首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The present study was undertaken to examine cell cycle characteristics of endangered Goral (CITES Appendix I) adult skin fibroblasts. Seven experiments were performed, each with a one-way completely randomized design involving three replicates. Least significant difference (LSD) was used to determine variation among treatment groups. Experiment I focused on the effects of cycling, serum-starved, and fully confluent stages of Goral cells. In Experiments II and III, the effects of different antioxidants like beta-mercaptoethanol (beta-ME, 10 microM), cysteine (2 mM), and glutathione (2 mM) were examined after cells were fully confluent without serum starvation for 24 h and 4 h, respectively. In Experiments IV and V, three protease inhibitors, namely 6-dimethylaminopurine (6-DMAP, 2 mM), cycloheximide (7.5 microg/ml) and cytochalasin B (7.5 microg/ml), were used as in Experiment II. In Experiments VI and VII, the effect of different levels of dimethylsulphoxide (DMSO) at 0%, 0.5%, 1.0% and 2.5% were tested by flow cytometry (FACS). In Experiment I, 68.7% of Goral skin fibroblasts reached the G(0)/G(1) stage (2C DNA content) when subjected to the serum-starved medium, which was more than the cycling (64.9%) and fully confluent groups (61.0%) (P > 0.05). Among the chemically treated group, beta-ME, cysteine and DMSO showed better results for synchronization of G(0) + G(1) phases than cycling, serum-starved and fully confluent groups. It can thus be concluded that beta-ME, cysteine and DMSO at certain concentrations can synchronize the cell cycle effectively, which could have a positive impact on somatic cell nuclear transfer in the goral.  相似文献   

2.
Tiger (Panthera tigris Linnaeus, 1758) is a characteristic species of Asia, which is in severe danger. Siberian tiger (Panthera tigris altaica) is the largest one of the five existent tiger subspecies. It is extremely endangered. One new way for tiger protection and rescue is to study interspecies cloning. But there is few research data about Siberian tiger. In this study, we cultured Siberian tiger fibroblasts in vitro, analyzed their biological characteristics, chromosomes, and cell cycles, to provide not only nuclear donors with good morphology, normal biological characteristics, and chromosome quantity for tiger interspecies cloning, but also reliable data for further studying Siberian tiger. The results indicated that Siberian tiger ear fibroblasts can be successfully obtained by tissue culture either with or without overnight cold digestion, the cultured cells were typical fibroblasts with normal morphology, growth curve, and chromosome quantity; G0/G1 percentage increased and S percentage decreased with the confluence of cells. G0/G1 and S stage rate was significantly different between 40–50% and 80–90%, 95–100% confluence; there is no distinct difference between 80–90% and 95–100% confluence. The cells at the same density (80–90% confluence) were treated with or without 0.5% serum starving, GO/G1 rate of the former was higher than the latter, but the difference was not significant. GO/G1 proportion of 95–100% confluence was slightly higher than serum starving (80–90% confluence), but no significant difference. Therefore, the Siberian tiger fibroblasts we cultured in vitro can be used as donor cells, and the donor cells do not need to be treated with normal serum starvation during nuclear transfer; if we will just consider the rate of the G0/G1 stage cells, serum starvation can be replaced by confluence inhibition when cultured cells were more than 80–90% confluence.  相似文献   

