首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
低氧放疗中低氧对癌症病的血液流变学影响   总被引:1,自引:0,他引:1  
低氧放疗中低氧对癌症病的血液流变学影响孙朝阳梁军马世平王志祥(第四军医大学西京医院,西安710032)低氧放射疗法是在急性缺氧条件下放射治疗癌症的一种新方法。该方法既能保护正常组织,减轻放射反应,还可增强机体免疫力和提高疗效。我们根据部分重复呼吸原理...  相似文献   

2.
近年来,频域分析法开始应用于呼吸气体交换动力学的研究中。由于伪随机二序试验(pseudorandom binary sequence test,PRBST)可以在一次试验中同时测定呼吸气体交换的不同频率反应,因此格外受到重视。本实验采用PRBST的时域和频域分析法,研究了吸入低氧混合气对耗氧量动力学的影响。  相似文献   

3.
目的:研究慢性间断低氧暴露对大鼠心肌线粒体Na 、K -ATPase和Ca2 、Mg2 -ATPase以及呼吸链酶复合物Ⅰ、Ⅱ、Ⅲ、Ⅳ活性的影响.方法:经慢性间断低氧暴露(模拟海拔3 000 m、5 000 m分别低氧,每天4 h,共2周,最后8 000 m低氧4 h)和急性低氧(模拟海拔8 000 m低氧4 h)的大鼠,断头处死,迅速取出心脏,分离心肌线粒体,用水解磷酸根法测定ATP酶活性,用Clark氧电极法测定呼吸链酶复合物的活性.结果:①慢性间断低氧暴露对大鼠心肌线粒体Na 、K -ATPase的活性无明显影响.②急性低氧大鼠心肌线粒体Ca2 、Mg2 -ATPase的活性较正常大鼠显著降低,而慢性间断低氧暴露大鼠心肌线粒体Ca2 、Mg2 -ATPase的活性则明显升高,接近正常水平.③急性低氧大鼠心肌线粒体呼吸链酶复合物I(NADH-CoQ还原酶)、复合物Ⅱ(琥珀酸-CoQ还原酶)、复合物IV(细胞色素氧化酶)活性较正常大鼠显著降低,而经慢性间断低氧暴露后,三者的活性均显著提高.相同实验条件下,低氧对复合物Ⅲ(CoQ-细胞色素C还原酶)活性无明显影响.结论:慢性间断低氧暴露可以显著提高心肌线粒体Ca2 、Mg2 -ATPase和呼吸链酶复合物Ⅰ、Ⅱ、Ⅳ的活性,从而改善低氧时心肌线粒体呼吸链的功能,维持心肌正常能量代谢,最终提高心肌收缩和舒张功能.  相似文献   

4.
目的: 观察急性间歇性低氧刺激后大鼠颈动脉体对低氧的敏感性以及多巴胺对颈动脉体低氧敏感性的影响。方法: 将分离SD大鼠的颈动脉体-窦神经移入到孵育槽,然后把分离的窦神经吸入到记录的玻璃电极中行电信号记录。记录基线部分缓冲液充入气体为95% O2+ 5% CO2混合气,低氧应激给予5% O2+ 5% CO2+ 90% N2混合气,低氧刺激给予30 s,95% O2 + 5% CO2给予90 s,共10个循环,每组实验大鼠数量n大于等于5。结果: 大鼠离体的颈动脉体,给予急性间歇性低氧应激,再给予低氧刺激,窦神经较之前低氧刺激放电活动增强。但加入多巴胺后,可以抑制窦神经对低氧的反应,急性间歇性低氧后,多巴胺对窦神经的低氧放电活动抑制作用加强。结论: 大鼠颈动脉体给予急性间歇性低氧可增强窦神经对低氧的反应,多巴胺可抑制急性低氧诱导的颈动脉体对低氧敏感性的增强。  相似文献   

5.
本工作设想,内啡肽参与了成人急性低氧通气压抑机制。受试者均为健康成年男子。6名受试者吸入中度低氧混合气(12.8%O_2)30min;7名吸入重度低氧混合气(10.8%O_2)20min,其中6名并在重度低氧下吸入三口纯氮气。吸入低氧气前先由静脉注入生理盐水(对照)或纳洛酮(中度低氧5mg,重度低氧10mg)。观察低氧时的通气反应、终末潮气二氧化碳分压(P_(ETCO2)、动脉血氧饱和度和外周低氧通气敏感性以及纳洛酮对上述测定的影响。结果表明,纳洛酮使重度低氧下的通气压抑明显减弱,低氧第3~15分钟的通气水平明显高于对照实验;而P_(ETCO2)明显低于对照值。但纳洛酮对中度低氧下的通气压抑无明显作用。此外,纳洛酮显著增强外周低氧敏感性。结果提示,在重度低氧下,内啡肽参与了成人低氧通气压抑机制,并对外周低氧敏感性有抑制作用。  相似文献   

