首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the concentration range of 10(-5) to 10(-1) M Ca2+ modulates the thermotropic properties of several neutral and anionic glycosphingolipids (galactosylceramide, asialo-GM1, sulfatide, GM1, GD1a, GT1b) and of their mixtures with dipalmitoylphosphatidylcholine. The transition temperature of gangliosides is not appreciably changed while the transition enthalpy increases by 20% in the presence of Ca2+. The more marked effect of Ca2+ is on the thermotropic behavior of systems containing sulfatide. Increasing concentrations of Ca2+ between 10(-5) and 10(-3) M (up to a molar ratio of Ca2+/sulfatide 1:2) induce a progressive increase of both the transition temperature and enthalpy. Further increases up to 10(-1) M Ca2+ induce a new phase transition at a lower temperature. No evidence is found for induction of phase separation of pure glycosphingolipid-Ca2+ domains in mixtures of any of the glycosphingolipids with dipalmitoylphosphatidylcholine. The modification of the phase behavior of anionic glycosphingolipids by Ca2+ does not involve detectable variations of the intermolecular packing but is accompanied by marked modifications of the dipolar properties of the polar head group region.  相似文献   

3.
Effect of propylgallate (PrG) on the thermotropic behavior of mixtures of dipalmitoylphosphatidylglycerol (DPPG) and Ca2+ was studied by means of differential scanning calorimetry (DSC). In the case of DPPG or DPPG/Ca (molar ratio, 15 : 1), the transition temperature (Tm) of the main transition and the subtransition decreased from 40 degrees C to 29 degrees C and from 29 degrees C to 20 degrees C, respectively, with an increase in the concentration of PrG. The addition of PrG to the DPPG/Ca mixture induced a shoulder on the high temperature side in the reheating scan. Neither PrG nor low concentrations of Ca2+ bind to the Lc phase of DPPG. When the molar ratio of DPPG to Ca was 1 : 1, the subtransition did not occur, that is, only the main transition (Tm = 90 degrees C) appeared. The Tm of the main transition was slightly affected by PrG. On the addition of PrG, another metastable endothermic transition peak (Tm = 78 degrees C) appeared. It is concluded that Ca2+ and PrG inhibit each other's binding.  相似文献   

4.
From data obtained by differential scanning calorimetry phase diagrams were constructed, using a thermodynamically based fitting method. The following binary mixtures of phosphatidylcholines in water were studied: 14:0/14:0-glycerophosphocholine/16:0/16:0-glucerophosphocholine, 14:0/14:0-glycerophosphocholine/18:0/18:0-glycerophosphocholine, 12:0/12:0-glycerophosphocholine/16:0/16:0-glycerophosphocholine, 18:1t/18:1t-glycerophosphocholine/14:0/14:0-glycerophosphocholine and 18:1t/18:1t-glycerophosphocholine/16:0/16:0-glycerophosphocholine. A comparison is made of the present results with those obtained using probe techniques and the differences are discussed.  相似文献   

5.
From data obtained by differential scanning calorimetry phase diagrams were constructed, using a thermodynamically based fitting method. The following binary mixtures of phosphatidylcholines in water were studied: 14:0/ 14:0-glycerophosphocholine/16:0/16:0-glycerophosphocholine, 14:0/14:0-glycerophosphocholine /18:0/18:0-glycerophosphocholine, 12:0/12:0-glycerophosphocholine /16:0/16:0-glycerophosphocholine, 18:1t/18:1t-glycerophosphocholine /14:0/14:0-glycerophosphocholine and 18:1t/18:1t-glycerophosphocholine /16:0/16:0-glycerophosphocholine.A comparison is made of the present results with those obtained using probe techniques and the differences are discussed.  相似文献   

