首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have sequenced a gene in the archaebacterium Sulfolobus solfataricus that codes for a protein that shows sequence similarity to the alpha subunit of the signal recognition particle receptor or docking protein in eukaryotes and the product of the ftsY gene in Escherichia coli. Comparison of the Sulfolobus 'docking protein' with its eukaryotic and eubacterial counterparts showed that the region of highest sequence similarity corresponds to a GTP-binding site. The presence of this gene in archaebacteria suggests that some of the components involved in protein transport have been conserved in the three kingdoms.  相似文献   

2.
Heat shock induces the synthesis of a set of proteins in Halobacterium marismortui whose molecular sizes correspond to the known major heat shock proteins. By using the polymerase chain reaction and degenerate oligonucleotide primers for conserved regions of the 70-kDa heat shock protein (HSP70) family, we have successfully cloned and sequenced a gene fragment containing the entire coding sequence for HSP70 from H. marismortui. HSP70 from H. marismortui shows between 44 and 47% amino acid identity with various eukaryotic HSP70s and between 51 and 58% identity with its eubacterial and archaebacterial homologs. On the basis of a comparison of all available HSP70 sequences, we have identified a number of unique sequence signatures in this protein family that provide a clear distinction between eukaryotic organisms and prokaryotic organisms (archaebacteria and eubacteria). The archaebacterial (viz., H. marismortui and Methanosarcina mazei) HSP70s have been found to contain all of the signature sequences characteristic of eubacteria (particularly the gram-positive bacteria), which suggests a close evolutionary relationship between these groups. In addition, detailed analyses of HSP70 sequences that we have carried out have revealed a number of additional novel features of the HSP70 protein family. These include (i) the presence of an insertion of about 25 to 27 amino acids in the N-terminal quadrants of all known eukaryotic and prokaryotic HSP70s except those from archaebacteria and the gram-positive group of bacteria, (ii) significant sequence similarity in HSP70 regions comprising its first and second quadrants from organisms lacking the above insertion, (iii) highly significant similarity between a protein, MreB, of Escherichia coli and the N-terminal half of HSP70s, (iv) significant sequence similarity between the N-terminal quadrant of HSP70 (from gram-positive bacteria and archaebacteria) and the m-type thioredoxin of plant chloroplasts. To account for these and other observations, a model for the evolution of HSP70 proteins involving gene duplication is proposed. The model proposes that HSP70 from archaebacteria (H. marismortui and M. mazei) and the gram-positive group of bacteria constitutes the ancestral form of the protein and that all other HSP70s (viz., other eubacteria as well as eukaryotes) containing the insert have evolved from this ancient protein.  相似文献   

3.
We report the cloning of the gyrB gene from Streptococcus pneumoniae 533 that carries the nov-1 allele. The gyrB gene codes for a protein homologous to the gyrase B subunit of archaebacteria and eubacteria. The same amino acid substitution (Ser-127 to Leu) confers novobiocin resistance on four isolates of S. pneumoniae. This amino acid position is equivalent to Val-120 of Escherichia coli GyrB, a residue that lies inside the ATP-binding domain as revealed by the crystal structure of the protein.  相似文献   

4.
5.
The genes corresponding to the L11, L1, L10, and L12 equivalent ribosomal proteins (L11e, L1e, L10e, and L12e) of Escherichia coli have been cloned and sequenced from two widely divergent species of archaebacteria, Halobacterium cutirubrum and Sulfolobus solfataricus, and the L10 and four different L12 genes have been cloned and sequenced from the eucaryote Saccharomyces cerevisiae. Alignments between the deduced amino acid sequences of these proteins and to other available homologous proteins of eubacteria and eucaryotes have been made. The data suggest that the archaebacteria are a distinct coherent phylogenetic group. Alignment of the proline-rich L11e proteins reveals that the N-terminal region, believed to be responsible for interaction with release factor 1, is the most highly conserved region and that there is specific conservation of most of the proline residues, which may be important in maintaining the highly elongated structure of the molecule. Although L11 is the most highly methylated protein in the E. coli ribosome, the sites of methylation are not conserved in the archaebacterial L11e proteins. The L1e proteins of eubacteria and archaebacteria show two regions of very high similarity near the center and the carboxy termini of the proteins. The L10e proteins of all kingdoms are colinear and contain approximately three fourths of an L12e protein fused to their carboxy terminus, although much of this fusion has been lost in the truncated eubacterial protein. The archaebacterial and eucaryotic L12e proteins are colinear, whereas the eubacterial protein has suffered a rearrangement through what appear to be gene fusion events. Within the L12e derived region of the L10e proteins there exists a repeated module of 26 amino acids, present in two copies in eucaryotes, three in archaebacteria, and one in eubacteria. This modular sequence is apparently also present in the L12e proteins of all kingdoms and may play a role in L12e dimerization, L10e-L12e complex formation, and the function of the L10e-L12e complex in translation.  相似文献   