3.
The cell cycle stage of donor cells is an important factor influencing developmental ability of nuclear transfer embryos. In the present experiment, cumulus and fibroblast cells of cattle were subjected to flow cytometric cell cycle analysis before being used in somatic cloning experiments. The following experimental groups were analyzed for each cell type: (1) actively dividing cells, (2) cells confluent for 4 days, (3) cells starved for 1, 2, 3 or 5 days. Using the propidium iodide flow cytometric assay, there were no significant differences (P > or = 0.05) in the percentage of cells in G0/G1 regardless of origin and type of cell, after confluency or serum starvation. Differences with the growing cells were found (P < or = 0.01). To determine what subset of cells in G0/G1 were in the G0 subphase of the cell cycle, an immunofluorescence analysis was conducted using monoclonal anti-PCNA antibodies in a FACS assay. There were not statistically significant differences in the percentage of cells that enter G0, between confluent and any starved group for either type of cells. Bovine fibroblast cells, confluent or serum starved for 3 days, were used in nuclear transfer experiments. A slight trend for a more desirable fusion rate in starved cells was detected, and embryo cleavage was greater in starved cells, however, in vitro development to blastocysts was similar between groups. Data indicate that prolonged culture of cells in the absence of serum does not imply a shift in the percentage of cells that enter G0/G1 or G0 alone, and that confluency is sufficient to induce quiescence. This finding can be beneficial in nuclear transfer programs, because there are negative effects such as apoptosis, associated with serum starvation.  相似文献   

4.
A number of studies have reported that donor cells consisting of serum starved cells, which are assumed to be at quiescence (G0), or non-starved confluent cells or mitotic cells obtained by shake-off, both of which are assumed to be at G1 phase, give better results in nuclear transfer (NT) than cells at other phases of the cell cycle. Whether G0 or G1 cells function better as donor cells is yet to be determined by detailed studies. The aims of this study were to analyze the cell cycle of goat transfected fibroblasts and determine the timing of transition from G0 to G1 by detecting G1-specific marker, cyclin D1 mRNA. Fluorescent-activated cell sorting (FACS) analyses of cells after 4 days of serum starvation showed that more that 90% of cells were in G0/G1. Additionally, detection of cyclin D1 mRNA by northern blot analysis showed that 4-day serum starved quiescent cells started entering G1 a few hours after addition of 10% serum to the medium. Taken together, the data indicated that serum starved transfected primary fibroblasts of adult goats experienced the G0 to G1 transition within 5 h of serum stimulation and were at the mid-G1 stage within 10 h of serum stimulation.  相似文献   

5.
Cell cycle analysis of cultured porcine mammary cells   总被引:5,自引:0,他引:5  
Prather RS  Boquest AC  Day BN 《Cloning》1999,1(1):17-24
One of the major points of debate in determining the effectiveness of nuclear transfer technology has been the phase of the cell cycle of the donor cell at the time of nuclear transfer. Here, a primary mammary cell line has been isolated and various treatments for synchronization of the cell cycle have been tested. The cells were then simultaneously stained for DNA content and protein content and the percentages of cells in G1, G0, S, and G2 + M were estimated. In the first experiment, cells were either cycling, grown to confluence, or serum-starved for 5 days. Serum starvation increased (p < 0.05) the percentage of cells in G0 compared to confluent or cycling cells from 3% to 8% to 22%. By using forward scatter to determine the size of the cells it was determined that if small cells (7-15 microm) were selected from the serum-starved group 43.9% will be in G(0) as compared to 4.5% of cycling cells and 9.9% of confluent cells. Dimethyl sulfoxide (DMSO) treatment (0%, 0.5%, or 1.0%) for 72 hours (shown to synchronize some cell types in G0) had no effect on the percentage of cells in G0, G1, S, or G2 + M. Treatment with mimosine (0 microM, 0.4 microM, 0.8 microM or 1.2 microM), a compound that should synchronize the cells in G1, increased (p < 0.05) the percentage of cells in G1 from 66.7% (0 microM mimosine) to 79.0% to 82.0%. Finally, treatment with colchicine for 24 hours (shown to synchronize some cell types in G2 + M) increased (p < 0.05) the percentage of cells in G2 + M (0 microM colchicine) from 13.3% to 27.2% to 31.6%. It is concluded that many cell cycle synchronization techniques are effective in porcine mammary cell lines, but none of the techniques are 100% effective. Such results should help elucidate the mechanisms involved in nuclear transfer.  相似文献   

