首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific gangliosides GD1a, GT1b and GQ1b isolated from brain have been shown to function as receptors for Sendai virus by conferring susceptibility to infection when they are incorporated into receptor-deficient cells (Markwell, M.A.K., Svennerholm, L. and Paulson, J.C. (1981) Proc. Natl. Acad. Sci. USA 78, 5406-5410). The endogenous gangliosides of three commonly used hosts for Sendai virus: MDBK, HeLa, and MDCK cells were analyzed to determine the amount and type of receptor gangliosides present. In all three cell lines, GM3 was the major ganglioside component. The presence of GM1, GD1a and the more complex homologs of the gangliotetraose series was also established. In cell lines derived from normal tissue, MDBK and MDCK cells, gangliosides contributed 47-65% of the total sialic acid. In HeLa cells, gangliosides contributed substantially less (17% of the total sialic acid). The ganglioside content of each cell line was shown not to be immutable but instead to depend on the state of differentiation, passage number, and surface the cells were grown on. Thus, the ganglioside concentration of undifferentiated MDCK cells was found to be substantially greater than that of MDBK or HeLa cells, but decreased as the MDCK cells underwent differentiation. Changes in culture conditions that were shown to decrease the receptor ganglioside content of the cells resulted in a corresponding decrease in susceptibility to infection. The endogenous oligosialogangliosides present in susceptible host cells were shown to function as receptors for Sendai virus.  相似文献   

2.
Phospholipid liposomes composed of phosphatidylcholine (PC) and cholesterol (chol), bearing the sialoglycoprotein glycophorin (GP), are able to effectively bind Sendai virus particles, but not to be lysed by them. Incorporation of gangliosides (gangl) into the above phospholipid vesicles (yielding liposomes composed of PC/chol/gangl/GP), although not increasing their ability to interact with Sendai virions, rendered them susceptible to the viral lytic activity. This was inferred from the ability of the virus to induce release of carboxyfluorescein (CF) upon interaction at 37 degrees C with liposomes composed of PC/chol/gangl/GP. Lysis of liposomes required the presence of the two viral envelope glycoproteins, namely the hemagglutinin/neuraminidase (HN) and the fusion (F) polypeptides, and was inhibited by phenylmethyl sulfonylfluoride (PMSF), dithiothreitol (DTT) and trypsin, showing that virus-induced lysis of PC/chol/gangl/GP liposomes reflects the fusogenic activity of the virus. Incubation of Sendai virus particles with liposomes containing the acidic phospholipid dicetylphosphate (DCP) but lacking sialic acid containing receptors, also resulted in release of the liposome content. Lysis of these liposomes was due to the activity of the viral HN glycoprotein, therefore not reflecting the natural viral fusogenic activity. Fluorescence dequenching studies, using fluorescently labeled reconstituted Sendai virus envelopes (RSVE), have shown that the viral envelopes are able to fuse with neutral, almost to the same extent, as with negatively charged liposomes. However, fusion with negatively charged liposomes, as opposed to fusion with neutral liposomes, was mediated by the viral HN glycoprotein and not by the viral fusion polypeptide.  相似文献   

3.
Sialic acid-containing compounds play a key role in the initial steps of the paramyxovirus life cycle. As enveloped viruses, their entry into the host cell consists of two main events: binding to the host cell and membrane fusion. Virus adsorption occurs at the surface of the host cell with the recognition of specific receptor molecules located at the cell membrane by specific viral attachment proteins. The viral attachment protein present in some paramyxoviruses (Respirovirus, Rubulavirus and Avulavirus) is the HN glycoprotein, which binds to cellular sialic acid-containing molecules and exhibits sialidase and fusion promotion activities. Gangliosides of the gangliotetraose series bearing the sialic acid N-acetylneuraminic (Neu5Ac) on the terminal galactose attached in α2-3 linkage, such as GD1a, GT1b, and GQ1b, and neolacto-series gangliosides are the major receptors for Sendai virus. Much less is known about the receptors for other paramyxoviruses than for Sendai virus. Human parainfluenza viruses 1 and 3 preferentially recognize oligosaccharides containing N-acetyllactosaminoglycan branches with terminal Neu5Acα2-3Gal. In the case of Newcastle disease virus, has been reported the absence of a specific pattern of the gangliosides that interact with the virus. Additionally, several works have described the use of sialylated glycoproteins as paramyxovirus receptors. Accordingly, the design of specific sialic acid analogs to inhibit the sialidase and/or receptor binding activity of viral attachment proteins is an important antiviral strategy. In spite of all these data, the exact nature of paramyxovirus receptors, apart from their sialylated nature, and the mechanism(s) of viral attachment to the cell surface are poorly understood. The authors would like to dedicate this review to Prof. José A. Cabezas, recently retired who, as well being our mentor and colleague, introduced us into the fascinating field of sialic acid-containing glycoconjugates and viral sialidases at a time when just a very small number of scientists were paying attention to this important field of research. Also, he has been for us a continuous source of inspiration and friendship to us. The ganglioside nomenclature of Svennerholm [1] is used.  相似文献   

