesting that they may also function as antimicrobial proteins. Although phylogenetic analysis indicated that CgPGRPs are closely related to each other, they showed different tissue expression patterns; CgPGRP-S1S in the mantle and the gill, -S1L in the mantle, -S2 in the hemocytes and -S3 in the digestive diverticula. The CgPGRPs seem to survey bacterial invasion in their corresponding expression tissues. This is the first report of the possibility that bivalve mollusks have PGN recognition systems as suggested by the identification of multiple PGRPs distributed in various tissues.  相似文献   

13.
Production of inducible antimicrobial peptides offers a first and rapid defense response of epithelial cells against invading microbes. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide induced in various epithelia upon extracellular as well as intracellular bacterial challenge. Nucleotide-binding oligomerization domain protein 2 (NOD2/CARD15) is a cytosolic protein involved in intracellular recognition of microbes by sensing peptidoglycan fragments (e.g. muramyl dipeptide). We used luciferase as a reporter gene for a 2.3-kb hBD-2 promoter to test the hypothesis that NOD2 mediates the induction of hBD-2. Activation of NOD2 in NOD2-overexpressing human embryonic kidney 293 cells through its ligand muramyl dipeptide (MDP) induced hBD-2 expression. In contrast, overexpression of NOD2 containing the 3020insC frame-shift mutation, the most frequent NOD2 variant associated with Crohn disease, resulted in defective induction of hBD-2 through MDP. Luciferase gene reporter analyses and site-directed mutagenesis experiments demonstrated that functional binding sites for NF-kappaB and AP-1 in the hBD-2 promoter are required for NOD2-mediated induction of hBD-2 through MDP. Moreover, the NF-kappaB inhibitor Helenalin as well as a super-repressor form of the NF-kappaB inhibitor IkappaB strongly inhibited NOD2-mediated hBD-2 promoter activation. Expression of NOD2 was detected in primary keratinocytes, and stimulation of these cells with MDP induced hBD-2 peptide release. In contrast, small interference RNA-mediated down-regulation of NOD2 expression in primary keratinocytes resulted in a defective induction of hBD-2 upon MDP treatment. Together, these data suggest that NOD2 serves as an intracellular pattern recognition receptor to enhance host defense by inducing the production of antimicrobial peptides such as hBD-2.  相似文献   

14.
Nucleotide binding and oligomerization domain (NOD)1 and NOD2 are important cytoplasmic pattern recognition receptors (PRRs) and key members of the NOD-like receptor (NLR) family. They sense a wide range of bacteria or their products and play a key role in inducing innate immunity. This report describes the role of NOD1 and NOD2 receptors signalling in innate immunity in the Indian major carp, mrigal (Cirrhinus mrigala). Tissue-specific expression analysis of NOD1 and NOD2 genes by quantitative real-time PCR (qRT-PCR) revealed their wide distribution in various organs/tissues. In the untreated fish, the highest expression of NOD1 and NOD2 was detected in liver and blood, respectively. Stimulation with NOD1- and NOD2-specific ligands, i.e. iE-DAP and MDP, activated NOD1 and NOD2 receptor signalling in vivo and in vitro resulting in significant (p<0.05) induction of downstream signalling molecule RICK, and the effector molecules IL-1β, IL-8 and IFN-γ in the treated group as compared to their controls. In response to both Gram-positive and Gram-negative bacterial infections, NOD1 and NOD2 receptors signalling were activated and IL-1β, IL-8 and IFN-γ were induced. These findings highlight the important role of NOD receptors in eliciting innate immune response during the pathogenic invasion to the fish.  相似文献   

15.
Peptidoglycan recognition protein (PGRP) was isolated from immunized hemolymph of the wild silkworm, Samia cynthia ricini, detecting the biding activity with (125)I-labeled peptidoglycan (PGN). The binding specificity of PGRP was tested by competitive inhibition of the binding to (125)I-labeled-PGN by a large excess amount of non-labeled-PGN or other glucans. The binding to labeled uncross-linked Lys-type PGN from Micrococcus luteus was strongly inhibited by non-labeled-PGN of the same structure and meso-diaminopimelic acid (DAP)-type cross-linked PGN from Bacillus cell wall, but only a little by cross-linked PGN from M. luteus cell wall. The PGRP cDNA encodes a 193 amino acid open reading frame. The deduced amino acid sequence had 62 to 91% identities to known lepidopteran PGRPs, but less than 40% to Drosophila PGRPs. The PGRP gene constitutively expressed at a low level in naive fat body, and strongly induced by an injection of DAP-type cross-linked and Lys-type uncross-linked PGNs, but only weakly by Lys-type cross-linked PGN from M. luteus. The silkworm possibly distinguish between PGNs based on the structure of cross-linking peptide, but has less if any preference for the diamino acid residue of the stem peptide.  相似文献   

16.
Mast cells are pivotal in the pathogenesis of allergy and inflammation. In addition to the classical IgE-dependent mechanism involving crosslinking of the high-affinity receptor for IgE (FcεRI), mast cells are also activated by Toll-like receptors (TLRs) which are at the center of innate immunity. In this study, we demonstrated that the response of LAD2 cells (a human mast cell line) to anti-IgE was altered in the presence of the TLR2 agonists peptidoglycan (PGN) and tripalmitoyl-S-glycero-Cys-(Lys)4 (Pam3CSK4). Pretreatment of PGN and Pam3CSK4 inhibited anti-IgE induced calcium mobilization and degranulation without down-regulation of FcεRI expression. Pam3CSK4 but not PGN acted in synergy with anti-IgE for IL-8 release when the TLR2 agonist was added simultaneously with anti-IgE. Studies with inhibitors of key enzymes implicated in mast cell signaling revealed that the synergistic release of IL-8 induced by Pam3CSK4 and anti-IgE involved ERK and calcineurin signaling cascades. The differential modulations of anti-IgE induced mast cell activation by PGN and Pam3CSK4 suggest that dimerization of TLR2 with TLR1 or TLR6 produced different modulating actions on FcεRI mediated human mast cell activation.  相似文献   

