首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Superoxide reductases (SORs) contain a novel square pyramidal ferrous [Fe(NHis)(4)(SCys)] site that rapidly reduces superoxide to hydrogen peroxide. Here we report extensive pulse radiolysis studies on recombinant two-iron SOR (2Fe-SOR) from Desulfovibrio vulgaris. The results support and elaborate on our originally proposed scheme for reaction of the [Fe(NHis)(4)(SCys)] site with superoxide [Coulter, E. D., Emerson, J. E., Kurtz, D. M., Jr., and Cabelli, D. E. (2000) J. Am. Chem. Soc. 122, 11555-11556]. This scheme consists of second-order diffusion-controlled formation of an intermediate absorbing at approximately 600 nm, formulated as a ferric-(hydro)peroxo species, and its decay to the carboxylate-ligated ferric [Fe(NHis)(4)(SCys)] site with loss of hydrogen peroxide. The second-order rate constant for formation of the 600-nm intermediate is essentially pH-independent (pH 5-9.5), shows no D(2)O solvent isotope effect at pH 7.7, and decreases with increasing ionic strength. These data indicate that formation of the intermediate does not involve a rate-determining protonation, and are consistent with interaction of the incoming superoxide anion with a positive charge at or near the ferrous [Fe(NHis)(4)(SCys)] site. The rate constant for decay of the 600-nm intermediate follows the pH-dependent rate law: k(2)(obs) = k(2)'[H(+)] + k(2)' ' and shows a significant D(2)O solvent isotope effect at pH 7.7. The values of k(2)' and k(2)' ' indicate that the 600-nm intermediate decays via diffusion-controlled protonation at acidic pHs and a first-order process involving either water or a water-exchangeable proton on the protein at basic pHs. The formation and decay rate constants for an E47A variant of 2Fe-SOR are not significantly perturbed from their wild-type values, indicating that the conserved glutamate carboxylate does not directly displace the (hydro)peroxo ligand of the intermediate at basic pHs. The kinetics of a K48A variant are consistent with participation of the lysyl side chain in directing the superoxide toward the active site and in directing the protonation pathway of the ferric-(hydro)peroxo intermediate toward release of hydrogen peroxide.  相似文献   

2.
Superoxide reductase is a novel class of non-heme iron proteins that catalyzes the one-electron reduction of O(2)(.) to H(2)O(2), providing an antioxidant defense in some bacteria. Its active site consists of an unusual non-heme Fe(2+) center in a [His(4) Cys(1)] square pyramidal pentacoordination. In this class of enzyme, the cysteine axial ligand has been hypothesized to be an essential feature in the reactivity of the enzyme. Previous Fourier transform infrared spectroscopy studies on the enzyme from Desulfoarculus baarsii revealed that a protonated carboxylate group, proposed to be the side chain of Glu(114), is in interaction with the cysteine ligand. In this work, using pulse radiolysis, Fourier transform infrared, and resonance Raman spectroscopies, we have investigated to what extent the presence of this Glu(114) carboxylic lateral chain affects the strength of the S-Fe bond and the reaction of the iron active site with superoxide. The E114A mutant shows significantly modified pulse radiolysis kinetics for the protonation process of the first reaction intermediate. Resonance Raman spectroscopy demonstrates that the E114A mutation results in both a strengthening of the S-Fe bond and an increase in the extent of freeze-trapping of a Fe-peroxo species after treatment with H(2)O(2) by a specific strengthening of the Fe-O bond. A fine tuning of the strength of the S-Fe bond by the presence of Glu(114) appears to be an essential factor for both the strength of the Fe-O bond and the pK(a) value of the Fe(3+)-peroxo intermediate species to form the reaction product H(2)O(2).  相似文献   

3.
We have utilized a commercially available, computer-driven stopped-flow spectrophotometer to rapidly measure the self-dismutation or catalyzed decay of superoxide in aqueous buffers. In the self-dismutation assay, a dimethyl sulfoxide solution of superoxide is mixed in less than 2 ms with an aqueous buffer. The decay of superoxide is monitored directly by its absorbance at 245 nm and the data is processed by computer. By careful purification of the water and the use of metal-free buffers, a decay of superoxide that fits second-order kinetics is obtained without using metal ion chelators in the buffer. The second-order rate constant for superoxide decreased with increasing pH and decreased by a factor of 3.3 by using D2O in place of H2O in the buffer. The rapid mixing time makes it possible to determine rate constants for active superoxide dismutase catalysts at a pH as low as 7. A first-order decay of superoxide is obtained when the aqueous buffer contains bovine Cu/Zn superoxide dismutase or aquo copper(II), which are known catalysts of superoxide dismutation. The rate of superoxide decay was established to be first-order in catalyst. The catalytic rate constant for bovine Cu/Zn superoxide dismutase was determined to be 2.3 x 10(9) M-1 s-1 in H2O and D2O-based buffers and was independent of pH over the range 7-9. Aquo copper(II) gave a catalytic rate constant of 1.2 x 10(8) M-1 s-1, but was ineffective in the presence of EDTA. The catalytic rate constants obtained by stopped-flow kinetics are in excellent agreement with studies carried out by the direct method of pulse radiolysis.  相似文献   