4.
Characteristics of Sendai virus receptors in a model membrane   总被引:24,自引:0,他引:24  
The adsorption of Sendai virus to liposomes of different compositions was studied. Liposomes prepared with only phosphatidylcholine and cholesterol, and liposomes prepared with phosphatidylcholine and cholesterol plus phosphatidic acid or phosphatidyl serine did not adsorb virus. Phosphatidyleholine-cholesterol liposomes containing also stearyl amine or ganglioside did, however, adsorb virus. The ability of the adsorbing liposomes to compete with erythrocytes for virus was measured by hemagglutination inhibition. Liposomes containing ganglioside, but not those containing stearyl amine, inhibited hemagglutination. When the molar ratio of ganglioside N-acetyl neuraminic acid to phosphatidylcholine was less than 0.02, ganglioside liposomes did not inhibit hemagglutination. As the ratio increased from 0.02 to 0.05, the liposomes caused increasing amounts of hemagglutination inhibition, but with further increases in the ratio the hemagglutination inhibition remained constant. It is concluded that gangliosides can serve as Sendai receptors and that a multiplicity of receptors is needed for virus binding.  相似文献   

5.
Reconstituted influenza virus envelopes (virosomes) containing the viral hemagglutinin (HA) represent an efficient fusogenic cellular delivery system. By interaction of HA with its natural receptors, sialylated lipids (gangliosides) or proteins, virosomes bind to cells and, following endocytic uptake, deliver their contents to the cytosol through fusion from within acidic endosomes. Here, we show that binding to sialic acid is not necessary for fusion. In the presence of streptavidin, virosomes containing a biotinylated lipid fused with liposomes lacking sialic acid if these liposomes also had a biotinylated lipid in their membranes. Moreover, fusion characteristics corresponded well with fusion of virosomes with ganglioside-containing liposomes.  相似文献   

6.
Multilameller liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distributions of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome preparation. Liver uptake up encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides, regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

7.
The interaction of enveloped viruses with cell surface receptors is the first step in the viral cycle and an important determinant of viral host range. Although it is established that the paramyxovirus Newcastle Disease Virus binds to sialic acid-containing glycoconjugates the exact nature of the receptors has not yet been determined. Accordingly, here we attempted to characterize the cellular receptors for Newcastle disease virus. Treatment of cells with tunicamycin, an inhibitor of protein N-glycosylation, blocked fusion and infectivity, while the inhibitor of O-glycosylation benzyl-N-acetyl-alpha-D-galactosamide had no effect. Additionally, the inhibitor of glycolipid biosynthesis 1-phenyl-2-hexadecanoylamino-3-morpholino-1-propanol blocked viral fusion and infectivity. These results suggest that N-linked glycoproteins and glycolipids would be involved in viral entry but not O-linked glycoproteins. The ganglioside content of COS-7 cells was analyzed showing that GD1a was the major ganglioside component; the presence of GM1, GM2 and GM3 was also established. In a thin-layer chromatographic binding assay, we analyzed the binding of the virus to different gangliosides, detecting the interaction with monosialogangliosides such as GM3, GM2 and GM1; disialogangliosides such as GD1a and GD1b, and trisialogangliosides such as GT1b. Unlike with other viruses, our results seem to point to the absence of a specific pattern of gangliosides that interact with Newcastle disease virus. In conclusion, our results suggest that Newcastle disease virus requires different sialic acid-containing compounds, gangliosides and glycoproteins for entry into the target cell. We propose that gangliosides would act as primary receptors while N-linked glycoproteins would function as the second receptor critical for viral entry.  相似文献   

