首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Resistance to human skin innate defenses is crucial for survival and carriage of Staphylococcus aureus, a common cutaneous pathogen and nasal colonizer. Free fatty acids extracted from human skin sebum possess potent antimicrobial activity against S. aureus. The mechanisms by which S. aureus overcomes this host defense during colonization remain unknown. Here, we show that S. aureus IsdA, a surface protein produced in response to the host, decreases bacterial cellular hydrophobicity rendering them resistant to bactericidal human skin fatty acids and peptides. IsdA is required for survival of S. aureus on live human skin. Reciprocally, skin fatty acids prevent the production of virulence determinants and the induction of antibiotic resistance in S. aureus and other Gram-positive pathogens. A purified human skin fatty acid was effective in treating systemic and topical infections of S. aureus suggesting that our natural defense mechanisms can be exploited to combat drug-resistant pathogens.  相似文献   

3.
Staphylococcus aureus community‐acquired (CA) MRSA strains are highly virulent and can cause infections in otherwise healthy individuals. The most important mechanism of the host for clearing S. aureus is phagocytosis by neutrophils and subsequent killing of the pathogen. Especially CA‐MRSA strains are very efficient in circumventing this neutrophil killing. Interestingly, only a relative small number of virulence factors have been associated with CA‐MRSA, one of which are the phenol soluble modulins (PSMs). We have recently shown that the PSMs are functionally inhibited by serum lipoproteins, indicating that PSMs may exert their cytolytic function primarily in the intracellular environment. To further investigate the intracellular role of the PSMs we measured the effect of the α‐type and β‐type PSMs on neutrophil killing after phagocytosis. Using fluorescently labelled S. aureus, we measured bacterial survival after phagocytosis in a plate reader, which was employed next to flow cytometry and time‐lapse microscopy. Phagocytosis of the CA‐MRSA strain MW2 by human neutrophils resulted in rapid host cell death. Using mutant strains of MW2, we demonstrated that in the presence of serum, the intracellular expression of only the psmα operon is both necessary and sufficient for both increasedneutrophil cell death and increased survival of S. aureus. Our results identify PSMα peptides as prominent contributors to killing of neutrophils after phagocytosis, a finding with major implications for our understanding of S. aureus pathogenesis and strategies for S. aureus vaccine development.  相似文献   

4.
5.
Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs) contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs), including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS). These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.  相似文献   

6.
7.
Methicillin-resistant Staphylococcus aureus (MRSA) remains a major human pathogen. Traditionally, MRSA infections occurred exclusively in hospitals and were limited to immunocompromised patients or individuals with predisposing risk factors. However, recently there has been an alarming epidemic caused by community-associated (CA)-MRSA strains, which can cause severe infections that can result in necrotizing fasciitis or even death in otherwise healthy adults outside of healthcare settings. In the US, CA-MRSA is now the cause of the majority of infections that result in trips to the emergency room. It is unclear what makes CA-MRSA strains more successful in causing human disease compared with their hospital-associated counterparts. Here we describe a class of secreted staphylococcal peptides that have a remarkable ability to recruit, activate and subsequently lyse human neutrophils, thus eliminating the main cellular defense against S. aureus infection. These peptides are produced at high concentrations by standard CA-MRSA strains and contribute significantly to the strains' ability to cause disease in animal models of infection. Our study reveals a previously uncharacterized set of S. aureus virulence factors that account at least in part for the enhanced virulence of CA-MRSA.  相似文献   

8.
9.
Bacterial pathogens have evolved by combinations of gene acquisition, deletion, and modification, which increases their fitness. Additionally, bacteria are able to evolve in "quantum leaps" via the ability to promiscuously acquire new genes. Many bacterial pathogens - especially Gram-negative enteric pathogens - have evolved mechanisms by which to subvert signal transduction pathways of eukaryotic cells by expressing genes that mimic or regulate host protein factors involved in a variety of signaling cascades. This results in the ability to cause diseases ranging from tumor formation in plants to gastroenteritis and bubonic plague. Here, we present recent advances on mechanisms of bacterial pathogen evolution, including specific signaling cascades targeted by their virulence genes with an emphasis on the ubiquitin modification system, Rho GTPase regulators, cytoskeletal modulators, and host innate immunity. We also comment briefly on evolution of host defense mechanisms in place that limit disease caused by bacterial pathogens.  相似文献   