4.
Manganese superoxide dismutase (MnSOD) cycles between the Mn(II) and Mn(III) states during the catalyzed disproportionation of O(2)(*-), a catalysis that is limited at micromolar levels of superoxide by a peroxide-inhibited complex with the metal. We have investigated the role in catalysis and inhibition of the conserved residue Trp161 which forms a hydrophobic side of the active site cavity of MnSOD. Crystal structures of mutants of human MnSOD in which Trp161 was replaced with Ala or Phe showed significant conformational changes on adjacent residues near the active site, particularly Gln143 and Tyr34 which in wild-type MnSOD participate in a hydrogen bond network believed to support proton transfer during catalysis. Using pulse radiolysis and observing the UV absorbance of superoxide, we have determined rate constants for the catalytic dismutation of superoxide. In addition, the rates of formation and dissociation of the product-inhibited complex of these mutants were determined by direct observation of the characteristic visible absorption of the oxidized and inhibited states. Catalysis by W161A and W161F MnSOD was associated with a decrease of at least 100-fold in the catalytic rate of reduction of superoxide, which then promotes a competing pathway leading to product inhibition. The structural changes caused by the mutations at position 161 led to small changes, at most a 6-fold decrease, in the rate constant for formation of the inhibited complex. Solvent hydrogen isotope effects support a mechanism in which formation of this complex, presumably the peroxide dianion bound to the manganese, involves no rate-contributing proton transfer; however, the dissociation of the complex requires proton transfer to generate HO(2)(-) or H2O2.  相似文献   

5.
Q Su  J P Klinman 《Biochemistry》1999,38(26):8572-8581
Glucose oxidase catalyzes the oxidation of glucose by molecular dioxygen, forming gluconolactone and hydrogen peroxide. A series of probes have been applied to investigate the activation of dioxygen in the oxidative half-reaction, including pH dependence, viscosity effects, 18O isotope effects, and solvent isotope effects on the kinetic parameter Vmax/Km(O2). The pH profile of Vmax/Km(O2) exhibits a pKa of 7.9 +/- 0.1, with the protonated enzyme form more reactive by 2 orders of magnitude. The effect of viscosogen on Vmax/Km(O2) reveals the surprising fact that the faster reaction at low pH (1.6 x 10(6) M-1 s-1) is actually less diffusion-controlled than the slow reaction at high pH (1.4 x 10(4) M-1 s-1); dioxygen reduction is almost fully diffusion-controlled at pH 9.8, while the extent of diffusion control decreases to 88% at pH 9.0 and 32% at pH 5.0, suggesting a transition of the first irreversible step from dioxygen binding at high pH to a later step at low pH. The puzzle is resolved by 18O isotope effects. 18(Vmax/Km) has been determined to be 1.028 +/- 0.002 at pH 5.0 and 1.027 +/- 0.001 at pH 9.0, indicating that a significant O-O bond order decrease accompanies the steps from dioxygen binding up to the first irreversible step at either pH. The results at high pH lead to an unequivocal mechanism; the rate-limiting step in Vmax/Km(O2) for the deprotonated enzyme is the first electron transfer from the reduced flavin to dioxygen, and this step accompanies binding of molecular dioxygen to the active site. In combination with the published structural data, a model is presented in which a protonated active site histidine at low pH accelerates the second-order rate constant for one electron transfer to dioxygen through electrostatic stabilization of the superoxide anion intermediate. Consistent with the proposed mechanisms for both high and low pH, solvent isotope effects indicate that proton transfer steps occur after the rate-limiting step(s). Kinetic simulations show that the model that is presented, although apparently in conflict with previous models for glucose oxidase, is in good agreement with previously published kinetic data for glucose oxidase. A role for electrostatic stabilization of the superoxide anion intermediate, as a general catalytic strategy in dioxygen-utilizing enzymes, is discussed.  相似文献   