6.
Yu YS  Sun XS  Jiang HN  Han Y  Zhao CB  Tan JH 《Theriogenology》2003,59(5-6):1277-1289
The effect of serum starvation and olomoucine treatment on the cell cycle and apoptosis of goat skin fibroblasts cultured in vitro is reported in this paper. The cells were obtained from the ear of a female goat 1.5 years of age. Analysis of cell cycle distribution by fluorescence-activated cell sorting (FACS) showed that 3.4, 60.8 and 15.1% of normally cycling cells were at G1, G0 and S phase, respectively. Serum starvation for 1, 3 and 5 days arrested 70.1, 70.2 and 83.4% cells, respectively, at G0/G1 phase. Seventy-eight percent of confluent cells were at G0/G1 stage, but in contrast to the serum starved group, this high percentage of G0/G1 cells was mainly associated with G1 cells. Of cells not deprived of serum, 73.6% were arrested at G1/G0 when treated with 100 microM olomoucine for 9 h compared to 85.5% of cells that had been starved of serum for 2 days (co-inhibition) (P<0.01). After co-inhibition, 45% of cells entered S phase when re-cultured in normal medium for 5 h, indicating that the inhibition was reversible. Under normal culture conditions, 1.2% of cells underwent apoptosis. Serum starvation for 1, 2, 3, 5 and 10 days caused apoptosis in 1.7, 3.9, 4.5, 11.7 and 90.3% of cells, respectively. Treatment with 100 microM olomoucine for 9h did not increase the number of apoptotic cells significantly (1.9%, P>0.05). When cells were co-inhibited, 4.1% of cells underwent apoptosis. In conclusion, although serum withdrawal for 5 days or more effectively arrested cells at G0/G1 stages, it increased apoptosis of cells significantly. However, co-inhibition by serum withdrawal and olomoucine treatment was found to be an appropriate treatment to obtain more healthy G0/G1 cells based on the low percentage of apoptotic cells after treatment.  相似文献   

7.
Nuclear transfer as originally developed for use in amphibians involved microinjecting a nucleus directly into the cytoplasm of the oocyte. A major mammalian modification has been to use cell fusion to introduce the nucleus. Here we report using a microinjection method to introduce small and medium sized fibroblast cells into mature oocytes. Small cells were more likely to result in nuclear formation (30%) than larger cells (15%; P = 0.013). Small, confluent and serum starved cells resulted in nuclear formation more often (P < 0.048) than did cycling cells. The rate of nuclear formation was not dependent upon the media, (NCSU-23 or TL-Hepes without calcium) nor upon the duration of exposure to the media (1 h to 4 h) after microinjection but before activation. While such treatments did not have an effect on nuclear formation, treatment of parthenogenetically activated oocytes with calcium-free TL-Hepes reduced the percentage of blastocysts (P = 0.068. 11.2% vs. 18.3%) and increased the percentage of morula stage embryos (P = 0.007; 27.6% vs. 15.7%) as compared with culture in NCSU. Finally, small confluent cells were used for nuclear transfer and resulted in two presumptive blastocyst stage embryos [2/128 injected or 2/38 (5.3%) successful injections]. These results show that presumptive blastocyst stage embryos can result from microinjection of fibroblast cells to enucleated oocytes and thus may provide a method to create transgenic knockout animals.  相似文献   

