首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike core histones, the linker histone H1 family is more evolutionarily diverse, and many organisms have multiple H1 variants or subtypes. In mammals, the H1 family includes seven somatic H1 variants; H1.1 to H1.5 are expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Using ChIP-sequencing data and cell fractionation, we have compared the genomic distribution of H1.0 and H1X in human breast cancer cells, in which we previously observed differential distribution of H1.2 compared with the other subtypes. We have found H1.0 to be enriched at nucleolus-associated DNA repeats and chromatin domains, whereas H1X is associated with coding regions, RNA polymerase II-enriched regions, and hypomethylated CpG islands. Further, H1X accumulates within constitutive or included exons and retained introns and toward the 3′ end of expressed genes. Inducible H1X knockdown does not affect cell proliferation but dysregulates a subset of genes related to cell movement and transport. In H1X-depleted cells, the promoters of up-regulated genes are not occupied specifically by this variant, have a lower than average H1 content, and, unexpectedly, do not form an H1 valley upon induction. We conclude that H1 variants are not distributed evenly across the genome and may participate with some specificity in chromatin domain organization or gene regulation.  相似文献   

2.
H1 subtypes are involved in chromatin higher-order structure and gene regulation. H1 has a characteristic three-domain structure. We studied the length variation of the available H1 subtypes and showed that the length of the N-terminal and C-terminal domains was more variable than that of the central domain. The N-terminal and C-terminal domains were of low sequence complexity both at the nucleotide and at the amino acid level, whereas the globular domain was of high complexity. In most subtypes, low complexity was due only to cryptic simplicity, which reflects the clustering of a number of short and often imperfect sequence motifs. However, a subset of subtypes from eubacteria, plants, and invertebrates contained tandem repeats of short amino acid motifs (four to 12 residues), which could amount to a large proportion of the terminal domains. In addition, some other subtypes, such as those of Drosophila and mammalian H1t, were only marginally simple. The coexistence of these three kinds of subtypes suggests that the terminal domains could have originated in the amplification of short sequence motifs, which would then have evolved by point mutation and further slippage.  相似文献   

3.
We have earlier identified and purified two protein-lysine N-methyltransferases (Protein methylase III) fromEuglena gracilis [J. Biol. Chem.,260, 7114 (1985)]. The enzymes were highly specific toward histone H1 (lysine-rich), and the enzymatic products were identified as -N-mono-, di- and trimethyllysines. These earlier studies, however, were carried out with rat liver histone H1 as thein vitro substrate. Presently, histone H1 has been purified fromEuglena gracilis through Bio-Rex 70 and Bio-Gel P-100 column chromatography. TheEuglena histone H1 showed a single band on SDS-polyacrylamide gel electrophoresis and behaved like other histone H1 of higher animals, whereas it had a much higherR f value than the other histones H1 in acid/urea gel electrophoresis. When theEuglena histone H1 was [methyl-3H]-labeledin vitro by a homologous enzyme (one of the twoEuglena protein methylase III) and analyzed on two-dimensional gel electrophoresis, three distinctive subtypes of histone H1 were shown to be radiolabeled, whereas five subtypes of rat liver histone H1 were found to be labeled. Finally, by the combined use of a strong cation exchange and reversed-phase Resolve C18 columns on HPLC, we demonstrated thatEuglena histone H1 contains approximately 9 mol% of -N-methyllysines (1.40, 1.66, and 5.62 mol% for -N-mono-, di- and trimethyllysines, respectively). This is the first demonstration of the natural occurrence of -N-methyllysines in histone H1.  相似文献   

4.
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested.  相似文献   

5.
6.
7.
8.
A potent bacterial strain, Pseudomonas aeruginosa, has been isolated from the soil which produces extracellular lipase that can carry out the excellent stereospecific hydrolysis of trans-3-(4-methoxyphenyl)glycidic acid methyl ester [(±)-MPGM)] to give [(−)-MPGM], an intermediate required in the synthesis of cardiovascular drug, diltiazem. As a preliminary experiment for enzymatic resolution, we characterized the fractionated enzyme. The enzyme had a pH and temperature optima of 8.0 and 60 °C, respectively. The enzyme showed high degree of thermostability. Also, the enzyme was found to be stable in alkaline condition and in organic solvents. The activity of the enzyme increased by the addition of magnesium ions. The small-scale hydrolysis of (±)-MPGM (250 mg) with partially purified enzyme (21,000 U) gave (−)-MPGM with good isolated yield (44%) and excellent enantiomeric excess (99.9%) in a very short time (12 h).  相似文献   