6.
The voltage-dependent gating of single, batrachotoxin-activated Na channels from rat brain was studied in planar lipid bilayers composed of negatively charged or neutral phospholipids. The relationship between the probability of finding the Na channel in the open state and the membrane potential (Po vs. Vm) was determined in symmetrical NaCl, both in the absence of free Ca2+ and after the addition of Ca2+ to the extracellular side of the channel, the intracellular side, or both. In the absence of Ca2+, neither the midpoint (V0.5) of the Po vs. Vm relation, nor the steepness of the gating curve, was affected by the charge on the bilayer lipid. The addition of 7.5 mM Ca2+ to the external side caused a depolarizing shift in V0.5. This depolarizing shift was approximately 17 mV in neutral bilayers and approximately 25 mV in negatively charged bilayers. The addition of the same concentration of Ca2+ to only the intracellular side caused hyperpolarizing shifts in V0.5 of approximately 7 mV (neutral bilayers) and approximately 14 mV (negatively charged bilayers). The symmetrical addition of Ca2+ caused a small depolarizing shift in Po vs. Vm. We conclude that: (a) the Na channel protein possesses negatively charged groups on both its inner and outer surfaces. Charges on both surfaces affect channel gating but those on the outer surface exert a stronger influence. (b) Negative surface charges on the membrane phospholipid are close enough to the channel's gating machinery to substantially affect its operation. Charges on the inner and outer surfaces of the membrane lipid affect gating symmetrically. (c) Effects on steady-state Na channel activation are consistent with a simple superposition of contributions to the local electrostatic potential from charges on the channel protein and the membrane lipid.  相似文献   

7.
The interactions of CaCl2 or MgCl2 with multilamellar phospholipid bilayers were studied by 2H-NMR. Two model membrane systems were used: (1) dipalmitoylphosphatidylcholine (DPPC) bilayers and (2) bilayers composed of a mixture of phosphatidylcholine and phosphatidylglycerol at a molar ratio of 5:1. Addition of 0.25 M CaCl2 to DPPC bilayers resulted in significant uniform increase of the order parameters of the lipid side chains; the effect of 0.25 M MgCl2 was insignificant. Both phosphatidylcholine and phosphatidylglycerol components of the mixed bilayers were affected by the presence of 0.25 M CaCl2 and, to a much smaller degree, by MgCl2. The addition of Ca2+ induced significantly larger increase of the order parameters of the phosphatidylcholine component. The results are consistent with the long-range effects of Ca2+ binding on the packing of the lipid membranes.  相似文献   

8.
Mixtures of cholesterol with dipalmitoylphosphatidylserine or phosphatidic acid were investigated by differential scanning calorimetry. As in mixtures of natural phosphatidylserine with cholesterol (Bach, D. (1984) Chem. Phys. Lipids 35, 385-392), also here phase separation of cholesterol at molar ratios of 2:1 (phospholipid:cholesterol) and below is observed. The limited solubility of cholesterol in negatively charged phospholipids is found to be independent of the nature of the acyl chain residues, and independent of whether the negative charge resides on both COO- and PO- groups (as in phosphatidylserine) or on PO- only (as in phosphatidic acid). The separate cholesterol phase is also seen by DSC in mixtures of natural phosphatidylserine or phosphatidic acid with cholesterol in the presence of Ca2+; and in phosphatidylserine/cholesterol mixtures in the presence of Li+, by DSC and X-ray diffraction.  相似文献   

9.
The effects of calcium ions on mixed membranes of dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidylcholine (DMPC) with either the PA or the PC component deuterated have been studied by Raman spectroscopy. The spectra of the pure components show that the acyl chains of hydrated DMPA bilayers are less tightly packed and have more trans bonds than those of DMPC. This behavior appears to be due to the particular arrangement of the polar head groups of DMPA for which the glycerol chain is oriented parallel to the bilayer surface. In agreement with the calorimetrically determined phase diagram [Graham, I., Gagné, J., & Silvius, J. R. (1985) Biochemistry (preceding paper in this issue)], the Raman results show that, in the absence of calcium, DMPA and DMPC are completely miscible at an equimolar ratio but undergo extensive phase separation in the presence of excess calcium. DMPC in phase-separated DMPC-DMPA (Ca2+) mixtures has a conformation that is very similar to that of pure DMPC bilayers, but it is packed more tightly since, depending on the temperature, it is at least partly incorporated into either a solid solution in DMPA or a DMPA-Ca2+-rich "cochleate" phase. This latter shows the same characteristics as the cochleate phase of pure DMPA-Ca2+ which is highly ordered and does not give rise to a thermotropic transition between 5 and 100 degrees C. However, the cochleate phase in DMPA (Ca2+)-DMPC mixtures contains some 20 mol % of DMPC trapped in small domains. These clusters do not melt cooperatively but become as fluid as pure DMPC at 50 degrees C.  相似文献   