8.
Inhibition of apoptosis in serum starved porcine embryonic fibroblasts   总被引:2,自引:0,他引:2  
In nuclear transplantation, serum starvation is a general method to synchronize donor cells at the quiescent stage (G(0)) of the cell cycle. However, serum starvation during culture of mammalian cells may induce cell death, especially through apoptosis, thus contributing to the low efficiency of nuclear transplantation. This study was performed to characterize apoptosis during serum starvation and to determine the effects of apoptosis inhibitors such as a protease inhibitor [alpha(2)-macroglobulin (MAC)] and antioxidants [N-acetylcysteine (NAC), glutathione (GSH)] on serum starved porcine embryonic fibroblasts (PEF). PEF, collected from day 25-30 porcine fetuses, were cultured for 5 days in media containing 0.5% FBS to induce quiescence. Serum starved PEF showed typical morphology of apoptotic cells and stained for DNA fragmentation by TUNEL assay (26.7%). All apoptosis inhibitors tested in this study significantly (P < 0.05) reduced apoptosis of serum starved PEF, with antioxidants having better results (MAC: 7.4% vs. NAC: 1.0%, and GSH: 0.8%). Equally and importantly, the treatment with apoptosis inhibitors did not change the proportion of G(0)/G(1) stage cells. Therefore, the addition of MAC and antioxidants during serum starvation of PEF reduces apoptosis of quiescent fibroblasts and may contribute to increasing the efficiency of nuclear transplantation by improving the quality of donor nuclei.  相似文献   

9.
Mediated transport across the nuclear envelope was investigated in proliferating and growth-arrested (confluent or serum starved) BALB/c 3T3 cells by analyzing the nuclear uptake of nucleoplasmin-coated colloidal gold after injection into the cytoplasm. Compared with proliferating cells the nuclear uptake of large gold particles (110-270 A in diameter, including the protein coat) decreased 5.5-, 33-, and 78- fold, respectively, in 10-, 14-17-, and 21-d-old confluent cultures; however, the relative uptake of small particles (total diameter 50-80 A) did not decrease with increasing age of the cells. This finding suggests that essentially all pores remain functional in confluent populations, but that most pores lose their capacity to transport large particles. By injecting intermediate-sized gold particles, the functional diameters of the transport channels in the downgraded pores were estimated to be approximately to 130 and 110 A, in 14-17- and 21-d- old cultures, respectively. In proliferating cells, the transport channels have a functional diameter of approximately 230 A. The mean diameters of the pores (membrane-to-membrane distance) in proliferating and confluent cells (728 and 712 A, respectively) were significantly different at the 10%, but not the 5%, level. No differences in pore density (pore per unit length of membrane) were detected. Serum- deprived cells (7-8 d in 1% serum or 4 d in 0.5% serum) also showed a significant decrease in the nuclear uptake of large, but not small, gold particles. Thus, the permeability effects are not simply a function of high cell density but appear to be growth related. The possible functional significance of these findings is discussed.  相似文献   

10.
The knowledge of oocyte activation and somatic cell nuclear transfer in the swamp buffalo (Buballus bubalis) is extremely rare. The objectives of this study were the following: (1) to investigate the various activation treatments on the parthenogenetic development of buffalo oocytes, (2) to examine the events of nuclear remodeling and in the in vitro development of cloned buffalo embryos reconstructed with serum fed or starved fetal fibroblasts, and (3) to investigate the in vivo development of cloned embryos derived from serum fed or starved cells after transfer into the recipients. The rates of cleavage and blastocyst development were found to be significantly higher (P < 0.05) when the oocytes were activated by the combination treatment of calcium ionophore (A23187) or ethanol followed by 6-DMAP than those activated by electrical pulses and 6-DMAP or other single treatments. Flow cytometric analysis revealed that the percentage in the G0/G1 phase in serum starved cells was significantly (P < 0.05) higher than that in serum fed cells (88.8 +/- 6.2 vs. 68.2 +/- 2.6). At 1 h post fusion (hpf), most of the transferred nuclei (71%) from serum fed cells did not change in size, and the nuclear envelope remained intact, whereas 29% underwent NEBD and PCC. When serum starved cells were used, 83% of the transferred nuclei underwent NEBD and PCC whereas 17% remained intact. The nuclear swelling and pronucleus (PN) formation were observed at 2-4 and 12 h post activation (hpa), respectively. The remodeled nuclei underwent mitotic division and developed to the 2-cell stage within 18-24 hpa. Fifty-five percent of oocytes reconstructed with serum fed cells were 2PN and 45% were 1PN, whereas 79% of the embryos reconstructed from starved cells were 1PN and 21% were 2PN. The percentage of blastocyst development of the embryos derived from starved cells was higher than that from the serum fed cells (35% vs. 21%, P < 0.05). Pregnancy was detected after the transfer of cloned blastocysts into the recipients but no recipients supported the development to term. The results of this work can be used to establish effective activation protocols for buffalo oocytes which can be used during nuclear transfer experiments.  相似文献   