9.
目的为探究连接组蛋白H1在精子发生过程染色体重构中的功能,了解一共有多少种连接组蛋白H1参与各期生精细胞的染色体的构建。方法分离高纯度的SD大鼠的各期生精细胞,提取组蛋白,应用SDS-PAGE分离组蛋白的各组分,组蛋白(H1)经过蛋白酶(Glu-c和Arg-c)酶切,应用质谱进行检测。结果鉴定了组蛋白H1的体细胞亚型(H1.1-H1.5)和睾丸特异的连接组蛋白亚型(H1t)。组蛋白H1t分别表达在精原细胞,精母细胞和圆形精子细胞中。结论大鼠精子发生过程中,其主要连接组蛋白H1的种类是:H1.1-H1.5和H1t。  相似文献   

10.
Bio-Rex 70 chromatography was combined with reverse-phase (RP) HPLC to fractionate histone H1 zero and 4 histone H1 subtypes from human placental nuclei as previously described (Parseghian MH et al., 1993, Chromosome Res 1:127-139). After proteolytic digestion of the subtypes with Staphylococcus aureus V8 protease, peptides were fractionated by RP-HPLC and partially sequenced by Edman degradation in order to correlate them with human spleen subtypes (Ohe Y, Hayashi H, Iwai K, 1986, J Biochem (Tokyo) 100:359-368; 1989, J Biochem (Tokyo) 106:844-857). Based on comparisons with the sequence data available from other mammalian species, subtypes were grouped. These groupings were used to construct a coherent nomenclature for mammalian somatic H1s. Homologous subtypes possess characteristic patterns of growth-related and cAMP-dependent phosphorylation sites. The groupings defined by amino acid sequence also were used to correlate the elution profiles and electrophoretic mobilities of subtypes derived from different species. Previous attempts at establishing an H1 nomenclature by chromatographic or electrophoretic fractionations has resulted in several misidentifications. We present here, for the first time, a nomenclature for somatic H1s based on amino acid sequences that are analogous to those for H1 zero and H1t. The groupings defined should be useful in correlating the many observations regarding H1 subtypes in the literature.  相似文献   

11.
12.
As the resident immune cells in the central nervous system, microglia play an important role in the maintenance of its homeostasis. Dysregulation of microglia has been associated with the development and maintenance of chronic pain. However, the relevant molecular pathways remain poorly defined. In this study, we used a mass spectrometry-based proteomic approach to screen potential changes of histone protein modifications in microglia isolated from the brain of control and cisplatin-induced neuropathic pain adult C57BL/6J male mice. We identified several novel microglial histone modifications associated with pain, including statistically significantly decreased histone H3.1 lysine 27 mono-methylation (H3.1K27me1, 54.8% of control) and H3 lysine 56 tri-methylation (7.5% of control), as well as a trend suggesting increased H3 tyrosine 41 nitration. We further investigated the functional role of H3.1K27me1 and found that treatment of cultured microglial cells for 4 consecutive days with 1–10 μM of NCDM-64, a potent and selective inhibitor of lysine demethylase 7A, an enzyme responsible for the demethylation of H3K27me1, dose-dependently elevated its levels with a greater than a two-fold increase observed at 10 μM compared to vehicle-treated control cells. Moreover, pretreatment of mice with NCDM-64 (10 or 25 mg/kg/day, i.p.) prior to cisplatin treatment prevented the development of neuropathic pain in mice. The identification of specific chromatin marks in microglia associated with chronic pain may yield critical insight into the contribution of microglia to the development and maintenance of pain, and opens new avenues for the development of novel nonopioid therapeutics for the effective management of chronic pain.  相似文献   

13.
Histone H4 and H2B genes in rainbow trout (Salmo gairdnerii)   总被引:5,自引:0,他引:5  
Summary The complete nucleotide sequence of the 3.0-kb BamH I-Sst I restriction fragment contained within the rainbow trout genomic clone TH2 has been determined. This region contains the rainbow trout H4 and H2B histone genes and 5 and 3 flanking and spacer sequences, and represents the 5 half of the histone-gene cluster; the remaining half has been characterized previously. The genes are uninterrupted, and are transcribed from the same strand. The protein sequence of H4, as determined from the nucleic acid sequence, is the same as that derived for other vertebrate H4 proteins, although comparison of nucleotide sequences shows a great deal of sequence divergence, especially in the third base position. The amino acid sequence of H2B, though largely homologous to those of other vertebrate H2B proteins, displays some characteristic differences in primary structure. Consensus sequences noted in many other eukaryotic genes, as well as histone-specific consensus sequences, have been identified. An unusual feature of the spacer region between the H4 and H2B genes is the presence of a duplicated sequence 87 bp in length. The 5 and 3 ends of each repeat are complementary, and each repeat contains smaller repeated sequences internally, as well as a possible cruciform structure.  相似文献   

