首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high concentration of the calcium ionophore A23187 (10 uM) stimulated release of labeled arachidonate and immunoreactive PGE2 from isolated superfused glomeruli. A lower concentration of A23187 (1 uM) or 12-0-tetradecanoyl phorbol-13-acetate (TPA, 0.1 uM), a direct activator of protein kinase C, when added alone was without effect on these parameters. Combined addition of A23187 (1 uM) and TPA (0.1 uM) synergistically stimulated arachidonate release and PGE2 production. 1-(5-isoquinolinyl)-2-methylpiperazine (H-7) a known inhibitor of protein kinase C in other tissues, suppressed increases in arachidonate release and PGE2 production mediated by A23187 (10 uM) or TPA plus A23187 (1 uM). H-7 inhibited while TPA stimulated protein kinase C activity that had been partially purified from soluble fractions of glomerular homogenates. These results support a role for protein kinase C in A23187 mediated arachidonate release.  相似文献   

2.
We recently reported that prostaglandin (PG) E2 stimulated phosphoinositide metabolism in cultured bovine adrenal chromaffin cells and that PGE2 and ouabain induced a gradual secretion of catecholamines from the cells (Yokohama, H., Tanaka, T., Ito, S., Negishi, M., Hayashi, H., and Hayaishi, O. (1988) J. Biol. Chem. 263, 1119-1122). Here we examined the involvement of two signal pathways, Ca2+ mobilization and protein kinase C activation resulting from phosphoinositide metabolism, in the PGE2-induced catecholamine release. Either the Ca2+ ionophore ionomycin or 12-O-tetradecanoylphorbol 13-acetate (TPA) could enhance the release in the presence of ouabain, and ionomycin-induced release was additive to PGE2-induced release, but TPA-induced release was not additive. PGE2 dose-dependently stimulated the formation of diacylglycerol and caused the translocation of 4% of the total protein kinase C activity to become membrane-bound within 5 min. These effects were specific for PGE2 and PGE1 among PGs tested (PGE2 = PGE1 greater than PGF2 alpha greater than PGD2). Furthermore, the phosphoinositide-specific phospholipase C inhibitor neomycin inhibited PGE2-induced accumulation of inositol phosphates, diacylglycerol formation, translocation of protein kinase C, and also stimulation of catecholamine release. Both PGE2- and TPA-induced release were inhibited by the depletion of protein kinase C caused by prolonged exposure to TPA, but ionomycin-induced release was not inhibited. We recently found that the amiloride-sensitive Na+, H+-antiport participates in PGE2-evoked catecholamine release (Tanaka, T., Yokohama, H., Negishi, M., Hayashi, H., Ito, S., and Hayaishi, O. (1990) J. Neurochem. 54, 86-95). In agreement with our recent report, PGE2 and TPA induced a sustained increase in intracellular pH that was abolished by the protein kinase C inhibitor staurosporine but not by the calmodulin inhibitor W-7. Ionomycin also induced a marked increase in intracellular pH, but this increase was abolished by W-7 but not by staurosporine. These results demonstrate that PGE2-induced activation of the Na+, H(+)-antiport and catecholamine release in the presence of ouabain are mediated by activation of protein kinase C, rather than by Ca2+ mobilization, resulting from phosphoinositide metabolism.  相似文献   

3.
The effects of luteinizing hormone-releasing hormone (LHRH) and its putative intracellular mediators on progesterone (P) and prostaglandin E2 (PGE2) formation were studied in rat granulosa cells. A calcium ionophore (A23187), 12-0-tetradecanoylphorbol-13-acetate (TPA), and melittin (a phospholipase A2-stimulator) were used to later intracellular calcium, protein kinase C, and arachidonic acid levels, respectively. During a 5-h incubation, LHRH increased basal P levels but failed to affect the formation of P induced by cholera toxin (CT). On the other hand, both basal and CT-stimulated PGE2 formation were increased by LHRH. Treatment of the cells with A23187 or TPA attenuated the formation of P induced by CT or FSH. By contrast, A23187 or TPA significantly augmented CT- or FSH-stimulated PGE2 formation. Interestingly, the effects of A23187 and TPA on PGE2 were synergistic, whether or not FSH or CT was present during the incubation. This synergy was not observed with regard to P formation. Melittin also increased basal P and PGE2 levels, and enhanced the stimulation of PGE2 by A23187 or TPA. However, in the combined presence of A23187 and TPA, melittin failed to further enhance the high levels of PGE2 accumulated. These findings further support a role for the intracellular calcium, protein kinase C, and arachidonic acid metabolic pathways in the multiple actions of LHRH in the ovary.  相似文献   