11.
The cell cycle stage of donor cells and the method of cell cycle synchronization are important factors influencing the success of somatic cell nuclear transfer. In this study, we examined the effects of serum starvation, culture to confluence, and treatment with chemical inhibitors (roscovitine, aphidicolin, and colchicine) on cell cycle characteristics of canine dermal fibroblast cells. The effect of the various methods of cell cycle synchronization was determined by flow cytometry. Short periods of serum starvation (24-72 h) increased (P<0.05) the proportion of cells at the G0/G1 phase (88.4-90.9%) as compared to the control group (73.6%). A similar increase in the percentage of G0/G1 (P<0.05) cells were obtained in the culture to confluency group (91.8%). Treatment with various concentrations of roscovitine did not increase the proportion of G0/G1 cells; conversely, at concentrations of 30 and 45 microM, it increased (P<0.05) the percentage of cells that underwent apoptosis. The use of aphidicolin led to increase percentages of cells at the S phase in a dose-dependent manner, without increasing apoptosis. Colchicine, at a concentration of 0.1 microg/mL, increased the proportion of cells at the G2/M phase (38.5%, P<0.05); conversely, it decreased the proportions of G0/G1 cells (51.4%, P<0.05). Concentrations of colchicines >0.1 microg/mL did not increase the percentage of G2/M phase cells. The effects of chemical inhibitors were fully reversible; their removal led to a rapid progression in the cell cycle. In conclusion, canine dermal fibroblasts were effectively synchronized at various stages of the cell cycle, which could have benefits for somatic cell nuclear transfer in this species.  相似文献   

12.
Several studies have shown that both quiescent and proliferating somatic donor cells can be fully reprogrammed after nuclear transfer (NT) and result in viable offspring. So far, however, no comparative study has conclusively demonstrated the relative importance of donor cell cycle stage on nuclear cloning efficiency. Here, we compare two different types of bovine fetal fibroblasts (BFFs) that were synchronized in G(0), G(1), and different phases within G(1). We show that for non-transgenic (non-TG) fibroblasts, serum starvation into G(0) results in a significantly higher percentage of viable calves at term than synchronization in early G(1) or late G(1). For transgenic fibroblasts, however, cells selected in G(1) show significantly higher development to calves at term and higher post-natal survival to weaning than cells in G(0). This suggests that it may be necessary to coordinate donor cell type and cell cycle stage to maximize overall cloning efficiency.  相似文献   

13.
The cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1), play an important role in the regulation of progression through G(1) to S phase in mammalian cells. Here we report that confluent 3T3 cells expressed p21(Cip1) and p27(Kip1) predominantly in the nucleus, and the level of both proteins declined as the cells entered the cell cycle and progressed through G(1) in response to serum growth factors. However, when confluent cells were serum starved prior to treatment, no downregulation of p21(Cip1) or p27(Kip1) expression was observed. Notably, serum starvation did not significantly influence the capacity of the cells to progress to the S phase. It was observed that serum starvation reduced cell density. Further, when cells were plated at a range of different densities, starved of serum to render them quiescent and then subsequently treated with serum, a reduction in p21(Cip1) and p27(Kip1) expression was observed in cells plated at high density but not in those at low density. Again, the extent and timing of progression to S phase was not influenced by cell density. To establish the potential role of cell:cell contact in the observed density-dependent regulation of p21(Cip1) and p27(Kip1) expression, cells were plated onto micorarrays of adhesive islands that prevented individual cells from making any contact with other cells. Under these conditions serum growth factors induced p21(Cip1) and p27(Kip1) downregulation, and hence, there is no requirement for cell:cell contact. Together, these data indicate that there are conditions under which 3T3 cells can progress to the S phase without downregulation of p21(Cip1) and p27(Kip1). The significance of these observations and mechanisms by which density-dependent regulation of p21(Cip1) and p27(Kip1) expression may occur are discussed.  相似文献   