14.
Histone H1 subtype synthesis in neurons and neuroblasts.   总被引:4,自引:0,他引:4  
Rat cerebral cortex neurons contain the five histone H1 subtypes H1a-e and the subtype H1 zero present in other mammalian somatic tissues. The four subtypes H1a-d decay exponentially during postnatal development and are partially or totally replaced by H1e that becomes the major H1 subtype in adults. H1 zero accumulates in a period restricted to neuronal terminal differentiation. Here we study the synthesis of the H1 subtypes in cortical neurons and their neuroblasts by in vivo labeling with [14C]lysine. The subtype synthesis pattern of neuroblasts has been determined by labeling gravid rats during the period of proliferation of cortical neurons and synthesis in neurons has been studied by postnatal labeling. The subtype H1a is synthesized in neuroblasts but not in neurons and is therefore rapidly removed from neuronal chromatin. The synthesis of H1b and H1d is much lower in neurons than in neuroblasts so that these subtypes are replaced to a large extent during postnatal development. H1c is synthesized at levels much higher than the other subtypes both in neurons and neuroblasts, but its very high turnover, about one order of magnitude faster than that of H1e in neurons, favors its partial replacement during postnatal development. Comparison of the synthesis rates of H1 zero in newborn and 30-day-old rats shows that the accumulation of H1 zero in differentiating neurons is due to an increased level of synthesis.  相似文献   

15.
组织转谷酰胺酶(transglutaminase 2,TGM2)是一种普遍存在的多功能蛋白,与不同细胞的粘附和肿瘤形成有关.有证据表明,TGM2参与了宿主细胞与病毒间的相互作用,但是对于流感病毒在细胞内增殖的影响还未有报道.为了探究MDCK细胞中TGM2对H1N1亚型流感病毒增殖的影响,本研究构建了TGM2过表达和敲除...  相似文献   

16.
禽流感H5、H7、H9亚型多重实时荧光RT-PCR检测方法的建立   总被引:20,自引:0,他引:20  
为了对致病性强、危害性大的H5、H7、H9亚型禽流感病毒进行同时集成化快速检测,通过对GenBank已报道的禽流感病毒的HA基因进行序列分析比较,设计了H5、H7、H9 3个亚型的特异性引物和分别用3个荧光基团标记的Taqman MGB核酸探针。将各个亚型引物与探针优化组合,筛选出能够同时检测禽流感病毒H5、H7、H9 3个亚型、且对Ct值和扩增效率影响不大的3组引物和探针,建立了三重实时荧光RT-PCR方法。该方法特异性好,在我们检测的样品中,没有发现假阳性和假阴性现象。同时敏感性高,检测禽流感病毒H5、H7、H9亚型的敏感性分别达到1 0001、000、500个模板拷贝数;此外抗干扰能力强,对禽流感H5、H7、H9 3个亚型的不同模板浓度进行组合,仍可有效地同时检测3个病毒亚型。所建立的方法对保存的89个禽流感病毒样品进行检测,结果与经典检测方法(病毒分离鉴定、HA、HI)的符合率达100%。用上述建立的方法与鸡胚分离法同时对新鲜采集的4 000多份临床样品进行检测,两种方法的检测结果符合率为100%。  相似文献   

17.
18.
根据已知H5N1亚型禽流感病毒神经氨酸酶基因(na)序列设计、合成克隆引物。自H5N1亚型病毒感染的鸡胚尿囊液中提取总RNA,反转录后采用高可信度DNA聚合酶(PyobestTMDNAPolymerase)扩增na基因,采用Invitrogen定向表达系统(ChampionTMpETdirectionalTOPOexpressionsystem)进行克隆表达,纯化获得N末端携带多聚组氨酸标签的重组神经氨酸酶,分子量约53.8kDa。分析重组NA的免疫反应性和免疫原性,结果表明:重组NA能与H5N1亚型病毒抗血清发生特异性结合,且其免异动物后能诱导机体产生特异性抗体,具有良好的抗原性。  相似文献   

19.
Members of histone H1 family bind to nucleosomal and linker DNA to assist in stabilization of higher‐order chromatin structures. Moreover, histone H1 is involved in regulation of a variety of cellular processes by interactions with cytosolic and nuclear proteins. Histone H1, composed of a series of subtypes encoded by distinct genes, is usually differentially expressed in specialized cells and frequently non‐randomly distributed in different chromatin regions. Moreover, a role of specific histone H1 subtype might be also modulated by post‐translational modifications and/or presence of polymorphic isoforms. While the significance of covalently modified histone H1 subtypes has been partially recognized, much less is known about the importance of histone H1 polymorphic variants identified in various plant and animal species, and human cells as well. Recent progress in elucidating amino acid composition‐dependent functioning and interactions of the histone H1 with a variety of molecular partners indicates a potential role of histone H1 polymorphic variation in adopting specific protein conformations essential for chromatin function. The histone H1 allelic variants might affect chromatin in order to modulate gene expression underlying some physiological traits and, therefore could modify the course of diverse histone H1‐dependent biological processes. This review focuses on the histone H1 allelic variability, and biochemical and genetic aspects of linker histone allelic isoforms to emphasize their likely biological relevance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号