4.
Angiotensin II increased PGE2 release from superfused glomeruli, and stimulated labeled inositol phosphate production. 12-O-Tetradecanoyl phorbol -13-acetate (TPA, 10(-7) M), which stimulates protein kinase C activity in soluble fractions of glomerular homogenates, suppressed angiotensin II actions on inositol phosphate production and PGE2. By contrast, 4a phorbol 12,13 di-decanoate and phorbol had no effect on protein kinase C activity or angiotensin II induced increases in inositol phosphate or PGE2. 1-(5-Isoquinolinyl)-2-methylpiperazine (H-7), which inhibits protein kinase C activity in soluble fractions of glomerular homogenates, prevented TPA induced suppression of angiotensin II actions on inositol phosphate production and PGE2. Moreover H-7 prolonged the time course of angiotensin II induced inositol phosphate production and enhanced angiotensin II actions on glomerular PGE2 production. The results support a role for inositol phospholipid hydrolysis through the phospholipase C pathway in the mediation of angiotensin II actions on PGE2 in glomeruli and are consistent with negative modulation of these actions by protein kinase C.  相似文献   

5.
6.
The incubation of isolated rat pancreatic acini with low doses (1 x 10(-11)-1 x 10(-10) M) of cholecystokinin-octapeptide (CCK8) induced amylase release. This CCK8-induced amylase release has been shown to be mediated through the protein kinase C activation and the Ca2+ mobilization which are linked to the phospholipase C-mediated hydrolysis of phosphoinositides. However, the incubation of the acini with high doses (1 x 10(-9)-1 x 10(-7) M) of CCK8 reduced amylase release to the level less than that induced by the maximally effective dose (1 x 10(-10) M) of this secretagogue. Under the same conditions, the high doses of this secretagogue did not inhibit the phospholipase C-mediated hydrolysis of phosphoinositides. The stimulatory action of the maximally effective dose of CCK8 in amylase release was mimicked by the simultaneous addition of protein kinase C-activating 12-O-tetradecanoylphorbol-13-acetate (TPA) and Ca2+ ionophore A23187. A high dose (1 x 10(-7) M) of CCK8 reduced the amylase release induced by the combination of TPA and A23187. These results suggest that the high doses of CCK8 inhibit the secretory process post to the protein kinase C-Ca2+ systems and thereby reduce the amylase release induced by the maximally effective dose of CCK8 in rat pancreatic acini.  相似文献   

7.
We studied the cholinergic stimulation of isolated and enriched rat parietal cells. H+ production was indirectly measured by the uptake of 14C-aminopyrine into the parietal cells. Stimulation by carbachol required the presence of extracellular Ca2+ not only in the initial phase but also during the sustained phase of a 100-min incubation period. The response to carbachol was prevented by the Ca2+ entry blocker lanthanum IC50: 1.5 X 10(-7) mol/l). Furthermore, the dependence on Ca2+ influx of cholinergic stimulation was demonstrated by a 269% increase in total intracellular Ca2+ in response to carbachol, as determined by optical emission spectrometry. The naphthalene sulfonamides W7 and W5 which bind calmodulin and thus block the intracellular transduction of Ca2+ effects also inhibited a carbachol-induced H+ production. In the following experiments we studied the effect of agents which activate the protein kinase C, an enzyme which is supposed to play a key role in intracellular signal transduction of Ca2+-dependent effects. Phospholipase C is supposed to activate protein kinase C via induction of the phosphoinositol breakdown. In our preparation of isolated rat parietal cells, phospholipase C (4-100 mU/ml) exerted inhibition instead of amplification of the response to 10(-4) mol/l carbachol. Similarly, the direct activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate or by 1-oleoyl-2-acetyl-sn-glycerol (both tested at 10(-7) to 10(-5) mol/l) reduced the submaximal and maximal response to 10(-5) or 10(-4) mol/l carbachol. We conclude that the cholinergic stimulation of rat parietal cells is dependent on the influx of extracellular Ca2+. Calmodulin seems to mediate intracellular Ca2+ effects during cholinergic stimulation. The activation of protein kinase C impairs carbachol-induced H+ production instead of augmenting the response. This might be due to an already maximal activation of protein kinase C by carbachol alone or to autoregulatory down-regulation by the protein kinase C of muscarinic parietal-cell receptors.  相似文献   