6.
The 70-kDa heat-shock protein (HSP70) constitutes the most conserved protein present in all organisms that is known to date. Based on global alignment of HSP70 sequences from organisms representing all three domains, numerous sequence signatures that are specific for prokaryotic and eukaryotic homologs have been identified. HSP70s from the two archaebacterial species examined (viz., Halobacterium marismortui and Methanosarcina mazei) have been found to contain all eubacterial but no eukaryotic signature sequences. Based on several novel features of the HSP70 family of proteins (viz., presence of tandem repeats of a 9-amino-acid [a.a.] polypeptide sequence and structural similarity between the first and second quadrants of HSP70, homology of the N-terminal half of HSP70 to the bacterial MreB protein, presence of a conserved insert of 23–27 a.a. in all HSP70s except those from archaebacteria and gram-positive eubacteria) a model for the evolution of HSP70 gene from an early stage is proposed. The HSP70 homologs from archaebacteria and gram-positive bacteria lacking the insert in the N-terminal quadrants are indicated to be the ancestral form of the protein. Detailed phylogenetic analyses of HSP70 sequence data (viz., by bootstrap analyses, maximum parsimony, and maximum likelihood methods) provide evidence that archaebacteria are not monophyletic and show a close evolutionary linkage with the gram-positive eubacteria. These results do not support the traditional archaebacterial tree, where a close relationship between archaebacterial and eukaryotic homologs is observed. To explain the phylogenies based on HSP70 and other gene sequences, a model for the origin of eukaryotic cells involving fusion between archaebacteria and gram-negative eubacteria is proposed. Correspondence to: R. S. Gupta  相似文献   

7.
A small and extremely basic ribosomal protein (HL46e) has been purified from Halobacterium marismortui using reversed-phase high-performance liquid chromatography (HPLC). The amino acid sequence of the protein was determined by automated N-terminal and internal sequence analysis. Comparison of this sequence with other ribosomal protein sequences from eubacteria, archaebacteria and eukaryotes revealed a strong homology to SL46e from Sulfolobus solfataricus, YeaL46 from yeast and RL39 from rat. No significant sequence similarly was found to any eubacterial ribosomal protein so far known. Using a specific oligonucleotide probe the HL46e gene was identified, cloned and the nucleotide sequence including the 5'- and 3'-flanking regions were analysed. The HL46e gene is followed by the gene coding for HL30. A putative halobacterial promoter sequence with the motive 'TTTAAA' has been localized 32 bp upstream of the HL46e gene and a putative terminator sequence localized downstream from the HL30 gene. An equivalent to this HL46e/HL30 operon is apparently not present in Escherichia coli.  相似文献   