10.
11.
Comparative genomics were used to assess genetic differences between Staphylococcus aureus strains derived from infected animals versus colonized or infected humans. A total of 77 veterinary isolates were genetically characterized by high-throughput amplified fragment length polymorphism (AFLP). Bacterial genotypes were introduced in a large AFLP database containing similar information for 1,056 human S. aureus strains. All S. aureus strains isolated from animals in close contact with humans (e.g., pet animals) were predominantly classified in one of the five main clusters of the AFLP database (cluster I). In essence, mastitis-associated strains from animals were categorized separately (cluster IVa) and cosegregated with bacteremia-associated strains from humans. Distribution of only 2 out of 10 different virulence genes differed across the clusters. The gene encoding the toxic shock syndrome protein (tst) was more often encountered among veterinary strains (P < 0.0001) and even more in the mastitis-related strains (P<0.0001) compared to human isolate results. The gene encoding the collagen binding protein (cna) was rarely detected among invasive human strains. The virulence potential, as indicated by the number of virulence genes per strain, did not differ significantly between the human- and animal-related strains. Our data show that invasive infections in pets and humans are usually due to S. aureus strains with the same genetic background. Mastitis-associated S. aureus isolated in diverse farm animal species form a distinct genetic cluster, characterized by an overrepresentation of the toxic shock syndrome toxin superantigen-encoding gene.  相似文献   

12.
Bacterial pathogens either hide from or modulate the host's immune response to ensure their survival. Photorhabdus is a potent insect pathogenic bacterium that uses entomopathogenic nematodes as vectors in a system that represents a useful tool for probing the molecular basis of immunity. During the course of infection, Photorhabdus multiplies rapidly within the insect, producing a range of toxins that inhibit phagocytosis of the invading bacteria and eventually kill the insect host. Photorhabdus bacteria have recently been established as a tool for investigating immune recognition and defense mechanisms in model hosts such as Manduca and Drosophila. Such studies pave the way for investigations of gene interactions between pathogen virulence factors and host immune genes, which ultimately could lead to an understanding of how some Photorhabdus species have made the leap to becoming human pathogens.  相似文献   

13.
The interaction between Salmonella typhimurium and human polymorphonuclear leukocytes (PMNs) was analyzed in vitro. Three S. typhimurium strains, the wild-type strain OU5043, its isogenic virulence plasmid-cured strain OU5048, and LT2, which represented the types that exhibited three mouse virulence levels, respectively, were used in this study. There was no correlation between the recovery of intracellular S. typhimurium from PMNs and the presence or absence of the virulence plasmid, or the strains' mouse virulence level. When the oxygen-dependent response of PMNs upon phagocytosis of S. typhimurium was examined by checking the intracellular reduction of nitroblue tetrazolium (NBT), the fraction of PMNs that reduced NBT on phagocytosis of the three strains was around 80%, whereas it was 58% with Escherichia coli, 95% with phorbol 12-myristate 13-acetate and 15% with a negative control. Thus there were no significant differences among the three Salmonella strains in terms of their ability to induce the oxidative response in PMNs. Microscopic analysis of Salmonella-infected PMNs indicated that the intracellular Salmonella induced lysis of PMNs. Both OU5043 and OU5048 exhibited a significant intracellular cytotoxic effect on PMNs after 24 hr of infection and this effect was not associated with the presence or absence of the virulence plasmid. On the other hand, lysis of PMNs was related to the intracellular survival of Salmnonella, as ofloxacin, an antibiotic, appeared to be able to protect human PMNs from Salmonella-induced cytotoxicity when this agent was added into the medium to inactivate the intracellular organism. The ability to induce lysis of PMNs by either wild-type or plasmid-cured strains of S. typhimurium may play a crucial role in the pathogenesis of non-typhoid Salmonella. The contribution of pSTV to human salmonellosis is likely to be limited. Furthermore, early institution of antibiotics with a high intracellular activity against Salmonella, such as fluoroquinolones, may be useful to prevent the dissemination of Salmonella infection.  相似文献   