6.
目的:本研究通过对正常人群与呼吸暂停综合症人群在不同海拔高度低氧环境下睡眠结构的分析,探讨人体内源性摄氧受限与外源性环境缺氧两个不同缺氧因素导致人体睡眠结构的差异。方法:通过匹兹堡睡眠质量指数量表筛查16名不存在睡眠问题的男性青年,在常氧环境中测得其睡眠过程中的呼吸暂停低通气指数(AHI),并根据AHI将其分为正常组(NOR组,n=8)和呼吸暂停综合征组(OSA组,n=8)。本研究采用吸入低O2混合气的方法模拟不同海拔高度,受试者在每次测试中连续吸入10 h低O2混合气进行模拟高海拔环境下睡眠测试。在平原环境下测试的一周进行后O2浓度为16.3%(模拟海拔2 000 m)的常压低氧环境下进行睡眠测试,两周后进行O2浓度为12.7%(模拟海拔4 000 m)的常压低氧环境下进行睡眠测试。结果:随着海拔高度上升,受试者睡眠过程中的REM期睡眠占比从平原时的12.03%降至模拟海拔2 000 m时的9.33%、模拟海拔4 000 m时7.15%(P<0.05),但不同海拔高度下睡眠过程中的浅睡眠和深睡眠占比均无显著性变化(P>0.05)。NOR组和OSA组的睡眠效率分别是82%、69.5%(P<0.01),睡眠过程中的REM期占比分别是7.56%、11.2%(P<0.05);深睡眠占比分别是30.26%、 19.13%(P<0.01)。但NOR组和OSA组睡眠过程中的浅睡眠占比无明显差异(P>0.05)。结论:与海拔高度上升导致的外源性缺氧相比,OSA引起的内源性缺氧还将影响青年男性睡眠过程中的深睡眠和睡眠效率。且轻度的阻塞性呼吸暂停综合征患者急性暴露在低氧环境下睡眠过程中具有更强的低氧耐受性。  相似文献   

7.
目的:探讨OSAS模式慢性间歇低氧对普通大鼠肝组织学、肝糖原含量的影响及抗氧化剂Tempol的干预作用。方法:成年雄性Wistar大鼠80只,分为不同频率(10、20、30、40次/h)间歇低氧组、Tempol干预组、生理盐水干预组、间歇正常氧组、空白对照组。间歇低氧暴露时间为每日9:00~17:00,共42天。暴露结束后,肝组织HE染色观察形态学,PAS染色观察肝细胞内糖原含量情况。结果:间歇低氧各组肝细胞肿胀,胞核染色加深,核膜增厚,随频率增加出现肝血窦增宽,肝细胞局灶性坏死,炎性细胞浸润,但未出现肝细胞脂质含量增多及脂肪变性;间歇低氧各组肝细胞肝糖原含量增加,间歇正常氧组及Tempol干预组无细胞水肿或炎性细胞浸润,肝细胞内肝糖原含量相仿。结论:慢性间歇低氧导致普通饮食大鼠肝组织损伤,肝糖原含量增加,抗氧化剂Tempol的干预可改善慢性间歇低氧所致的肝组织损伤,且早诊断早干预效果较好;抗氧化剂Tempol干预能阻断肝糖原贮备,改善CIH所致的代谢紊乱。  相似文献   

8.
胃癌正严重地威胁人类的健康,为了开发一种可以诊断早期胃癌的新型光学检测技术,建立了一套简便的组织体漫反射光谱检测装置.首先,根据组织体的光学特性,介绍光谱检测方法的基本原理.然后,利用组织癌变导致的组织体光学特性变化,建立漫反射光谱检测的实验装置.最后,利用该实验装置分别获取正常胃组织和胃癌组织的漫反射光谱.实验结果表明:癌变和正常胃组织的漫反射光谱在可见光区域有明显差别,特别是在波长为500 nm和630 nm处,但是漫反射光谱检测无法分辨来自组织不同层的光谱信息.这些结果说明漫反射光谱检测装置可用于胃癌的辅助检测.  相似文献   