8.
The evolutionary relationship within prokaryotes is examined based on signature sequences (defined as conserved inserts or deletions shared by specific taxa) and phylogenies derived from different proteins. Archaebacteria are indicated as being monophyletic by a number of proteins related to the information transfer processes. In contrast, for several other highly conserved proteins, common signature sequences are present in archaebacteria and Gram-positive bacteria, whereas Gram-negative bacteria are indicated as being distinct. For these proteins, archaebacteria do not form a phylogenetically distinct clade but show polyphyletic branching within Gram-positive bacteria. A closer relationship of archaebacteria to Gram-positive bacteria in comparison with Gram-negative bacteria is generally seen for the majority of the available gene/protein sequences. To account for these results and the fact that both archaebacteria and Gram-positive bacteria are prokaryotes surrounded by a single cell membrane, I propose that the primary division within prokaryotes is between monoderm prokaryotes (surrounded by a single membrane) and diderm prokaryotes (i.e. all true Gram-negative bacteria containing both an inner cytoplasmic membrane and an outer membrane). This proposal is consistent with both cell morphology and signature sequences in different proteins. The monophyletic nature of archaebacteria for some genes, and their polyphyletic branching within Gram-positive bacteria as suggested by others, is critically examined, and several explanations, including derivation of archaebacteria from Gram-positive bacteria in response to antibiotic selection pressure, are proposed. Signature sequences in proteins also indicate that the low-G + C Gram-positive bacteria are phylogenetically distinct from the high-G + C Gram-positive group and that the diderm prokaryotes (i.e. Gram-negative bacteria) appear to have evolved from the latter group. Protein phylogenies and signature sequences also show that all eukaryotic cells have received significant gene contributions from both an archaebacterium and a Gram-negative eubacterium. Thus, the hypothesis that archaebacteria and eukaryotes shared a common ancestor exclusive of eubacteria is not supported. These observations provide evidence for an alternate view of the evolutionary relationship among living organisms that is different from the currently popular three-domain proposal.  相似文献   

9.
The primary structure of the glyceraldehyde-3-phosphate dehydrogenase from the archaebacteria shows striking deviation from the known sequences of eubacterial and eukaryotic sequences, despite unequivocal homologies in functionally important regions. Thus, the structural similarity between the eubacterial and eukaryotic enzymes is significantly higher than that between the archaebacterial enzymes and the eubacterial and eukaryotic enzymes. This preferred similarity of eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase structures does not correspond to the phylogenetic distances among the three urkingdoms as deduced from comparisons of ribosomal ribonucleic acid sequences. Indications will be presented that the closer relationship of the eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase resulted from a gene transfer from eubacteria to eukaryotes after the segregation of the three urkingdoms.  相似文献   

10.
Liu J  He B  Qing H  Kow YW 《Mutation research》2000,461(3):169-177
Deoxyadenosine undergoes spontaneous deamination to deoxyinosine in DNA. Based on amino acids sequence homology, putative homologs of endonuclease V were identified in several organisms including archaebacteria, eubacteria as well as eukaryotes. The translated amino acid sequence of the Archaeoglobus fulgidus nfi gene shows 39% identity and 55% similarity to the E. coli nfi gene. A. fulgidus endonuclease V was cloned and expressed in E. coli as a C-terminal hexa-histidine fusion protein. The C-terminal fusion protein was purified to apparent homogeneity by a combination of Ni(++) affinity and MonoS cation exchange liquid chromatography. The purified C-terminal fusion protein has a molecular weight of about 25kDa and showed endonuclease activity towards DNA containing deoxyinosine. A. fulgidus endonuclease V has an absolute requirement for Mg(2+) and an optimum reaction temperature at 85 degrees C. However, in contrast to E. coli endonuclease V, which has a wide substrate spectrum, endonuclease V from A. fulgidus recognized only deoxyinosine. These data suggest that the deoxyinosine cleavage activity is a primordial activity of endonuclease V and that multiple enzymatic activities of E. coli endonuclease V were acquired later during evolution.  相似文献   