6.
Fe-containing superoxide dismutase's active site Fe is coordinated by a solvent molecule, whose protonation state is coupled to the Fe oxidation state. Thus, we have proposed that H-bonding between glutamine 69 and this solvent molecule can strongly influence the redox activity of the Fe in superoxide dismutase (SOD). We show here that mutation of this Gln to His subtly alters the active site structure but preserves 30% activity. In contrast, mutation to Glu otherwise preserves the active site structure but inactivates the enzyme. Thus, enzyme function correlates not with atom positions but with residue identity (chemistry), in this case. We observe strong destabilization of the Q69E-FeSOD oxidized state relative to the reduced state and intermediate destabilization of oxidized Q69H-FeSOD. Indeed, redox titrations indicate that mutation of Gln69 to His increases the reduction potential by 240 mV, whereas mutation to Glu appears to increase it by more than 660 mV. We find that this suffices to explain the mutants' loss of activity, although additional factors may also contribute. The strongly elevated reduction potential of Q69E-FeSOD may reflect reorganization of the active site H-bonding network, including possible reversal of the polarity of the key H-bond between residue 69 and coordinated solvent.  相似文献   

7.
Superoxide reductase SOR is an enzyme involved in superoxide detoxification in some microorganisms. Its active site consists of a non-heme ferrous center in an unusual [Fe(NHis)4 (SCys)1] square pyramidal pentacoordination that efficiently reduces superoxide into hydrogen peroxide. In previous works, the reaction mechanism of the SOR from Desulfoarculus baarsii enzyme, studied by pulse radiolysis, was shown to involve the formation of two reaction intermediates T1 and T2. However, the absorption spectrum of T2 was reported with an unusual sharp band at 625 nm, very different from that reported for other SORs. In this work, we show that the sharp band at 625 nm observed by pulse radiolysis reflects the presence of photochemical processes that occurs at the level of the transient species formed during the reaction of SOR with superoxide. These processes do not change the stoichiometry of the global reaction. These data highlight remarkable photochemical properties for these reaction intermediates, not previously suspected for iron-peroxide species formed in the SOR active site. We have reinvestigated the reaction mechanism of the SOR from D. baarsii by pulse radiolysis in the absence of these photochemical processes. The T1 and T2 intermediates now appear to have absorption spectra similar to those reported for the Archaeoglobus fulgidus SOR enzymes. Although for some enzymes of the family only one transient was reported, on the whole, the reaction mechanisms of the different SORs studied so far seem very similar, which is in agreement with the strong sequence and structure homologies of their active sites.  相似文献   

8.
Catalysis by Escherichia coli and Porphyromonas gingivalis iron superoxide dismutase was activated by addition of primary amines, as measured by pulse radiolysis and stopped-flow spectrophotometry. This activation was saturable for most amines investigated, and a free energy plot of the apparent second-order rate constant of activation was linear as a function of the pK(a) of the amine, indicating activation by proton transfer. Amines provide an alternate rather than the only pathway for proton transfer, and catalysis was appreciable in the absence of amines. Solvent hydrogen isotope effects were near unity for amine activation, which is consistent with rate-contributing proton transfer if the pK(a) of the proton acceptor on the enzyme is not in the region of the pK(a) values of the amines studied, from 7.8 to 10.6. The activation of catalysis by these amines was uncompetitive with respect to superoxide, interpreted as proton transfer in a ternary complex of amine with the enzyme-bound peroxide dianion.  相似文献   

9.
Martin SF  Hergenrother PJ 《Biochemistry》1999,38(14):4403-4408
The phosphatidylcholine-preferring phospholipase C from Bacillus cereus (PLCBc) is a 28.5 kDa enzyme with three zinc ions in its active site. Although much is known about the roles that various PLCBc active site amino acids play in binding and catalysis, there is little information about the rate-determining step of the PLCBc-catalyzed hydrolysis of phospholipids and the catalytic cycle of the enzyme. To gain insight into these aspects of the hydrolysis, solvent viscosity variation experiments were conducted to determine whether an external step (substrate binding or product release) or an internal step (hydrolysis) is rate-limiting. The data indicate that the PLCBc-catalyzed reaction is unaffected by changes in solvent viscosity. This observation is inconsistent with the notion of substrate binding or product release being rate-determining and supports the hypothesis that a chemical step is rate-limiting. Furthermore, a deuterium isotope effect of 1.9 and a linear proton inventory plot indicate one proton is transferred in the rate-determining step. These data may be used to formulate a comprehensive catalytic cycle that is for the first time based on experimental evidence. In this mechanism, Asp55 of PLCBc activates an active site water molecule for attack on the phosphodiester bond, the hydrolysis of which is rate-limiting. The phosphorylcholine product is the first to leave the active site, followed by diacylglycerol.  相似文献   