8.
Bombesin-like peptides as well as receptor-independent activators were tested for their effect on gastrin release from acutely dispersed rat gastric G-cells. The amphibian peptide bombesin as well as its mammalian analogues neuromedin B and neuromedin C stimulated gastrin release. Maximal responses were achieved with 10(-9) M bombesin (191.0 +/- 16.8% of basal release), 10(-8) M neuromedin C(205.9 +/- 17.6%) and 10(-7) M neuromedin B (162.2 +/- 10.4%), respectively. The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and the synthetic diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) are receptor-independent activators of the protein kinase C. Both TPA (10(-6) M) and OAG (10(-5) M) stimulated gastrin release to 214.0 +/- 29.3% and 198.2 +/- 20.8% of basal, respectively. Calcium ionophore A23187 (10(-5) M) was the most effective stimulant tested (364.7 +/- 39.6%). Its effect was reversed by the calmodulin antagonist W 7 (10(-6)-10(-5) M). Finally, forskolin (10(-5) M), a direct activator of cAMP-formation, as well as the cAMP-analogue dbcAMP (10(-3) M) induced gastrin release. IN conclusion, neuromedin B is less potent and less effective than neuromedin C and bombesin in stimulating rat gastric G-cells. In addition, gastrin release is activated by calcium- and phospholipid-dependent as well as by cAMP-induced cellular signal transduction mechanisms.  相似文献   

9.
We sought to investigate the mechanisms by which the calcium ionophore A23187 triggers arachidonic acid release in bovine pulmonary endothelial cells and to test the hypothesis that protein kinase C is involved in this process. Our results indicate that the mechanism by which A23187 increases phospholipase A2 activity and arachidonic acid release in bovine pulmonary arterial endothelial cells depends upon the concentration studied. At concentrations of 1 microM and 2.5 microM, A23187 increases phospholipase A2 activity and arachidonic acid release without stimulating protein kinase C. At concentrations of 5-12.5 microM, A23187 increases arachidonic acid release and phospholipase A2 activity in conjunction with a dose-dependent activation of membrane-bound protein kinase C. To test the hypothesis that these doses of A23187 increase phospholipase A2 activity by stimulating protein kinase C, we studied the effect of prior treatment with the protein kinase C inhibitor sphingosine. Sphingosine inhibits the increase in phospholipase A2 activity and arachidonic acid release caused by A23187 over the range 5-12.5 microM. To investigate further the potential role of protein kinase C, we studied the effects of the inactive phorbol ester 4 alpha-phorbol 12 beta-myristate 13 alpha-acetate (4 alpha-PMA) and an active phorbol ester 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (4 beta PMA). Neither 4 alpha-PMA nor 4 beta-PMA affected basal arachidonic acid release. 4 alpha-PMA also did not augment the effects of A23187. In contrast, 4 beta-PMA significantly augments the increase in phospholipase A2 activity and arachidonic acid release caused by lower doses of A23187. Under these conditions, sphingosine completely inhibits the stimulatory effects of 4 beta-PMA on protein kinase C translocation, phospholipase A2 and arachidonic acid release. Thus, at low doses (1 microM and 2.5 microM) A23187 increases phospholipase A2 activity and arachidonic acid release by a mechanism that does not involve protein kinase C. At these A23187 doses, activating membrane-bound protein kinase C with 4 beta-PMA causes a synergistic increase in phospholipase A2 activity and arachidonic acid release. At higher doses (5-12.5 microM), A23187 acts in large part by stimulating protein kinase C translocation. Overall, our results indicate that activating membrane-bound protein kinase C by itself is an insufficient stimulus to increase phospholipase A2 activity and arachidonic acid release in pulmonary endothelial cells, but activating protein kinase C can substantially augment the increase in phospholipase A2 activity and arachidonic acid caused by a small increase in intracellular calcium.  相似文献   