14.
15.
In animal cloning, it is generally believed that the inactive diploid G(0)or G(1)stage of the cell cycle is beneficial to initiate cell-cycle coordination and reprogramming following transfer of the donor nucleus. Previous experiments have demonstrated that serum starvation results in quiescent cell stage. Some experiments show that the majority of cells in a fully confluent cell culture are also in an inactive G(1)stage.In order to provide more G(0)/G(1)stage cells for giant panda cloning, we carried out a flow cytometric analysis of the cell cycle of fibroblasts from the abdominal muscle of a giant panda at different passage numbers under different growth conditions, and after different periods of serum starvation. The percentage of G(0)+G(1)stage cells differed significantly under different growth conditions. Serum starvation effectively increased the percentage of G(0)+G(1)stage cells, and the cell cycle characteristics following serum starvation for varying periods of time differed with this and the initial confluency of the cultures. The data should help in choosing the optimal stage for preparing donor cells as well as increasing the potential cloning efficiency in our study of giant panda cloning.  相似文献   

16.
The in vitro development of porcine nuclear transfer embryos constructed using primary cultures from day 25 fetal fibroblasts which were either rapidly dividing (cycling) or had their cell-cycle synchronized in G0/G1 using serum starvation (serum-starved) was examined. Oocyte-karyoplast complexes were fused and activated simultaneously and then cultured in vitro for seven days to assess development. Fusion rates were not different for either cell population. The proportion of reconstructed embryos that cleaved was higher in the cycling group compared to the serum-starved group (79 vs. 56% respectively; P < 0.05). Development to the 4-cell stage was not different using either population. Both treatments supported similar rates of development to the morula (1.5 vs. 7%, cycling vs. serum-starved) and blastocyst stage (1.5 vs. 3%, cycling vs. serum-starved). The blastocyst produced using cycling cells had a total cell number of 10. Total cell numbers for the three blastocysts produced serum-starved cells were 22, 24, and 33. These blastocysts had inner cell mass numbers of 0, 15, and 4, respectively. Six hundred and thirty-five nuclear transfer embryos reconstructed using serum-starved cells were transferred to 15 temporarily mated recipients for 3-4 days. Of these, 486 were recovered (77% recovery rate) of which 106 (22%) had developed to the 4-cell stage or later. These were transferred to a total of 15 recipients which were either unmated or mated. Seven recipients farrowed a total of 51 piglets. Microsatellite analysis revealed that none of these were derived from the nuclear transfer embryos transferred.  相似文献   

17.
18.
Bright nucleolar immunofluorescence was observed in HeLa S3 cells by immunostaining with a monoclonal antibody to the nucleolar phosphoprotein B23 (MW 37 kD/pI 5.1). After 48 h of incubation in a serum-free medium, the nucleolar fluorescence was diminished and a general nuclear immunofluorescence was observed. This change in localization of fluorescence indicated that protein B23 had migrated out of the nucleoli. No gross morphological change in nucleoli was observed by light microscopy and the immunolocalization of another nucleolar phosphoprotein, C23, was unaffected by serum deprivation. Relocation of protein B23 in nucleoli was observed after refeeding with serum-containing medium. This re-entry process was not observed after treatment with actinomycin D (50 ng/ml-5 micrograms/ml), but the process was unaffected by cycloheximide (0.2 mM). Quantitation of protein B23 in the nucleoli of the control (fed) or starved HeLa cells was done by ELISA immunoassay. A marked decrease in the amount of protein B23 occurred in the nucleoli of the starved cells (11.8 micrograms B23/mgDNA) as compared with the control nucleoli (20.8 micrograms B23/mgDNA). The amount of protein B23 in the nucleoplasm (excluding nucleoli) was 70% higher in the starved cells. Protein B23 was analysed by one- and two-dimensional PAGE. Three components of protein B23 with slightly different molecular weights and pIs (37 kD/5.1, 35 kD/5.1 and 35 kD/5.3) were observed in nucleoli. The lower molecular weight components were predominantly found in the nucleoplasm.  相似文献   