10.
Synthesis and phase transition chaaracteristics of aqueous dispersions of the homologous (12 : 0, 14 : 0, 16 : 0) diphosphatidylglycerols (cardiolipins) and phosphatidyldiacylglycerols are reported. Electron microscopy of the negatively stained aqueous dispersions reveals a characteristic lamellar structure suggesting that these phospholipid molecules are organized as bilayers in the aqueous dispersions. The phase transition temperature (Tm) and the enthalpy of transition (delta H) increase monotonically with chain length in the cardiolipin and phosphatidyldiacylglycerol series; Tm for phosphatidyldiacylglycerol is higher than that for cardiolipin of the same chain-length. The transition temperatures for the enantiomeric sn-3,3- and sn-1,1-phosphatidyldiacylglycerol and for the diastereomeric, meso-sn-1,3-phosphatidyldiacylglycerol are approximately the same. The molar enthalpy for the transition of cardiolipin-NH+4 bilayers is approximately twice the value for the phosphatidylcholines of the same chain length, i.e., the molar enthalpy per acyl chain is approximately the same in the two systems. The transition temperatures for metal ion salts of C16-cardiolipin exhibit a biphasic dependence upon the unhydrated ionic radii, i.e., the highest Tm is observed for Ca2+-cardiolipin and decreases for the salts of ions with smaller and larger ionic radii than that of Ca2+. The lowest Tm is observed for Rb+-cardiolipin. Monovalent metal salts of cardiolipin exhibit two phase transitions. This effect may result from different conformational packing of the four acyl chains due to differences in metal-phosphate binding.  相似文献   

11.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (approximately 11-15 degrees C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (approximately 23-25 degrees C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing approximately 30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

12.
Differential scanning calorimetry was employed to investigate the interaction of GM1 gangliosides with phospholipids (phosphatidylethanolamine, phosphatidylserine or phosphatidylcholine). It was found that GM1 is completely miscible with phosphatidylethanolamine; however, the interaction with phosphatidylserine is minimal. Addition of excess Ca2+ to the interaction products of GM1 with phosphatidylcholine or phosphatidylethanolamine did not induce phase separation. The influence of myelin basic protein on the thermotropic behaviour of GM1 was also studied. It was found that basic protein has a very strong perturbing effect on GM1 micelles.  相似文献   

13.
Addition of the local anesthetic tetracaine (TTC) to multilamellar dispersions of natural phosphatidylserine (PS) causes changes in the thermotropic properties of the membrane, which can be detected by differential scanning calorimetry, and in the structure of the membrane as detected by X-ray diffraction. At molar ratio [PS]/[TTC]8.5, the melting temperature of the phospholipid shifts downwards by approximately 2.5 °C. The melting endotherm is broadened; however, there is little change in the enthalpy of melting. In ternary mixtures (PS–TTC–cholesterol), the thermotropic changes are enhanced. At [PS]/[TTC]13, the onset of phase separation of cholesterol crystals from PS in the liquid crystalline state occurs at molar fraction cholesterol (Xchol)0.28, marginally smaller than that found in the absence of the anesthetic.  相似文献   

14.
Sonicated vesicles of phosphatidylserine and phosphatidylserine/phosphatidylcholine mixtures were recombined with spectrin-actin from human erythrocyte ghosts. Morphological properties and physicochemical characteristics of the recombinates were studied with freeze etch electron microscopy, 31P NMR and differential scanning calorimetry. Sonicated dimyristoyl phosphatidylserine vesicles show a decrease in enthalpy change of the lipid phase transition upon addition of spectrin-actin. These vesicles collapse and fuse, into multilamellar structures in the presence of spectrin-actin, as demonstrated by freeze fracturing and NMR. Spectrin-actin cannot prevent the salt formation between phosphatidylserine and Ca2+, all phosphatidylserine is withdrawn from the lipid phase transition. In contrast a protection against the action of Mg2+ could be observed. Mixed bilayers of dimyristoyl phosphatidylserine/dimyristoyl phosphatidylcholine show phase separations at molar ratios above 1/1 (van Dijck, P.W.M., de Kruijff, B., Verkleij, A.J., van Deenen, L.L.M. and de Gier, J. (1978) Biochim. Biophys. Acta 512, 84--96). These phase spearations can be prevented by spectrin-actin. Ca2+-induced lateral phase separations in cocrystallizing phosphatidylserine/phosphatidylcholine mixtures, can be reduced by spectrin-actin. Formation of the Ca2+-phosphatidylserine salt, occurring in addition to lateral phase separation when mixtures contain more than 30 mol % phosphatidylserine, cannot be prevented by spectrin-actin.  相似文献   