10.
12-O-Tetradecanoylphorbol-13-acetate (TPA) stimulates the release of free choline from intact NG108-15 cells into the medium, without affecting the release of phosphocholine (Liscovitch, M., Blusztajn, J.K., Freese, A., and Wurtman, R.J. (1987) Biochem. J. 241, 81-86). To test the hypothesis that this response reflects activation of cellular phospholipase D, via protein kinase C (Ca2+/phospholipid-dependent enzyme), I examined in NG108-15 cells the biosynthesis of the abnormal phospholipid phosphatidylethanol, produced by phospholipase D in the presence of ethanol by transphosphatidylation. Phosphatidylethanol production was quantitated by measuring the incorporation of phosphatidyl moieties (prelabeled metabolically with [3H]oleic acid) into phosphatidylethanol. The production of phosphatidylethanol in NG108-15 cells was virtually dependent on stimulation by TPA, in a time- and concentration-dependent manner (EC50 = 18 nM). The rate of 3H-phosphatidylethanol formation reached a peak after 10 min of incubation with TPA and declined gradually thereafter. The levels of 3H-phosphatidylethanol in TPA-treated cells were directly related to ethanol concentration in the physiologically attainable range (20-80 mM). Phosphatidylethanol production was activated only by phorbol derivatives that are activators of protein kinase C (i.e. TPA, 4 beta-phorbol-12,13-dibutyrate, and 4 beta-phorbol-12,13-didecanoate) and could be mimicked by a cell-permeant diacylglycerol, 1,2-dioctanoyl-sn-glycerol, in a nonadditive manner. The effect of TPA was inhibited by the protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (0.1 mM) by 70% but not by N-(2-guanidinoethyl)-5-isoquinolinesulfonamide. Phosphatidylethanol formation was completely abolished in cells in which protein kinase C was down-regulated by pretreatment of the cells with TPA. These results indicate that phosphatidylethanol biosynthesis in NG108-15 cells depends largely on activation of protein kinase C. In contrast to its effects on the release of free choline and on the accumulation of phosphatidylethanol, TPA did not affect the levels of phosphatidic acid in NG108-15 cells. It is therefore proposed that protein kinase C selectively activates the phosphatidyl transferase activity of phospholipase D, reflecting a signal termination mechanism which may be operative in phospholipase D-mediated signal transduction cascades.  相似文献   

11.
Many stimulators of prostaglandin production are thought to activate the Ca2+- and phospholipid-dependent protein kinase first described by Nishizuka and his colleagues (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y. (1979) J. Biol. Chem. 254, 3692-3695. In this paper we report evidence that the activation of protein kinase C caused by 12-O-tetradecanoylphorbol-13-acetate (TPA) is involved in the increased prostaglandin production induced by 12-O-tetradecanoylphorbol-13-acetate in Madin-Darby canine kidney (MDCK) cells. We have shown that TPA activates protein kinase C in MDCK cells with similar dose response curve as observed for TPA induction of arachidonic acid release in MDCK cells. Activation of protein kinase C was associated with increased phosphorylation of proteins of 40,000 and 48,000 daltons. We used two compounds (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (ET-18-OMe) and 1-(5-isoquinolinesulfonyl)piperazine) known to inhibit protein kinase C by different mechanisms to further examine if activation of protein kinase C was involved in the increased synthesis of prostaglandins in TPA-treated MDCK cells. We found that both compounds inhibited protein kinase C partially purified from MDCK cells and that ET-18-OMe inhibited the phosphorylation of proteins by protein kinase C in the intact cells. Addition of either compound during or after TPA treatment decreased both release of arachidonic acid from phospholipids and prostaglandin synthesis. Release of [3H]arachidonic acid from phosphatidylethanolamine in TPA-treated cells was blocked by ET-18-OMe or 1-(5-isoquinolinesulfonyl)piperazine addition. However, arachidonic acid release stimulated by A23187 is not blocked by Et-18-OMe. When assayed in vitro, treatment of cells with Et-18-OMe did not prevent the enhanced conversion of arachidonic acid into prostaglandins induced by pretreatment of cells with TPA. Our results suggest that the stimulation of phospholipase A2 activity by TPA occurs via activation of protein kinase C by TPA.  相似文献   