8.
The sensitivity and specificity of two influenza C virus assays, solid-phase and overlay assays, were investigated using naturally occurring 9-O-acetylated GD(3), rat serum glycoproteins containing 60% of N-acetyl-9-O-acetylneuraminic acid, and synthetically O-acetylated sialylated compounds. The sensitivity of the solid-phase assay was higher for glycoproteins containing N-acetyl-9-O-acetylneuraminic acid than for gangliosides, and also differed for various 9-O-acetylated gangliosides. The overlay assay was less sensitive for all glycoconjugates tested. For virus recognition the presentation of the sialic acid within the molecule and the structure of the sialic acid are essential. Investigation of gangliosides from human melanomas and normal skin with the influenza C virus assay showed an increase of O-acetylation of sialic acids in most tumour samples and the occurrence of several O-acetylated gangliosides.  相似文献   

9.
Multilamellar liposomes were prepared with various asialoglycolipids, gangliosides, sialic acid, or brain phospholipids in the liposome membrane and with ethylenediaminetetraacetic acid (EDTA) encapsulated in the aqueous compartments. The liposomes containing glycolipids or sialic acid were prepared from a mixture of phosphatidylcholine, cholesterol, and one of the following test substances: galactocerebroside, glucocerebroside, galactocerebroside sulfate, mixed gangliosides, monosialoganglioside GM1, monosialoganglioside GM2, monosialoganglioside GM3, disialoganglioside GD1a, or sialic acid. The liposomes containing brain phospholipids were mixtures of either sphingomyelin and cholesterol or a brain total phospholipid extract and cholesterol. Distribution of 14C-labeled EDTA were determined in mouse tissues from 15 min to 6 h or 12 h after a single injection of liposome prepartion. Liver uptake of encapsulated EDTA was lowest from all liposome preparations containing sialic acid or sialogangliosides regardless of the amount of sialic acid moiety present or the identity of the particular ganglioside; highest uptake of encapsulated EDTA by liver was from the liposomes containing galactocerebroside or brain phospholipids. Lungs and brain took up the largest amounts of EDTA from liposomes containing sphingomyelin and lesser amounts from liposomes containing GD1a. Use of mouse brain phospholipid extract to prepare liposomes did not increase uptake of encapsulated EDTA by the brain. EDTA in liposomes containing monosialogangliosides, brain phospholipids, galactocerebroside, or sialic acid was taken up well by spleen and marrow. Highest thymus uptake of encapsulated EDTA was from liposomes containing GD1a. These results demonstrate that inclusion of sialogangliosides in liposome membranes decreases uptake of liposomes by liver, thus making direction of encapsulated drugs to other organs more feasible. Liposomes containing glycolipids also have potential uses as probes of cell surface receptors.  相似文献   

10.
A M Haywood  B P Boyer 《Biochemistry》1986,25(13):3925-3929
Previous work has shown that high-speed centrifugation (300,000 g) of Sendai virus and liposomes in 40% (w/v) sucrose layered under a discontinuous sucrose gradient removes Sendai virus bound to liposomes containing the ganglioside GD1a, a Sendai virus receptor. Centrifugation also removes virus bound to liposomes containing other negatively charged lipids. This work shows that centrifugation of virus through a discontinuous ficoll gradient does not remove virus bound to liposomes containing GD1a but does remove virus from liposomes containing various other negatively charged lipids including the ganglioside GM1, which is not a Sendai virus receptor. The amount of virus that adheres to liposomes increases with increasing content of GD1a in the liposomes. The adhesion of virus to receptor-containing liposomes during centrifugation through a ficoll gradient results from the presence of ficoll and increases with increasing ficoll concentration. Virus also adheres to receptor-containing liposomes during centrifugation in the presence of dextran. These data indicate that caution should be used in interpreting associations demonstrated by centrifugation through dextran and ficoll gradients. They also indicate that binding of virus by ganglioside receptors can be modulated by carbohydrate polymers, which are thought not to have any specific interaction with either viruses or gangliosides.  相似文献   