10.
The catalytic activity of a mutant of Photobacterium leiognathi Cu, Zn superoxide dismutase in which the Glu59 residue, conserved in most bacterial variants of the enzyme, has been replaced by glutamine was investigated by pulse radiolysis. At neutral pH the enzyme was found to have a kcat/KM of 1.0 +/- 0.1 x 10(10) M-1s-1 the highest value ever found for any superoxide dismutase. Brownian dynamics simulation suggests that such a high value is due to an enhanced substrate attraction by the modified electric field distribution. The mutant is also characterized by an active-site widely accessible for the solvent, since iodide is able to interact with the copper atom with an affinity constant twice as high as that found in the native enzyme. The large solvent accessible surface of the copper site together with a favorable distribution of the protein-generated electric field gives rise to the most efficient enzyme ever found with activity close to the diffusion limit.  相似文献   

11.
From pulse radiolysis measurements in oxygenated aqueous solution, the semioxidized tryptophan radical (Trp·— formed by the one-electron oxidation of Trp by Br2- radical—has been shown to oxidize the superoxide radical anion with a rate constant of k = 2 × 109 M−1 s−1. Proof of this reaction is found in addition of superoxide dismutase (SOD) to the system, which totally eliminates the contribution of the Trp· + O2- mechanism to Trp· decay. Little, if any, reaction of molecular oxygen with Trp· may be observed on the time scale of the pulse radiolysis experiment.  相似文献   

12.
Superoxide reductases (SORs) are small metalloenzymes, which catalyze reduction of O2*- to H2O2. The reaction of the enzyme from Treponema pallidum with superoxide was studied by pulse radiolysis methods. The first step is an extremely fast bi-molecular reaction of the ferrous center with O2, with a rate constant of 6 x 10 (8) M(-1) s(-1). A first intermediate is formed which is converted to a second one with a slower rate constant of 4800 s(-1). This latter value is 10 times higher than the corresponding one previously reported in the case of SOR from Desulfoarculus baarsii. The reconstituted spectra for the two intermediates are consistent with formation of transient iron-peroxide species.  相似文献   

13.
Superoxide reductase (SOR) is a metalloenzyme that catalyzes the reduction of O2*- to H2O2 and provides an antioxidant mechanism in some anaerobic and microaerophilic bacteria. Its active site contains an unusual mononuclear ferrous center (center II). Protonation processes are essential for the reaction catalyzed by SOR, since two protons are required for the formation of H2O2. We have investigated the acido-basic and pH dependence of the redox properties of the active site of SOR from Desulfoarculus baarsii, both in the absence and in the presence of O2*-. In the absence of O2*-, the reduction potential and the absorption spectrum of the iron center II exhibit a pH transition. This is consistent with the presence of a base (BH) in close proximity to the iron center which modulates its reduction properties. Studies of mutants of the closest charged residues to the iron center II (E47A and K48I) show that neither of these residues are the base responsible for the pH transitions. However, they both interact with this base and modulate its pKa value. By pulse radiolysis, we confirm that the reaction of SOR with O2*- involves two reaction intermediates that were characterized by their absorption spectra. The precise step of the catalytic cycle in which one protonation takes place was identified. The formation of the first reaction intermediate, from a bimolecular reaction of SOR with O2*-, does not involve proton transfer as a rate-limiting step, since the rate constant k1 does not vary between pH 5 and pH 9.5. On the other hand, the rate constant k2 for the formation of the second reaction intermediate is proportional to the H+ concentration in solution, suggesting that the proton arises directly from the solvent. In fact, BH, E47, and K48 have no role in this step. This is consistent with the first intermediate being an iron(III)-peroxo species and the second one being an iron(III)-hydroperoxo species. We propose that BH may be involved in the second protonation process corresponding to the release of H2O2 from the iron(III)-hydroperoxo species.  相似文献   