12.
Carbamylcholine-stimulated catecholamine release from adrenal chromaffin cells was completely inhibited by pretreatment of the cells for 10 min with 1 μM calmidazolium. Catecholamine release due to 55 mM K+ and ionophore A23187 was also inhibited by calmidazolium but less effectively than release due to carbamylcholine. Inhibition of release appeared to be due to an effect of calmidazolium on a step distal to Ca2+ entry, since the carbamylcholine-stimulated rise in the concentration of intracellular free calcium, monitored using quin-2, was unaffected by calmidazolium. The possibility was considered that calmidazolium inhibited secretion through an effect on protein kinase C rather than calmodulin. However, the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA), had no demonstrable effect on catecholamine release, arguing against a significant role for protein kinase C in secretion from adrenal chromaffin cells. These results give further support to the notion that calmodulin plays a role in the secretory process in chromaffin cells.  相似文献   

13.
The feedback regulatory control mechanism exerted by activated Ca2+/phospholipid-dependent protein C kinase upon gonadotropin releasing hormone (GnRH) binding, stimulation of phosphoinositide turnover and gonadotropin secretion was investigated in cultured pituitary cells. Addition of the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), at concentrations which activate pituitary protein C kinase, to cultured pituitary cells resulted in up-regulation of GnRH receptors (155% at 4 h). The stimulatory effect of GnRH on [3H]inositol phosphates (Ins-P) production in myo-[2-3H]inositol prelabeled pituitary cells was not inhibited by prior treatment of the cells with TPA (10(-9)-10(-7) M). Higher concentrations of TPA (10(-6)-10(-5) M) inhibited the effect of GnRH on [3H]Ins-P production. Increasing concentrations of TPA or the permeable analog of diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) stimulated luteinizing hormone (LH) release from cultured pituitary cells with ED50 values of 5 x 10(-9) M and 10 micrograms/ml, respectively. No consistent inhibition or additivity of LH release was observed when increasing doses of TPA or OAG were added with a submaximal dose of GnRH. These results suggest that protein C kinase might mediate the known homologous up-regulation of GnRH receptors during the reproductive cycle. Protein C kinase is positively involved in mediating the process of gonadotropin secretion. Unlike many other systems, activation of protein C kinase in pituitary gonadotrophs is not involved in negative feed-back regulation of stimulus-secretion-coupling mechanisms in GnRH-stimulated gonadotrophs.  相似文献   

14.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin F2 alpha (PGF2 alpha) stimulated arachidonic acid (AA) release in a dose-dependent manner in the range between 1 nM and 10 microM. 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, which by itself had little effect on AA release, markedly amplified the release of AA stimulated by PGF2 alpha in a dose-dependent manner. 4 alpha-phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect on the PGF2 alpha-induced AA release. 1-oleoyl-2-acetylglycerol (OAG), a specific activator for PKC, mimicked TPA by enhancement of the AA release induced by PGF2 alpha. H-7, a PKC inhibitor, markedly suppressed the effect of OAG on PGF2 alpha-induced AA release. Quinacrine, a phospholipase A2 inhibitor, showed partial inhibitory effect on PGF2 alpha-induced AA release, while it suppressed the amplification by OAG of PGF2 alpha-induced AA release almost to the control level. Furthermore, TPA enhanced the AA release induced by melittin, known as a phospholipase A2 activator. On the other hand, TPA inhibited the formation of inositol trisphosphate stimulated by PGF2 alpha. Under the same condition, PGF2 alpha indeed stimulated prostaglandin E2 (PGE2) synthesis and TPA markedly amplified the PGF2 alpha-induced PGE2 synthesis as well as AA release. These results indicate that the activation of PKC amplifies PGF2 alpha-induced both AA release and PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like cells.  相似文献   