11.
Sialidase activity associated with rat brain synaptic junctions (SJ) and synaptic membranes (SM) was determined. Both fractions released sialic acid from exogenous glycopeptides and gangliosides. SJ accounted for 5-10% of the total sialidase activity recovered from SM following extraction with Triton X-100, and the specific activity of SJ sialidase was 60% of that of the parent SM fraction. Intrinsic SJ sialidase hydrolysed 12-15% of the sialic acid associated with endogenous SJ glycoproteins. Sialic acid residues associated with SJ glycoproteins were labelled with sodium borotritide and SJ proteins fractionated by affinity chromatography on concanavalin A-agarose. SJ glycoproteins that reacted with concanavalin A (con A+ glycoproteins) accounted for 25% of the total SJ [3H]sialic acid. Intrinsic SJ sialidase hydrolysed 20% of the [3H]sialic acid associated with these glycoproteins. Each molecular weight class of con A+ glycoprotein previously shown to be a specific component of the postsynaptic apparatus contained sialic acid and was acted on by intrinsic SJ sialidase.  相似文献   

12.
Incubation of intact Sendai virions or reconstituted Sendai virus envelopes with phosphatidylcholine/cholesterol liposomes at 37 degrees C results in virus-liposome fusion. Neither the liposome nor the virus content was released from the fusion product, indicating a nonleaky fusion process. Only liposomes possessing virus receptors, namely sialoglycolipids or sialoglycoproteins, became leaky upon interaction with Sendai virions. Fusion between the virus envelopes and phosphatidylcholine/cholesterol liposomes was absolutely dependent upon the presence of intact and active hemagglutinin/neuraminidase and fusion viral envelope glycoproteins. Fusion between Sendai virus envelopes and phosphatidylcholine/cholesterol liposomes lacking virus receptors was evident from the following results. Anti-Sendai virus antibody precipitated radiolabeled liposomes only after they had been incubated with fusogenic Sendai virions. Incubation of N-4-nitrobenzo-2-oxa-1,3-diazole-labeled fusogenic reconstituted Sendai virus particles with phosphatidylcholine/cholesterol liposomes resulted in fluorescence dequenching. Incubation of Tb3+-containing virus envelopes with phosphatidylcholine/cholesterol liposomes loaded with sodium dipicolinate resulted in the formation of the chelation complex Tb3+-dipicolinic acid, as was evident from fluorescence studies. Virus envelopes fuse efficiently also with neuraminidase/Pronase-treated erythrocyte membranes, i.e. virus receptor-depleted erythrocyte membranes, although fusion occurred only under hypotonic conditions.  相似文献   

13.
The influenza virus enters target cells via the action of hemagglutinin proteins (HA) inserted into the viral envelope. HA promotes membrane fusion between the viral envelope and endosomal membrane at low pH, following viral binding to sialic acid-containing receptors on target cells, and internalization by endocytosis. The effect of target membrane sialic acid residues on the fusion activity of the influenza virus towards model membranes was evaluated by both reduction, (i.e. treating somatic cells with neuraminidase- (NA-) prior to virus-cell interactions), and by supplementing liposomes with the gangliosides GD1a and GT1b. The harshness of the neuraminidase pretreatment of target cells required to affect virus-induced membrane merging was found to greatly depend on the assay conditions, i.e. whether a virus-cell prebinding step at neutral pH was included prior to acidification. Minor concentrations of neuraminidase were found to greatly reduce virus fusion, but only in the absence of a prebinding step; they had no effect if this step was included. Although membrane merging was greatly reduced following cell neuraminidase pretreatment, virus-cell association at low pH was not disturbed proportionately. This probably reflects unspecific virus-cell binding under these conditions, probably of inactivated or aggregated virus particles, which does not translate into membrane merging. This seems to suggest both that target membrane sialic acid can protect the virus from losing its activity before triggering membrane merging, and that the importance of this interaction is not merely to ensure virus-target proximity. With liposomes, we found that both types of ganglioside supported efficient fusion, with GD1a promoting a slightly faster initial rate. However, in this case, virus-target proximity closely mirrored fusion activity, thus pointing to differential specificity between targets routinely used to assay influenza virus fusion activity.  相似文献   