11.
Analyses of 55 individual and 31 concatenated protein data sets encoded in Reclinomonas americana and Marchantia polymorpha mitochondrial genomes revealed that current methods for constructing phylogenetic trees are insufficiently sensitive (or artifact-insensitive) to ascertain the sister of mitochondria among the current sample of eight alpha-proteobacterial genomes using mitochondrially-encoded proteins. However, Rhodospirillum rubrum came as close to mitochondria as any alpha-proteobacterium investigated. This prompted a search for methods to directly compare eukaryotic genomes to their prokaryotic counterparts to investigate the origin of the mitochondrion and its host from the standpoint of nuclear genes. We examined pairwise amino acid sequence identity in comparisons of 6,214 nuclear protein-coding genes from Saccharomyces cerevisiae to 177,117 proteins encoded in sequenced genomes from 45 eubacteria and 15 archaebacteria. The results reveal that approximately 75% of yeast genes having homologues among the present prokaryotic sample share greater amino acid sequence identity to eubacterial than to archaebacterial homologues. At high stringency comparisons, only the eubacterial component of the yeast genome is detectable. Our findings indicate that at the levels of overall amino acid sequence identity and gene content, yeast shares a sister-group relationship with eubacteria, not with archaebacteria, in contrast to the current phylogenetic paradigm based on ribosomal RNA. Among eubacteria and archaebacteria, proteobacterial and methanogen genomes, respectively, shared more similarity with the yeast genome than other prokaryotic genomes surveyed.  相似文献   

12.
The N-terminal sequence of HPLC-purified protein L23 from the Methanococcus vannielii ribosome has been determined by automated liquid-phase Edman degradation. Using the N-terminal amino acid sequence, an oligonucleotide probe complementary to the 5'-end of the gene was synthesized. The 26-mer oligonucleotide, containing two inosines, was used for hybridization with digested M. vannielii chromosomal DNA. The hybridizing band from HpaII-digested genomic DNA was ligated into pUC18 to yield plasmid pMvaZ1 containing the entire gene of protein L23. The nucleotide sequence complemented the partial amino acid sequence, and the gene codes for a protein of 9824 Da. The amino acid sequence of protein L23 form M. vannielii was compared to that of ribosomal proteins from other archaebacteria as well as from eubacteria and eukaryotes. The number of identical amino acids is highest when the M. vannielii protein is compared to the homologous protein from yeast and lowest vs that from tobacco chloroplasts. Interestingly, the secondary structures of the proteins as predicted by computer programs are more conserved than the primary structures.  相似文献   

13.
Summary The existence of two families of genes coding for hexameric glutamate dehydrogenases has been deduced from the alignment of 21 primary sequences and the determination of the percentages of similarity between each pair of proteins. Each family could also be characterized by specific motifs. One family (Family 1) was composed of gdh genes from six eubacteria and six lower eukaryotes (the primitive protozoan Giardia lamblia, the green alga Chlorella sorokiniana, and several fungi and yeasts). The other one (Family 11) was composed of gdh genes from two eubacteria, two archaebacteria, and five higher eukaryotes (vertebrates). Reconstruction of phylogenetic trees using several parsimony and distance methods confirmed the existence of these two families. Therefore, these results reinforced our previously proposed hypothesis that two close but already different gdh genes were present in the last common ancestor to the three Ur-kingdoms (eubacteria, archaebacteria, and eukaryotes). The branching order of the different species of Family I was found to be the same whatever the method of tree reconstruction although it varied slightly according the region analyzed. Similarly, the topological positions of eubacteria and eukaryotes of Family II were independent of the method used. However, the branching of the two archaebacteria in Family II appeared to be unexpected: (1) the thermoacidophilic Sulfolobus solfataricus was found clustered with the two eubacteria of this family both in parsimony and distance trees, a situation not predicted by either one of the contradictory trees recently proposed; and (2) the branching of the halophilic Halobacterium salinarium varied according to the method of tree construction: it was closer to the eubacteria in the maximum parsimony tree and to eukaryotesin distance trees. Therefore, whatever the actual position of the halophilic species, archaebacteria did not appear to be monophyletic in these gdh gene trees. This result questions the firmness of the presently accepted interpretation of previous protein trees which were supposed to root unambiguously the universal tree of life and place the archaebacteria in this tree. Offprint requests to: B. Labedan  相似文献   