15.
In gastrointestinal research the in vitro release of prostaglandins from incubated or cultured biopsies is a widely used method to estimate prostaglandin synthesis. We therefore investigated the rate limiting mechanisms of PGE2 release in organ cultured gastric mucosa of the rabbit, determining PGE2 secretion from organ cultured mucosal biopsies by radioimmunoassay and prostaglandin synthesizing capacity by in vitro incubation of mucosal homogenate or microsomes with [14C]-arachidonic acid. Freshly taken biopsies secreted PGE2 at an initial high rate, that decreased during the following 4 hrs of culture. This PGE2 release was dose dependently reduced by inhibitors of the prostaglandin cyclooxygenase. 5mM acetylsalicylic acid (ASA) maximally suppressed PGE2 secretion to 7% of controls, and the inhibition by ASA was quantitatively similar at every given culture period. PGE2 release was markedly increased by carbenoxolone but was only slightly activated by extracellular calcium and the Ca(++)-ionophore A23187. However, Ca++/A23187 were unable to maintain PGE2 secretion at the initial rate. PGE2 secretion was undisturbed in calcium-free medium but was reduced to 50-60% of controls by excess EDTA. The intracellular calcium chelator 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N',-tetraacetic acid-acetoxymethyl ester (BAPTA-AM) similarly inhibited PGE2 release to 72% of controls. In contrast, PGE2 release was unaffected by the intracellular calcium antagonist 3,4,5-trimethylene-bis(4-formylpyridinium bromide) dioxime (TMB-8), the calmodulin antagonists N-(6-aminohexyl)-1-5-chloro-1-naphthalenesulfonamide (W-7) and calmidazolium (compound R24571) or various direct inhibitors of endogenous arachidonic acid release like tetracaine, bromophenacyl bromide, neomycin or low dose quinacrine, indicating that the reduction of PGE2 release by EDTA or BAPTA may be mediated by mechanisms different from substrate release. In contrast, an inhibition of PGE2 secretion by quinacrine at high concentrations (greater than or equal to 0.8 mM) was attributed to a direct inhibition of the prostaglandin cyclooxygenase, similar to ASA. Finally, the reduction of the prostaglandin synthesizing capacity by ASA was strongly correlated with the inhibition of PGE2 secretion, also at low concentrations and minor degrees of inhibition. From these data we conclude, that the activity of the prostaglandin cyclooxygenase is rate limiting for PGE2 secretion from organ cultured mucosal biopsies rather than arachidonic acid release by a phospholipase A2. This should be considered for interpretation of studies based on prostaglandin release from cultured mucosa.  相似文献   

16.
M Hartmann  M Kelm  J Schrader 《Life sciences》1991,48(17):1619-1626
In cultured coronary endothelial cells obtained from guinea pig hearts, bradykinin (10(-6) M) stimulated the 32Pi-incorporation into 5 substrate proteins with molecular weights corresponding to 27, 32, 60, 86 and 100 kDa. The time course of phosphorylation of the 60, 86 and 100 kDa proteins was rapid (within 30 s), but transient (max. within 1-2 min.), while the 32Pi incorporation into the 27 and 32 kDa protein was delayed but increased within 10 minutes. Ca+(+)-ionophore A 23187 (10(-5) M) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (10(-5) M) both mimicked the effects of the bradykinin induced phosphorylation pattern. While A 23187 enhanced the phosphorylation of the 27, 60 and 100 kDa substrates, TPA increased the 32Pi-incorporation into the 32 and 86 kDa proteins. Furthermore the time course of protein phosphorylation elicited by A 23187 and TPA showed marked similarities to those obtained with bradykinin. Our findings are consistent with the view, that stimulation of coronary endothelial bradykinin-receptors activates both Ca+(+)-dependent protein kinases and protein kinase C.  相似文献   