9.
Qin L  Wen SL  Song Z 《中国应用生理学杂志》2007,23(2):177-179,I0001
目的:探讨间歇性低氧对营养代谢功能的影响。方法:健康小白鼠随机分为正常、正常低氧、高脂、高脂低氧。通过17d的喂养和低氧训练,测量动物的体重、血糖、血胆固醇含量的变化及肝脏组织切片。结果:经间歇性低氧处理明显抑制高脂高糖饲养导致的体重、血糖、血胆固醇增高,肝脏脂肪细胞分布的密度和范围均比单纯高脂组有所降低。结论:适度的间歇性低氧可以降低血糖以及血液中胆固醇的水平,减轻体重,并可以有效防止肝细胞脂肪变性。  相似文献   

10.
植物低氧胁迫伤害与适应机理的研究进展   总被引:20,自引:1,他引:19  
不良的通气条件导致了正常生长发育的植物生理性缺氧,低氧胁迫是高等植物主要的非生物胁迫因素之一。本文综述了低氧胁迫对植物生长、植株形态的影响,低氧胁迫对植物内部水分、养分吸收的变化,呼吸代谢途径的变化、激素代谢的变化,氧化系统的变化的影响,以及低氧胁迫过程中植物体内信号的传导、基因的表达、蛋白质的合成等,在不同层面分析了低氧胁迫对植物的伤害及植物对低氧逆境适应机理的最新研究成果。  相似文献   

11.
激活外周化学感受器可以同时引起呼吸和心血管反射,此机制可能参与高血压形成过程中的交感神经过度激活。因此我们推测激活外周呼吸化学感受器可以显著增强高血压大鼠的心肺活动。本研究通过联合应用全身无创全体积描记术和无线生物信号遥测技术,观察急性低氧刺激对清醒自发性高血压大鼠(spontaneously hypertensive rat, SHR)和血压正常的对照Wistar-Kyoto (WKY)大鼠的肺通气、动脉血压和心率的影响。结果表明,急性低氧刺激引起SHR潮气量和每分通气量明显高于WKY大鼠,并且急性低氧引起SHR血压和心率的增加幅度更明显。切断支配大鼠颈动脉体的双侧窦神经后,SHR和WKY大鼠急性低氧通气反应均降低,并且两组间比较没有显著性差异。同时,在切断双侧窦神经后,急性低氧引起的两组动物的血压和心率变化均无显著性差异。本研究表明,急性低氧刺激显著增强SHR的心血管和呼吸效应,这可能与其颈动脉体外周呼吸化学感受器对低氧的敏感性增高有关。  相似文献   

12.
目的:观察低氧性肺动脉高压大鼠肺内5-HT1B受体的分布和表达变化,探讨低氧性肺动脉高压的形成机制.方法:40只健康雄性SD大鼠随机分为正常组(control)、低氧3周组(2w)、低氧4周组(4w)和低氧5周组(5w).除正常组外,其余3组大鼠分别在低氧环境中饲养3周、4周和5周.测定各组大鼠的平均肺动脉压力(mPAP)、右心室收缩压(RVSP)和右心室肥厚度[RV/(LV+S)%].应用免疫组织化学法观察大鼠肺组织中5-HT1B受体的分布和表达,Western blot法测定大鼠肺组织中5-HT1B受体的蛋白含量.结果:和正常组相比,低氧3周组大鼠的mPAP、RVSP和右心室肥厚度均显著升高(P均<0.05),并且随着低氧时间的延长而持续升高(P均<0.05).免疫组织化学结果显示:5-HT1B受体主要分布在正常大鼠肺动脉的内膜层,而平滑肌层中仅有少量表达:和正常组相比,低氧3周组大鼠肺动脉平滑肌层中5-HT1B受体的表达显著增多;随着低氧时间的延长,大鼠肺动脉平滑肌层中5-HT1B受体表达持续增多.Western blot结果表明,大鼠肺组织中5-HT1B受体的蛋白含量变化和免疫组织化学结果相一致.结论:低氧性肺动脉高压大鼠肺动脉中5-HT1B受体呈过度表达,这可能是低氧性肺动脉高压形成的分子机制之一.  相似文献   