14.
Background: The evolutionary relationships between archaebacteria, eubacteria and eukaryotic cells are of central importance in biology. The current view is that each of these three groups of organisms constitutes a monophyletic domain, and that eukaryotic cells have evolved from an archaebacterial ancestor. Recent studies on a number of highly conserved protein sequences do not, however, support this view and raise important questions concerning the evolutionary relationships between all extant organisms, particularly regarding the origin of eukaryotic cells.Results We have used sequences of 70 kD heat shock protein (hsp70) — the most conserved protein found to date in all species — to examine the evolutionary relationship between various species. We have obtained two new archaebacterial hsp70 sequences from the species, Thermoplasma acidophilum and Halobacterium cutirubrum. A global comparison of hsp70 sequences, including our two new sequences, shows that all known archaebacterial homologs share a number of sequence signatures with the Gram-positive group of bacteria that are not found in any other prokaryotic or eukaryotic species. In contrast, the eukaryotic homologs are shown to share a number of unique sequence features with the Gram-negative bacteria that are not present in any archaebacteria. Detailed phylogenetic analyses of hsp70 sequences strongly support a specific evolutionary relationship between archaebacteria and Gram-positive bacteria on the one hand, and Gram-negative bacteria and eukaryotes on the other. The phylogenetic analyses also indicate a polyphyletic branching of archaebacteria within the Gram-positive species. The possibility that the observed relationships are due to horizontal gene transfers can be excluded on the basis of sequence characteristics of different groups of homologs.Conclusion Our results do not support the view that archaebacteria constitute a monophyletic domain, but instead suggest a close evolutionary linkage between archaebacteria and Gram-positive bacteria. Furthermore, in contrast to the presently accepted view, eukaryotic hsp70s show a close and specific relationship to those from Gram-negative species. To explain the phylogenies based on different gene sequences, a chimeric model for the origin of the eukaryotic cell nucleus involving fusion between an archaebacterium and a Gram-negative eubacterium is proposed. Several predictions from the chimeric model are discussed.  相似文献   

15.
16.
FtsZ ring: the eubacterial division apparatus conserved in archaebacteria   总被引:12,自引:2,他引:10  
FtsZ is a tubulin-like protein that is essential for cell division in eubacteria. It functions by forming a ring at the division site that directs septation. The archaebacteria constitute a kingdom of life separate from eubacteria and eukaryotes. Like eubacteria, archaebacteria are prokaryotes, although they are phylogenetically closer to eukaryotes. Here it is shown that archaebacteria also possess FtsZ and that it is biochemically similar to eubacterial FtsZs. Significantly, FtsZ from the archaebacterium Haloferax volcanii is a GTPase that is localized to a ring that coincides with the division constriction. These results indicate that the FtsZ ring was part of the division apparatus of a common prokaryotic ancestor that was retained by both eubacteria and archaebacteria.  相似文献   

17.
18.
19.
The genes for glyceraldehyde-3-phosphate dehydrogenase (gap genes) from the mesophilic methanogenic archaebacteria Methanobacterium formicicum and Methanobacterium bryantii were cloned and sequenced. The deduced amino acid sequences show 95% identity to each other and about 70% identity to the glyceraldehyde-3-phosphate dehydrogenase from the thermophilic methanogenic archaebacterium Methanothermus fervidus. Although the sequence similarity between the archaebacterial glyceraldehyde-3-phosphate dehydrogenase and the homologous enzyme of eubacteria and eukaryotes is low, an equivalent secondary-structural arrangement can be deduced from the profiles of the physical parameters hydropathy, chain flexibility and amphipathy. In order to find possible thermophile-specific structural features of the enzyme from M. fervidus, a comparative primary-sequence analysis was performed. Amino acid exchanges leading, to a stabilization of the main-chain conformation, could be found throughout the sequence of the thermophile enzyme. Striking features of the thermophile sequence are the preference for isoleucine, especially in beta-sheets, and a low arginine/lysine ratio of 0.54.  相似文献   

20.
The pea (Pisum sativum L.) gene PSMTA has an ORF encoding a predicted protein with sequence similarity to class I metallothioneins (MTS). To examine the metal-binding properties of the PSMTA protein it has been expressed in E. coli as a carboxyterminal extension of glutathione-S-transferase (GST). Metal ions were associated with the expressed protein when purified from lysates of E. coli grown in metal supplemented media. The pH of half-dissociation of Zn, Cd and Cu ions from the recombinant fusion protein was determined to be 5.35, 3.95 and 1.45 respectively, compared with equivalent estimates of 4.50, 3.00 and 1.80 for equine renal MT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号