14.
Streptococcus pyogenes, also known as Group A Streptococcus (GAS), is an important human bacterial pathogen that can cause invasive infections. Once it colonizes its exclusively human host, GAS needs to surmount numerous innate immune defense mechanisms, including opsonization by complement and consequent phagocytosis. Several strains of GAS bind to human-specific complement inhibitors, C4b-binding protein (C4BP) and/or Factor H (FH), to curtail complement C3 (a critical opsonin) deposition. This results in diminished activation of phagocytes and clearance of GAS that may lead to the host being unable to limit the infection. Herein we describe the course of GAS infection in three human complement inhibitor transgenic (tg) mouse models that examined each inhibitor (human C4BP or FH) alone, or the two inhibitors together (C4BPxFH or ‘double’ tg). GAS infection with strains that bound C4BP and FH resulted in enhanced mortality in each of the three transgenic mouse models compared to infection in wild type mice. In addition, GAS manifested increased virulence in C4BPxFH mice: higher organism burdens and greater elevations of pro-inflammatory cytokines and they died earlier than single transgenic or wt controls. The effects of hu-C4BP and hu-FH were specific for GAS strains that bound these inhibitors because strains that did not bind the inhibitors showed reduced virulence in the ‘double’ tg mice compared to strains that did bind; mortality was also similar in wild-type and C4BPxFH mice infected by non-binding GAS. Our findings emphasize the importance of binding of complement inhibitors to GAS that results in impaired opsonization and phagocytic killing, which translates to enhanced virulence in a humanized whole animal model. This novel hu-C4BPxFH tg model may prove invaluable in studies of GAS pathogenesis and for developing vaccines and therapeutics that rely on human complement activation for efficacy.  相似文献   

15.
Staphylococcus lugdunensis is an opportunistic pathogen related to Staphylococcus aureus and Staphylococcus epidermidis. The genome sequence of S. lugdunensis strain N920143 has been compared with other staphylococci, and genes were identified that could promote survival of S. lugdunensis on human skin and pathogenesis of infections. Staphylococcus lugdunensis lacks virulence factors that characterize S. aureus and harbours a smaller number of genes encoding surface proteins. It is the only staphylococcal species other than S. aureus that possesses a locus encoding iron-regulated surface determinant (Isd) proteins involved in iron acquisition from haemoglobin.  相似文献   

16.
17.
The nematode Caenorhabditis elegans is emerging as a facile and economical model host for the study of evolutionarily conserved mechanisms of microbial pathogenesis and innate immunity. A rapidly growing number of human and animal microbial pathogens have been shown to injure and kill nematodes. In many cases, microbial genes known to be important for full virulence in mammalian models have been shown to be similarly required for maximum pathogenicity in nematodes. C. elegans has been used in mutation-based screening systems to identify novel virulence-related microbial genes and immune-related host genes, many of which have been validated in mammalian models of disease. C. elegans-based pathogenesis systems hold the potential to simultaneously explore the molecular genetic determinants of both pathogen virulence and host defense.  相似文献   

18.
Staphylococcus aureus is responsible for the vast majority of bacterial skin infections in humans. The propensity for S. aureus to infect skin involves a balance between cutaneous immune defense mechanisms and virulence factors of the pathogen. The tissue architecture of the skin is different from other epithelia especially since it possesses a corneal layer, which is an important barrier that protects against the pathogenic microorganisms in the environment. The skin surface, epidermis, and dermis all contribute to host defense against S. aureus. Conversely, S. aureus utilizes various mechanisms to evade these host defenses to promote colonization and infection of the skin. This review will focus on host-pathogen interactions at the skin interface during the pathogenesis of S. aureus colonization and infection.  相似文献   

19.
Finlay BB  McFadden G 《Cell》2006,124(4):767-782
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.  相似文献   

20.
Neutrophils have long been regarded as essential for host defense against Staphylococcus aureus infection. However, survival of the pathogen inside various cells, including phagocytes, has been proposed as a mechanism for persistence of this microorganism in certain infections. Therefore, we investigated whether survival of the pathogen inside polymorphonuclear neutrophils (PMN) contributes to the pathogenesis of S. aureus infection. Our data demonstrate that PMN isolated from the site of infection contain viable intracellular organisms and that these infected PMN are sufficient to establish infection in a naive animal. In addition, we show that limiting, but not ablating, PMN migration into the site of infection enhances host defense and that repletion of PMN, as well as promoting PMN influx by CXC chemokine administration, leads to decreased survival of the mice and an increased bacterial burden. Moreover, a global regulator mutant of S. aureus (sar-) that lacks the expression of several virulence factors is less able to survive and/or avoid clearance in the presence of PMN. These data suggest that the ability of S. aureus to exploit the inflammatory response of the host by surviving inside PMN is a virulence mechanism for this pathogen and that modulation of the inflammatory response is sufficient to significantly alter morbidity and mortality induced by S. aureus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号