14.
Abstract— In agreement with other investigators it has been shown that endogenous as well as added gangliosides are a substrate for brain sialidase. The release of sialic acid was enhanced in the presence of Triton X-100; this might be due to the action of the detergent on the ganglioside micelles. The sialic acid release from endogenous gangliosides was observed over 48 h and compared with the effect of the sialidase on the endogenous glycoproteins. Though the hydrolysis of sialic acid from gangliosides is much faster in the first hours, after 48 h 40 per cent of the total bound sialic was released from both substrates at pH 4.0 and 37°C.
Sialoglycopeptides obtained from brain glycoproteins are also metabolized by the sialidase. No effect of Triton X-100 on this substrate has been observed. From sialoglycopeptides, fractions can be obtained by DEAE-Sephadex A-50 column chromatography with a sialic acid content from 8 to 26 per cent. The fractions with a high sialic acid content were about equally active towards brain sialidase as gangliosides. The results agree with the similar turnover rate observed for the carbohydrate chains from gangliosides and glycoproteins, but are in contrast to the observations of other investigators who have stated that glycoproteins are a poor substrate for brain sialidase. In our experiments bovine and ovine submaxillary mucins and sialyl-lactoses showed only slight activity compared to gangliosides and selected brain sialoglycopeptides.  相似文献   

15.
Introduction of macromolecules into mammalian cells by cell fusion   总被引:2,自引:0,他引:2  
Proteins with molecular weights of up to 500K can be enclosed in erythrocyte ghosts by exposing the ghosts to hypotonic solution containing these proteins. The proteins can then be introduced into recipient cells by fusing the ghosts with the cells using HVJ, PEG, or influenza virus. Some applications of this method are described. By an improved method, 15 kbp DNA and IgM (900 kDa) can be entrapped in erythrocyte membranes and these are then treated with liposomes containing gangliosides and HVJ. These treated membranes containing large macromolecules fuse with almost 100% of the recipient cells used. Naked liposomes infrequently fuse with cultured cells, so introduction of their contents into cells is very inefficient. However, liposomes constituted from lipid and glycoproteins (HN and F) of HVJ (Sendai virus), by removing a nonionic detergent, fuse with cells about 200 times more efficiently than naked liposomes. Naked liposomes can fuse with specific cells, such as cells infected with subacute sclerosing panencephalitis virus or with human immunodeficiency virus. Plasmid DNA and mRNA of up to about 40 kbp can be entrapped efficiently in liposomes associated with gangliosides formed by reverse-phase evaporation, and then reacted with HVJ. The contents of the resulting liposomes with HVJ can be introduced efficiently into cultured cells in a suspended or plated state, and nearly all the cells then express the gene transiently. This procedure is also effective for obtaining stable transformants of many kinds of cultured cells.  相似文献   

16.
Macromolecules such as DNA and RNA can be entrapped within liposomes associated with gangliosides by reverse-phase evaporation. When these liposomes are incubated with HVJ2 (Sendai virus), they deliver their contents into cultured cells efficiently. More than 95% cells of a Ltk- cell line (thymidine kinase-deficient cells) transiently expressed thymidine kinase activity by thymidine kinase gene transfer using HVJ liposomes with gangliosides. Stable transformants could be obtained efficiently from various cell lines by use of HVJ liposomes containing the neoR gene. The neo+ transformants were obtained at frequencies of about 0.2-1.0, 0.06-0.25, and 0.06-0.1% in monolayers of L, CHO-Kl, and HeLa-S3 cells, respectively. Moreover, in Ehrlich ascites tumor cells which grow in suspension, the frequency was more than 0.01%. On introduction of plasmid pTK4 into Ltk- cells, about 0.5-1.0% TK+ transformants were obtained. Cosmid DNA containing the neoR gene (about 45 kbp) was also introduced into L cells by this method and neo+ transformants were obtained at a frequency of 0.1%. When rat liver mRNA was introduced into L cells by HVJ liposomes with gangliosides, immunoprecipitation studies showed that the L cells secreted rat albumin and some other proteins into the cultured medium. Moreover, using erythrocyte membrane vesicles containing IgM that had been incubated with HVJ empty liposomes with gangliosides, the IgM could be introduced into all the L cells.  相似文献   