14.
The enzymic reaction mechanism of a manganese-containing superoxide dismutase from Bacillus stearothermophilus was studied by using pulse radiolysis. During catalysis (pH 8.9; 25 degrees C), changes occurring in the kinetics of substrate disappearance and in the visible absorption of the enzyme at 480 nm established that the simple two-step mechanism found for copper- and iron-containing superoxide dismutases is not involved. At a low ratio (less than 15) of substrate concentration to enzyme concentration the decay of O2--is close to exponetial, whereas at much higher ratios (greater than 100) the observed decay is predominantly zero-order. The simplest interpretation of the results invokes a rapid one-electron oxidation-reduction cycle ('the fast cycle') and, concurrently, a slower reaction giving a form of the enzyme that is essentially unreactive towards O2-- but which undergoes a first-order decay to yield fully active native enzyme ('the slow cycle'). The fast cycle involves the native enzyme EA and a form of the enzyme EB which can be obtained also by treating the form EA with H2O2. Computer calculations made with such a simple model predict behaviour in excellent agreement with the observed results.  相似文献   

15.
Using UV absorption spectroscopy, first derivative spectroscopy, and UV difference spectroscopy, the active site of human superoxide dismutase is probed. First derivative spectra (dA/d lambda versus lambda) show the HESOD spectrum to be a composite of Phe and Trp absorbance. The 278 and 288 nm Trp absorbance peaks are sensitive to solvent polarity. A 5-10% decrease in these peaks accompanies copper removal from the active site indicating greater solvent access to Trp in the apoenzyme than the holoenzyme. A Trp UV difference peak at 305-310 nm documents the presence or absence of copper at the active site, and documents also the movement of a nonbridging copper-binding His (His 46 or 120) when HESOD is inhibited by azide or when the copper moiety is reduced. Trp absorbances indicate that neither cyanide nor KCl inhibition affects the Cu(II)-His bonds. Phe UV absorbance is increased by the presence of copper at the active site and increased further by the addition of cyanide or azide. Neither Trp nor Phe responds to the presence of zinc in the active site. A molecular graphics program, FRODO, shows Trp and the four Phe residues lying in an approximate ring around the active site of HESOD and thus excellently placed to report on active site perturbations.  相似文献   

16.
We have used a new approach to the dynamics of hydrolytic metalloenzyme catalysis based on investigations of both external solvent viscosity effects and kinetic 2H isotope effects. The former reflects solvent and protein dynamics, and the nuclear reorganization distribution among damped protein motion and intramolecular friction-free nuclear motion. The isotope effect represents proton tunnelling and reorganization in the hydrogen bond network around the active site. We illustrate the approach by new spectrophotometric and pH-titration data for carboxypeptidase-A-catalyzed benzoylglycyl-L-phenyllactate hydrolysis. This substrate exhibits both a significant inverse fractional power law viscosity dependence over wide ranges controlled by glycerol and sucrose, and a kinetic 2H isotope effect of 1.65. The analogous benzoylglycylphenylalanine hydrolysis has a smaller isotope effect (1.3) and no viscosity dependence. Viscosity variation has no effect on the CD spectra in the 180-240-nm range. In terms of stochastic chemical rate theory, the data correspond to an enzyme-peptide substrate complex with a 'tight' structure protected from the solvent. In comparison, the enzyme-ester substrate complex is 'softer', strongly coupled to the solvent, and the rate-determining step is accompanied by proton transfer or by substantial reorganization in the hydrogen bonds near the active site.  相似文献   

17.
The Fenton or Fenton-type reaction between aqueous ferrous ion and hydrogen peroxide generates a highly oxidizing species, most often formulated as hydroxyl radical or ferryl ([Fe(IV)O](2+)). Intracellular Fenton-type chemistry can be lethal if not controlled. Nature has, therefore, evolved enzymes to scavenge superoxide and hydrogen peroxide, the reduced dioxygen species that initiate intracellular Fenton-type chemistry. Two such enzymes found predominantly in air-sensitive bacteria and archaea, superoxide reductase (SOR) and rubrerythrin (Rbr), functioning as a peroxidase (hydrogen peroxide reductase), contain non-heme iron. The iron coordination spheres in these enzymes contain five or six protein ligands from His and Glu residues, and, in the case of SOR, a Cys residue. SOR contains a mononuclear active site that is designed to protonate and rapidly expel peroxide generated as a product of the enzymatic reaction. The ferrous SOR reacts adventitiously but relatively slowly (several seconds to a few minutes) with exogenous hydrogen peroxide, presumably in a Fenton-type reaction. The diferrous active site of Rbr reacts more rapidly with hydrogen peroxide but can divert Fenton-type reactions towards the two-electron reduction of hydrogen peroxide to water. Proximal aromatic residues may function as radical sinks for Fenton-generated oxidants. Fenton-initiated damage to these iron active sites may become apparent only under extremely oxidizing intracellular conditions.  相似文献   