13.
目的:建立一种实时记录常压低氧环境中动物氧耗量的方法。方法:本实验装置由动物舱、补水控制系统、天平、软管、装有体重记录软件的电脑等组成。为了实现常压低氧,用水补充动物消耗的氧气以保持动物舱内压力恒定,这个过程由气液联动装置控制;补充的水量由天平测量并同步输出信号至excel文档中。用注射器抽气校准方法检测了装置的准确性和精度。利用该装置观察了6只急性重复低氧小鼠(处理组)和6只未经低氧处理的小鼠(对照组)的常压低氧过程的氧耗量特征。结果:不同体积抽气量与相应补水量两组数据配对t检验P=1;重复抽1 ml氧气6次的补水量变异系数为4%。处理组小鼠的存活时间为(58.8±6.8)min,显著高于对照组(46.0±8.7)min(P〈0.05)。处理组小鼠的总氧耗量为(85.1±8.5)ml,显著高于对照组(73.6±5.4)ml(P〈0.05)。结论:处理组小鼠摄取氧总量增多从而显著延长其存活时间。氧耗量测定装置准确度和精密度较高,可用于低氧研究中氧耗量的测定。  相似文献   

14.
目的在人工实验舱模拟高原环境下,探讨建立高原肺水肿大鼠模型的条件。方法 Wistar大鼠,雌雄各半,随机分为5组:空白对照组、低氧24 h组、低氧48 h组、低氧72 h组、低氧7 d组,测定大鼠肺组织含水量,肺组织中TNF-α、IL-6含量及病理改变。结果与正常对照组相比,低氧24、48、72 h组大鼠肺组织含水量依次为(81.58±0.86)%、(82.13±0.57)%、(82.21±0.88)%,高于正常对照组(78.72±0.52)%,肺组织中IL-6依次为(329.30±133.58)、(323.92±127.42)、(506.29±197.19)pg/mL,TNF-α依次(221.08±20.26)、(208.05±20.33)、(244.63±51.53)pg/mL,高于正常对照组IL-6(187.26±69.49)pg/mL,TNF-α为(91.81±22.24)pg/mL。低氧7d组肺组织含水量(81.47±0.65)%、肺组织中IL-6(241.33±83.60)pg/mL、TNF-α(109.99±31.98)pg/mL,均显著低于低氧72h组,病理学结果显示72h组肺组织有炎性细胞浸润,肺泡壁有明显的充血和水肿。结论模拟海拔5000 m环境,建立大鼠肺水肿模型的较好的时间为72 h。  相似文献   

15.
急性低氧下兔结合臂旁核灌流液中β—内啡肽含量的变化   总被引:2,自引:0,他引:2  
本实验室既往的研究工作表明结合臂旁核可能参与了由内啡肽介导的低氧呼吸抑制机制。本实验在麻醉、自然呼吸的去除外周化学感受器的兔上,用核团推挽灌流和放射免疫方法,观察到低氧通气抑制的同时,NPB区推挽灌流液中β-内啡肽含量明显升高,并与每分通气量和动脉氧分压之间存在指数负相关,进一步证实低氧下弓状核释放出的β-内啡肽作用于NPB而导致呼吸抑制的假设。  相似文献   

16.
本实验室既往的研究工作表明结合臂旁核(NPB)可能参与了由内啡肽介导的低氧呼吸抑制机制。本实验在麻醉、自然呼吸的去除外周化学感受器的兔上,用核团推挽灌流和放射免疫方法,观察到低氧通气抑制的同时,NPB区推挽灌流液中β-内啡肽含量明显升高,并与每分通气量和动脉氧分压之间存在指数负相关,进一步证实低氧下弓状核释放出的β-内啡肽作用于NPB而导致呼吸抑制的假设。  相似文献   

17.
本实验目的在于探讨急性低氧和间断低氧适应对局部血流分布的影响。我们将26只家兔分为急性低氧,低氧适应和常氧对照三组。在麻醉状态下用放射性标记的蟾蜍红细胞分别测定左心室、双侧肾、双侧肾上腺的血流量;并分区测定了大脑皮质、海马、丘脑下部、脑干的局部脑血流。吸入10%低氧混合气1小时后,急性低氧组脑局部、左心室、肾上腺的血流显著高于对照。经2周间断低氧适应后,低氧适应组脑局部(脑干除外)、左心室、肾上腺的血流下降。两组动物低氧时的肾血流变化不明显。结果提示,2周间断低氧适应能改变局部血流分布,血流的再分布有利于改善机体的抗低氧能力。  相似文献   