17.
Peptidoglycan recognition protein (PGRP) is conserved from insects to mammals. In insects, PGRP recognizes bacterial cell wall peptidoglycan (PGN) and activates prophenoloxidase cascade, a part of the insect antimicrobial defense system. Because mammals do not have the prophenoloxidase cascade, its function in mammals is unknown. However, it was suggested that an identical protein (Tag7) was a tumor necrosis factor-like cytokine. Therefore, the aim of this study was to identify the function of PGRP in mammals. Mouse PGRP bound to PGN with fast kinetics and nanomolar affinity (K(d) = 13 nm). The binding was specific for polymeric PGN or Gram-positive bacteria with unmodified PGN, and PGRP did not bind to other cell wall components or Gram-negative bacteria. PGRP mRNA and protein were expressed in neutrophils and bone marrow cells, but not in spleen cells, mononuclear cells, T or B lymphocytes, NK cells, thymocytes, monocytes, and macrophages. PGRP was not a PGN-lytic or a bacteriolytic enzyme, but it inhibited the growth of Gram-positive but not Gram-negative bacteria. PGRP inhibited phagocytosis of Gram-positive bacteria by macrophages, induction of oxidative burst by Gram-positive bacteria in neutrophils, and induction of cytokine production by PGN in macrophages. PGRP had no tumor necrosis factor-like cytotoxicity for mammalian cells, and it was not chemotactic on its own or in combination with PGN. Therefore, mammalian PGRP binds to PGN and Gram-positive bacteria with nanomolar affinity, is expressed in neutrophils, and inhibits growth of bacteria.  相似文献   

18.
Peptidoglycan (PGN) recognition proteins (PGRPs) are pattern recognition molecules of innate immunity that are conserved from insects to humans. Various PGRPs are reported to have diverse functions: they bind bacterial molecules, digest PGN, and are essential to the Toll pathway in Drosophila. One family member, bovine PGN recognition protein-S (bPGRP-S), has been found to bind and kill microorganisms in a PGN-independent manner, raising questions about the identity of the bPGRP-S ligand. Addressing this, we have determined the binding and microbicidal properties of bPGRP-S in a range of solutions approximating physiologic conditions. In this study we show that bPGRP-S interacts with other bacterial components, including LPS and lipoteichoic acid, with higher affinities than for PCP, as determined by their abilities to inhibit bPGRP-S-mediated killing of bacteria. Where and how PGRPs act in vivo is not yet clear. Using Immunogold electron microscopy, PGRP-S was localized to the dense/large granules of naive neutrophils, which contain the oxygen-independent bactericidal proteins of these cells, and to the neutrophil phagolysosome. In addition, Immunogold staining and secretion studies demonstrate that neutrophils secrete PGRP-S when exposed to bacteria. Bovine PGRP-S can mediate direct lysis of heat-killed bacteria; however, PGRP-S-mediated killing of bacteria is independent of this activity. Evidence that bPGRP-S has multiple activities and affinity to several bacterial molecules challenges the assumption that the PGRP family of proteins recapitulates the evolution of TLRs. Mammalian PGRPs do not have a single antimicrobial activity against a narrow range of target organisms; rather, they are generalists in their affinity and activity.  相似文献   

19.
The peptidoglycan recognition proteins (PGRPs)   总被引:1,自引:0,他引:1  
Peptidoglycan recognition proteins (PGRPs) are innate immunity molecules present in insects, mollusks, echinoderms, and vertebrates, but not in nematodes or plants. PGRPs have at least one carboxy-terminal PGRP domain (approximately 165 amino acids long), which is homologous to bacteriophage and bacterial type 2 amidases. Insects have up to 19 PGRPs, classified into short (S) and long (L) forms. The short forms are present in the hemolymph, cuticle, and fat-body cells, and sometimes in epidermal cells in the gut and hemocytes, whereas the long forms are mainly expressed in hemocytes. The expression of insect PGRPs is often upregulated by exposure to bacteria. Insect PGRPs activate the Toll or immune deficiency (Imd) signal transduction pathways or induce proteolytic cascades that generate antimicrobial products, induce phagocytosis, hydrolyze peptidoglycan, and protect insects against infections. Mammals have four PGRPs, which are secreted; it is not clear whether any are directly orthologous to the insect PGRPs. One mammalian PGRP, PGLYRP-2, is an N-acetylmuramoyl-L-alanine amidase that hydrolyzes bacterial peptidoglycan and reduces its proinflammatory activity; PGLYRP-2 is secreted from the liver into the blood and is also induced by bacteria in epithelial cells. The three remaining mammalian PGRPs are bactericidal proteins that are secreted as disulfide-linked homo- and hetero-dimers. PGLYRP-1 is expressed primarily in polymorphonuclear leukocyte granules and PGLYRP-3 and PGLYRP-4 are expressed in the skin, eyes, salivary glands, throat, tongue, esophagus, stomach, and intestine. These three proteins kill bacteria by interacting with cell wall peptidoglycan, rather than permeabilizing bacterial membranes as other antibacterial peptides do. Direct bactericidal activity of these PGRPs either evolved in the vertebrate (or mammalian) lineage or is yet to be discovered in insects.  相似文献   

20.
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号