18.
Addition of azide fully restored the proton pump activity of defective bacteriorhodopsin (BR) mutant protein Asp96----Asn. The decay time of M of BR Asp96----Asn, the longest living intermediate, was decreased from 500 ms at pH 7.0 to approximately 1 ms under conditions of saturating azide concentrations. This decay was faster than the decay of M in the wild-type, where no such azide effect was detectable. Stationary photocurrents, measured with purple membranes immobilized and oriented in a polyacrylamide gel, increased upon addition of azide up to the level of the wild-type. Different small anions of weak acids restored the pump activity with decreasing affinity in the order: cyanate greater than azide greater than nitrite greater than formiate greater than acetate. The activation energy of the M decay in the mutant was higher in the presence (48 kJ/mol) than in the absence (27 kJ/mol) of 100 mM azide even though the absolute rate was dramatically increased by azide. This effect of azide is due to the substitution of a carboxamido group for a carboxylic group at position 96 which removes the internal proton donor and causes an increase in the entropy change of activation for proton transfer which is reversed by azide.  相似文献   

19.
The redox-induced structural changes at the active site of the superoxide reductase (SOR) from Desulfoarculus baarsii and Treponema pallidum have been monitored by means of FTIR difference spectroscopy coupled to electrochemistry. With this technique, the structure and interactions formed by individual amino acids at a redox site can be detected. The infrared data on wild-type, Glu47Ala, and Lys48Ile mutants of the SOR from D. baarsii provide experimental support for the conclusion that the two different coordination motifs observed in the three-dimensional structure of the SOR from Pyrococcus furiosus [Yeh, A. P., Hu, Y., Jenney, F. E., Adams, M. W. W., and Rees, D. (2000) Biochemistry 39, 2499-2508] correspond to the two redox forms of the SOR iron center. We extend this result to the center II iron of SOR of the desulfoferrodoxin type. Similar structural changes are also observed upon iron oxidation in the SOR of T. pallidum. In D. baarsii, the IR modes of the Glu47 side chain support that it provides a monodentate ligand to the oxidized iron, while it does not interact with Fe(2+). Structural changes at the level of peptide bond(s) observed upon iron oxidation in wild-type are suppressed in the Glu47Ala mutant. We propose that the presence of the Glu side chain plays an important role for the structural reorganization accompanying iron oxidation. We identified the infrared modes of the Lys48 side chain and found that a change in its environment occurs upon iron oxidation. The lack of other structural changes upon the Lys48Ile mutation shows that the catalytic role of Lys, as evidenced by pulse radiolysis experiments [Lombard, M., Houée-Levin, C., Touati, D., Fontecave, M., and Nivière, V. (2001) Biochemistry 40, 5032-5040], is purely electrostatic, guiding superoxide toward the reduced iron.  相似文献   

20.
Catalysis of the disproportionation of superoxide by human manganese superoxide dismutase (MnSOD) is characterized by an initial burst of catalysis followed by a much slower region that is zero order in superoxide and due to a product inhibition by peroxide anion. We have prepared site-specific mutants with replacements at His30, the side chain of which lies along the substrate access channel and is about 5.8 A from the metal. Using pulse radiolysis to generate superoxide, we have determined that kcat/K(m) was decreased and product inhibition increased for H30V MnSOD, both by 1-2 orders of magnitude, compared with wild type, H30N, and H30Q MnSOD. These effects are not attributed to the redox potentials, which are similar for all of these variants. An investigation of the crystal structure of H30V Mn(III)SOD compared with wild type, H30Q, and H30N Mn(III)SOD showed the positions of two gamma carbons of Val30 in the active site; Cgamma1 overlaps Cgamma of His30 in wild type, and Cgamma2 extends into the substrate access channel and occupies the approximate position of a water molecule in the wild type. The data suggest that Cgamma2 of the Val side chain has significantly interrupted catalysis by this overlap into the access channel with possible overlap with the substrate-product binding site. This is supported by comparison of the crystal structure of H30V MnSOD with that of azide bound to Mn(III)SOD from Thermus thermophilus and by visible absorption spectra showing that azide binding to the metal in H30V Mn(III)SOD is abolished. Moreover, the presence of Val30 caused a 100-fold decrease in the rate constant for dissociation of the product-inhibited complex compared with wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号