15.
The molecular organization, interactions, phase state and membrane-membrane interactions of model membranes containing cerebroside (GalCer), sulfatide (Sulf) and myelin basic protein (MBP) were investigated. Sulf shows a larger cross-sectional area than GalCer, in keeping with the lateral electrostatic repulsions in the negatively charged polar head group. The interactions of GalCer with different phospholipids are similar while those with Sulf depend on the phosphoryl choline moiety in the phospholipid. MBP induces a decrease of the phase transition temperature in both lipids but with Sulf this occurs at lower proportions of MBP. In mixtures of Sulf with phosphatidylcholine MBP induces phase separation among Sulf-rich and PC-rich domains. Extensive apposition of bilayers containing Sulf is induced by MBP while GalCer interferes with this process. Few membrane interactions proceed to bilayer merging or whole bilayer fusion and the glycosphingolipids help preserve the membrane integrity.  相似文献   

16.
The thermotropic phase behavior of hydrated bilayers derived from binary mixtures of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG) was investigated by differential scanning calorimetry, Fourier-transform infrared spectroscopy and 31P-nuclear magnetic resonance spectroscopy. Binary mixtures of DMPC and DMPG that have not been annealed at low temperatures exhibit broad, weakly energetic pretransitions (∼11-15 °C) and highly cooperative, strongly energetic gel/liquid-crystalline phase transitions (∼23-25 °C). After low temperature incubation, these mixtures also exhibit a thermotropic transition form a lamellar-crystalline to a lamellar gel phase at temperatures below the onset of the gel/liquid-crystalline phase transition. The midpoint temperatures of the pretransitions and gel/liquid-crystalline phase transitions of these lipid mixtures are both maximal in mixtures containing ∼30 mol% DMPG but the widths and enthalpies of the same thermotropic events exhibit no discernable composition dependence. In contrast, thermotropic transitions involving the Lc phase exhibit a very strong composition dependence, and the midpoint temperatures and transition enthalpies are both maximal with mixtures containing equimolar amounts of the two lipids. Our spectroscopic studies indicate that the Lc phases formed are structurally similar as regards their modes of hydrocarbon chain packing, interfacial hydration and hydrogen-bonding interactions, as well as the range and amplitudes of the reorientational motions of their phosphate headgroups. Our results indicate that although DMPC and DMPG are highly miscible, their mixtures do not exhibit ideal mixing. We attribute the non-ideality in their mixing behavior to the formation of preferential PC/PG contacts in the Lc phase due to the combined effects of steric crowding of the DMPC headgroups and charge repulsion between the negatively charged DMPG molecules.  相似文献   

17.
A controlled exchange of calcium between the extracellular space (mM Ca2+) and the neuroplasm (microM Ca2+) is considered to be an essential prerequisite for almost every stage of neuronal activity. Our research interest is focused on those compounds, which due to their physico-chemical properties and localization within the synaptic membrane might fulfill the task as neuromodulators for functional synaptic proteins. Because of this specific binding properties towards calcium and their peculiar interactions with calcium in model systems gangliosides (amphiphilic sialic acid containing glycosphingolipids) are favorite candidates for a functional involvement in synaptic transmission of information. In this study we used monolayers to investigate the molecular packing and surface potential at the air/water interface, the interaction of gangliosides with the depsipeptide valinomycin (= monovalent ion carrier), and its influenceability by calcium. Furthermore we looked at calcium effects on the single channel conductance and mean channel life-time of the monovalent ion channel gramicidin A in mixed PC/ganglioside bilayers. In pure ganglioside monolayers the addition of 0.01 mM Ca2+ induces monolayer condensation, a rise in collapse pressure (= higher film stability), a shift of phase transition (= change of conformation), and a more negative head group potential (change of electric properties). In mixed ganglioside-valinomycin monolayers the addition of Ca2+ causes phase separation and/or aggregate formation between the ganglioside and the peptide. Single channel conductance fluctuations as well as mean channel life-time were analyzed for gramicidin A incorporated into binary mixed black lipid membranes of negatively charged gangliosides (GM1, GD1a, GT1b, GMix) and neutral lecithin (DOPC) in different molar ratios. At monovalent electrolyte concentrations up to < 250 mM CsCl the single channel conductance was significantly larger in the negatively charged mixed DOPC/ganglioside membranes than in the neutral DOPC membrane. Additionally, in the presence of gangliosides the mean channel life-time is increased. The addition of calcium (0.05 mM) induced a reduction of single channel conductance of gramicidin A in DOPC- and mixed DOPC/ganglioside membranes. These physico-chemical data in connection with new electromicroscopical evidences for a precise localization of calcium, a calcium pump (Ca(2+)-ATPase), a clustered arrangement of gangliosides in synaptic terminals, and biochemical results with regard to activatory nature of exogenous gangliosides for neuronal protein phosphorylation and ATPases, support the hypothesis of a modulatory function of gangliosides in synaptic transmission.  相似文献   