19.
The success of somatic cell nuclear transfer depends critically on the cell cycle stage of the donor nucleus and the recipient cytoplast. Karyoplasts in the G0 or G1 stages are considered to be the most suitable for nuclear transfer. In the present study, we used a reversible cell cycle inhibitor, mimosine, to synchronize porcine granulosa cells (GCs) in G1 phase of the cell cycle. Porcine GCs were obtained from 3 to 5mm ovarian follicles of slaughtered gilts. The effect of mimosine on the proliferation, DNA synthesis and cell cycle stage of cultured cells was examined by incorporation of radiochemical 3H-thymidine, immunocytochemical detection of incorporated thymidine analogue 5-bromo-2-deoxyuridine (BrdU) and flow cytometry analyses. Mimosine treatment of pig GCs for 24h resulted in proliferation arrest in vitro. Treatment with 0.5mM mimosine significantly (P<0.05) inhibited 3H-thymidine incorporation after 24h of culture (4.6% +/- 0.1) and after 24h of culture in serum deprived medium (41.3% +/- 3.8), in comparison to controls (100%). Inhibition of DNA synthesis was further confirmed by immunocytochemical and flow cytometry analyses. Compared with controls (78.2%), mimosine treatment for 24h increased the proportion of G0/G1 cells in the culture (85.7%) more effectively than serum starvation (SS; 81.2%). Mimosine-caused G1 arrest of porcine GCs was fully reversible and cells continued to proliferate after removing the drug, especially when they were stimulated by EGF.  相似文献   

20.
Flow cytometric cell cycle analysis of cultured porcine fetal fibroblast cells   总被引:14,自引:0,他引:14  
Normal development of nuclear transfer embryos is thought to be dependent on transferral of nuclei in G0 or G1 phases of the cell cycle. Therefore, we investigated the cell cycle characteristics of porcine fetal fibroblast cells cultured under a variety of cell cycle-arresting treatments. This was achieved by using flow cytometry to simultaneously measure cellular DNA and protein content, enabling the calculation of percentages of cells in G0, G1, S, and G2+M phases of the cell cycle. Cultures that were serum starved for 5 days contained higher (p < 0.05) percentages of G0+G1 (87.5 +/- 0. 7) and G0 cells alone (48.3 +/- 9.7) compared with rapidly cycling cultures (G0+G1: 74.1 +/- 3.0; G0: 2.8 +/- 1.2). Growth to confluency increased (p < 0.05) G0+G1 percentages (85.1 +/- 2.8) but did not increase G0 percentages (6.0 +/- 5.3) compared to those in cycling cultures. Separate assessment of small-, medium-, and large-sized cells showed that as the cell size decreased from large to small, percentages of cells in G0+G1 and G0 alone increased (p < 0.05). We found 95.2 +/- 0.3% and 72.2 +/- 12.0% of small serum-starved cells in G0+G1 and G0 alone, respectively. Cultures were also treated with cell cycle inhibitors. Treatment with dimethyl sulfoxide (1%) or colchicine (0.5 microM) increased percentages of cells in G0 (24.8 +/- 20.0) or G2+M (37.4 +/- 4.6), respectively. However, cells were only slightly responsive to mimosine treatment. A more complete understanding of the cell cycle of donor cells should lead to improvements in the efficiency of nuclear transfer procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号