17.
Abstract: N′-Acetyl-d -[6-3H]mannosamine was administered to 13- and 28-day-old rats by intraventricular injection. At various time intervals following the injection, synaptic membranes were prepared and the incorporation of radiolabel into sialic acid residues released from endogenous glycoproteins and gangliosides by intrinsic sialidase determined. Radiolabel was incorporated into synaptic membrane gangliosides and glycoproteins, and at all times tested, >90% of the label was associated with sialic acid. Sialic acid released from endogenous glycoproteins by intrinsic sialidase present in 28-day membranes incorporated only 20–25% as much radiolabel per nmole as sialic acid released by mild acid hydrolysis or by exogenous neuraminidase. In contrast, sialic acid released from glycoproteins present in 13-day-old membranes by intrinsic sialidase, mild acid hydrolysis, or exogenous neuraminidase all were similarly labelled. At both ages the specific radioactivity (cpm/nmol) of sialic acid released from gangliosides by the intrinsic enzyme was similar to the total ganglioside sialic acid released by mild acid hydrolysis. The results identify glycoprotein substrates for intrinsic synaptic membrane sialidase as a distinct metabolic class in the mature brain and suggest the occurrence of a developmentally related change in the metabolism of these glycoproteins.  相似文献   

18.
A method for the binding of virus to a silica gel thin-layer chromatogram is presented. After development the chromatogram is overlayed with the 125I-labelled virus and the bound virus is autoradiographed. Alternatively, the unlabelled virus may be detected after exposure to monoclonal antibody and labelled anti-antibody. The Sendai virus strain used did not bind to brain gangliosides earlier proposed to be receptors, but bound to human erythrocyte gangliosides. This finding may be explained by the existence of Sendai virus variants with different receptor specificities.  相似文献   

19.
Receptor recognition and binding is the first step in the viral cycle. It has been established that Newcastle Disease Virus (NDV) interacts with sialylated molecules such as gangliosides and glycoproteins at the cell surface. Nevertheless, the specific receptor(s) that mediate virus entry are not well known. We have analysed the role of the sialic acid linkage in the early steps of the viral infection cycle. Pretreatment of ELL-0 cells with both α2,3 and α2,6 specific sialidases led to the inhibition of NDV binding, fusion and infectivity, which were restored after α2,3(N)- and α2,6(N)-sialyltransferase incubation. Moreover, α2,6(N)-sialyltransferases also restored NDV activities in α2-6-linked sialic acid deficient cells. Competition with α2-6 sialic acid-binding lectins led to a reduction in the three NDV activities (binding, fusion and infectivity) suggesting a role for α2-6- linked sialic acid in NDV entry. We conclude that both α2-3- and α2-6- linked sialic acid containing glycoconjugates may be used for NDV infection. NDV was able to efficiently bind, fuse and infect the ganglioside-deficient cell line GM95 to a similar extent to that of its parental MEB4, suggesting that gangliosides are not essential for NDV binding, fusion and infectivity. Nevertheless, the fact that the interaction of NDV with cells deficient in N-glycoprotein expression such as Lec1 was less efficient prompted us to conclude that NDV requires N-linked glycoproteins for efficient attachment and entry into the host cell.  相似文献   

20.
Botulinum neurotoxins (BoNTs) cleave SNARE proteins in motor neurons that inhibits synaptic vesicle (SV) exocytosis, resulting in flaccid paralysis. There are seven BoNT serotypes (A–G). In current models, BoNTs initially bind gangliosides on resting neurons and upon SV exocytosis associate with the luminal domains of SV-associated proteins as a second receptor. The entry of BoNT/C is less clear. Characterizing the heavy chain receptor binding domain (HCR), BoNT/C was shown to utilize gangliosides as dual host receptors. Crystallographic and biochemical studies showed that the two ganglioside binding sites, termed GBP2 and Sia-1, were independent and utilized unique mechanisms to bind complex gangliosides. The GBP2 binding site recognized gangliosides that contained a sia5 sialic acid, whereas the Sia-1 binding site recognized gangliosides that contained a sia7 sialic acid and sugars within the backbone of the ganglioside. Utilizing gangliosides that uniquely recognized the GBP2 and Sia-1 binding sites, HCR/C entry into Neuro-2A cells required both functional ganglioside binding sites. HCR/C entered cells differently than the HCR of tetanus toxin, which also utilizes dual gangliosides as host receptors. A point-mutated HCR/C that lacked GBP2 binding potential retained the ability to bind and enter Neuro-2A cells. This showed that ganglioside binding at the Sia-1 site was accessible on the plasma membrane, suggesting that SV exocytosis may not be required to expose BoNT/C receptors. These studies highlight the utility of BoNT HCRs as probes to study the role of gangliosides in neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号