18.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithin-phosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers. In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8-10(-8) cm2/s at 59 degrees C. Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol % lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy. Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5 degrees to Tt = 62 degrees C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

19.
The (Ca2(+)-Mg2(+)-ATPase purified from skeletal muscle sarcoplasmic reticulum binds two Ca2+ ions per ATPase molecule. On reconstitution into bilayers of dioleoylphosphatidylcholine [C18:1)PC) or dinervonylphosphatidylcholine [C24:1)PC) the stoichiometry of binding remains unchanged, but when the ATPase is reconstituted into bilayers of dimyristoleoylphosphatidylcholine [C14:1)PC) the stoichiometry changes to one Ca2+ ion per ATPase molecule. Nevertheless, the level of phosphorylation is the same for the ATPase reconstituted with (C18:1)PC or (C14:1)PC. The effect of (C14:1)PC on the stoichiometry of Ca2+ binding is prevented by androstenol at a 1:1 molar ratio with the phospholipid.  相似文献   

20.
Physical properties of binary mixtures of dipalmitoylphosphatidylcholine and yeast phosphatidylinositol were studied by ESR analysis using TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) and lipid spin probes, freeze-fracture electronmicroscopy and particle microelectrophoresis, and they were compared with those of phosphatidylcholine/bovine brain phosphatidylserine mixtures. The phase diagram of the binary mixtures of dipalmitoylphosphatidylcholine and phosphatidylinositol was obtained from the thermal features of TEMPO spectral parameter in the lipid mixtures. The phase diagram provided evidence that these two phospholipids in various combinations were miscible in the crystalline state. The addition of 10 mM Ca2+ slightly shifted the phase diagram upward. TEMPO titration of the binary mixture of dipalmitoylphosphatidylcholine and bovine brain phosphatidylserine revealed that 10 mM Ca2+ caused the complete phase separation of this lipid mixture. Studies of phase separations using phosphatidylcholine spin probe manifested that 10 mM Ca2+ induced almost complete phase separation in egg yolk phosphatidylcholine/bovine brain phosphatidylserine mixtures but only slight phase separation in egg yolk phosphatidylcholine/yeast phosphatidylinositol mixtures. However, some phase changes around the fluidus and the solidus curves were visualized by the freeze-fracture electronmicroscopy. The molecular motion of lipid spin probe was decreased by the addition of Ca2+ in the liposomes containing phosphatidylinositol. The temperature dependence of electrophoretic mobility was also examined in the absence and presence of 1 mM Ca2+. Liposomes of dipalmitoylphosphatidylcholine-phosphatidylinositol (90 : 10, mol/mol) exhibited a clear transition in the thermal features of electrophoretic mobilities. Raising the phosphatidylinositol content up to 25 mol% rendered the transition broad and unclear. The addition of 1 mM Ca2+ decreased the electrophoretic mobility but did not change its general profile of the thermal dependence. These results suggest that the addition of calcium ions induced a small phase change in the binary mixture of phosphatidylcholine and phosphatidylinositol while Ca2+ causes a remarkable phase separation in phosphatidylcholine/phosphatidylserine mixture. The physical role of phosphatidylinositol is discussed related to the formation of diacylglycerol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号