17.
In enzymatically dispersed enriched rat parietal cells we studied the effect of pertussis toxin on prostaglandin E2 (PGE2)- or somatostatin-induced inhibition of H(+)-production. Parietal cells were incubated in parallel in the absence (control cells) and presence of pertussis toxin (250 ng/ml; 4 h). [14C]Aminopyrine accumulation by both pertussis toxin-treated and control cells was used as an indirect measure of H(+)-production after stimulation with either histamine, forskolin or dibutyryl adenosine 3',5'-cyclic monophosphate (dbcAMP) alone and in the presence of PGE2 (10(-9)-10(-7) M) or somatostatin (10(-9)-10(-6) M). PGE2 inhibited histamine- and forskolin-stimulated [14C]aminopyrine accumulation but failed to alter the response to dbcAMP. Somatostatin was less effective and less potent than PGE2 in inhibiting stimulation by histamine or forskolin and reduced the response to dbcAMP. Pertussis toxin completely reversed inhibition by both PGE2 and somatostatin on histamine- and forskolin-stimulated H(+)-production but failed to affect inhibition by somatostatin of the response to dbcAMP. After incubation of crude control cell membranes with [32P]NAD+, pertussis toxin catalysed the incorporation of [32P]adenosine diphosphate (ADP)-ribose into a membrane protein of molecular weight of 41,000, the known molecular weight of the inhibitory subunit of adenylate cyclase (Gi alpha). Pertussis toxin treatment of parietal cells prior to the preparation of crude membranes almost completely prevented subsequent pertussis toxin-catalysed [32P]ADP ribosylation of the 41,000 molecular weight protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The role of protein kinase C in phospholipase A2 (PLA2) activation in rat basophilic leukemia cells (RBL-2H3) and macrophages was investigated. 12-O-Tetradecanoyl phorbol 13-acetate (TPA) doubled ionomycin-induced PLA2 activity, assessed by [3H]arachidonate release. Protein kinase C inhibitors, staurosporine and K252a (100 nM) or H-7 (15 micrograms/ml) inhibited ionomycin-stimulation of PLA2 activity by 62, 75 and 80%, respectively. Down-regulation of protein kinase C by prolonged treatment with TPA inhibited Ca2(+)-ionophore A23187 or antigen-stimulation of [3H]arachidonate release by 80%. We examined whether the inhibitory effect of dexamethasone (DEX) on PLA2 activity is related to modulation of protein kinase C activity. The 50% inhibition by DEX of ionomycin elevation of [3H]arachidonate release was almost overcome by addition of TPA. The Ca2+ ionophore and antigen-induced increase in [3H]TPA binding to intact RBL cells was not impaired by DEX. However, DEX markedly reduced phosphorylation of several proteins. 1-Oleoyl-2-acetyl-glycerol (OAG) had a sustained stimulatory effect on PLA2 activity in isolated plasma membranes derived from treated bone-marrow intact mouse macrophages, while both DEX and staurosporine reduced elevated PLA2 activity by 68 and 84%, respectively. The results support an essential role for protein kinase C in regulation of PLA2 activity.  相似文献   

19.
Depolarization of PC-12 pheochromocytoma cells with K+ produces an immediate increase in catecholamine release. The stimulation of release is blocked by Co2+, removal of extracellular Ca2+ or by dihydropyridine drugs such as nitrendipine. Release is enhanced by other dihydropyridines such as BAY K8644. Release is accompanied by a voltage dependent uptake of 45Ca2+ which is also blocked by Co2+ or nitrendipine and enhanced by BAY K8644. The phorbol ester phorbol 12-myristate-13-acetate (TPA) in the range 10(-9)-10(-6) M produced little effect by itself but augmented the K+ evoked release of catecholamine. An analog of TPA which does not activate protein kinase C was ineffective. In contrast, TPA in the same concentration range blocked influx of 45Ca2+ induced by 70 mM K+ or 70 mM K+/BAY K8644. 45Ca2+ influx produced by A23187 was not blocked by TPA. The results suggest a system by which protein kinase C may regulate the output of transmitters from secretory cells.  相似文献   

20.
J Pfeilschifter 《FEBS letters》1986,203(2):262-266
Preincubation of rat renal mesangial cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) strongly inhibited the increases of inositol phosphates and of free cytosolic Ca2+ induced by angiotensin II (10(-7) M). TPA had no significant effect on the basal values of inositol phosphates and of free cytosolic Ca2+. Inhibition appeared already after 1 min and was maximal after 5 min. These effects occur without significant changes on angiotensin II binding in intact cells. The concentration of TPA needed (10(-9)-10(-7) M) was in the range believed to cause specifically an activation of protein kinase C. Furthermore the biologically inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate was without effect. From the entirety of these results it is likely that protein kinase C inhibits angiotensin II activation of phospholipase C at a stage distal to receptor occupancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号