18.
目的:研究罗格列酮(rosiglitazone, RSG)对低氧性肺动脉高压大鼠过氧化物酶体增殖物激活受体-r(Peroxisome proliferator activated receptor gamma, PPAR-r)和10 号染色体缺失张力蛋白同源磷酸酶基因(Phosphatase and tensin homolog deleted on chromosome 10, PTEN)表达的影响。方法:SD 大鼠随机分为正常对照组、低氧组、低氧+ 罗格利酮组,建立低氧性肺动脉高压大鼠模 型,4 周后测定各组大鼠右心室压力、右心肥厚指标,同时检测各实验组PPAR-r、PTEN 的表达和组织病理学变化。培养原代大鼠 肺动脉平滑肌细胞,分别给与低氧、低氧+罗格列酮、低氧+GW9662 处理后观察细胞增殖及PPARr、PTEN 的表达变化。结果:① 与正常组相比,低氧组大鼠右心室压力、右心肥厚指标明显增加,肺小动脉管壁增厚,PPAR-r、PTEN 的表达明显减少。与低氧组相 比,低氧+罗格列酮组大鼠右心室压力下降,右心室及肺小动脉管壁的肥厚减轻,PTEN 的表达增加。②低氧下,PASMCs 中 PPARr、PTEN表达明显减低,细胞增殖较常氧明显增加,给与罗格列酮后,PTEN 表达增加,给与GW9662,PTEN表达减少。③罗 格列酮可以抑制PASMCs低氧下的增殖,而给与GW9662 后,这一抑制作用减轻。结论:早期应用罗格列酮可激活低氧性肺动脉 高压大鼠PPARr的活性,进而上调PTEN表达,改善低氧性肺动脉高压。  相似文献   

19.
目的:研究罗格列酮(rosiglitazone,RSG)对低氧性肺动脉高压大鼠过氧化物酶体增殖物激活受体γ(Peroxisome proliferator activated receptor gamma,PPARγ)和10号染色体缺失张力蛋白同源磷酸酶基因(Phosphatase and tensin homolog deleted on chromosome 10,PTEN)表达的影响。方法:SD大鼠随机分为正常对照组、低氧组、低氧+罗格利酮组,建立低氧性肺动脉高压大鼠模型,4周后测定各组大鼠右心室压力、右心肥厚指标,同时检测各实验组PPARγ、PTEN的表达和组织病理学变化。培养原代大鼠肺动脉平滑肌细胞,分别给与低氧、低氧+罗格列酮、低氧+GW9662处理后观察细胞增殖及PPARγ、PTEN的表达变化。结果:1与正常组相比,低氧组大鼠右心室压力、右心肥厚指标明显增加,肺小动脉管壁增厚,PPARγ、PTEN的表达明显减少。与低氧组相比,低氧+罗格列酮组大鼠右心室压力下降,右心室及肺小动脉管壁的肥厚减轻,PTEN的表达增加。2低氧下,PASMCs中PPARγ、PTEN表达明显减低,细胞增殖较常氧明显增加,给与罗格列酮后,PTEN表达增加,给与GW9662,PTEN表达减少。3罗格列酮可以抑制PASMCs低氧下的增殖,而给与GW9662后,这一抑制作用减轻。结论:早期应用罗格列酮可激活低氧性肺动脉高压大鼠PPARγ的活性,进而上调PTEN表达,改善低氧性肺动脉高压。  相似文献   

20.
目的:探究加兰他敏对间歇性低氧引起的认知损伤是否有保护作用,从而说明其对睡眠呼吸暂停综合症引起的认知损害是否有预防作用。方法:建立间歇低氧大鼠模型,行水迷宫试验检测行为功能变化,免疫组化检测海马神经元及胶质细胞数目的变化。结果:加兰他敏与间歇低氧模型纽相比,行水迷宫的平均逃避潜伏期缩短,游泳总距离减少;免疫组化的结果海马神经元的数目有所增加,胶质细胞的数目减少。结论:加兰他敏对间歇性低氧引起的认知损伤有明显的改善作用,可能与减少神经元的丢失及减少胶质细胞的再生有关。所以对于诊断了睡眠呼吸暂停综合征(ASA)的患者,如果同时合并其他痴呆的易感因素,可预防性应用加兰他敏.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号