首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
She QB  Mukherjee JJ  Huang JS  Crilly KS  Kiss Z 《FEBS letters》2000,469(2-3):163-167
Human placental alkaline phosphatase (PALP) is synthesized in the placenta during pregnancy and is also expressed in many cancer patients; however, its physiological role is unknown. Here we show that in human fetus fibroblasts as well as normal and H-ras-transformed mouse embryo fibroblasts PALP stimulates DNA synthesis and cell proliferation in synergism with insulin, zinc and calcium. The mitogenic effects of PALP are associated with the activation of c-Raf-1, p42/p44 mitogen-activated protein kinases, p70 S6 kinase, Akt/PKB kinase and phosphatidylinositol 3'-kinase. The results suggest that in vivo PALP may promote fetus development as well as the growth of cancer cells which express oncogenic Ras.  相似文献   

2.
In serum-starved NIH 3T3 fibroblast cultures, zinc (15-40 microM) enhanced both the individual and combined stimulatory effects of insulin and ethanol (EtOH) on DNA synthesis. Zinc, but not EtOH, also promoted the stimulatory effects of insulin on activating phosphorylation of p42/p44 mitogen-activated protein (MAP) kinases. In the presence of zinc, insulin induced premature expression of cyclin E during early G1 phase; EtOH partially restored the normal timing (late G1 phase) of cyclin E expression. The results suggest that zinc and EtOH promote insulin-induced DNA synthesis by different mechanisms; while zinc acts by enhancing the effects of insulin on MAP kinase activation, EtOH may act by ensuring timely zinc-dependent insulin-induced expression of cyclin E.  相似文献   

3.
In serum-starved mouse NIH 3T3 fibroblasts cultured in 1.8 mM Ca2+-containing medium, addition of 0.75-2 mM extra Ca2+ stimulated DNA synthesis in synergism with zinc (15-60 microM), insulin and insulin-like growth factor I. Extra Ca2+ stimulated phosphorylation/activation of p42/p44 mitogen-activated protein kinases by an initially (10 min) zinc-independent mechanism; however, insulin, and particularly zinc, significantly prolonged Ca2+-induced mitogen-activated protein kinase phosphorylation. In addition, extra Ca2+ activated p70 S6 kinase by a zinc-dependent mechanism and enhanced the stimulatory effect of zinc on choline kinase activity. Insulin and insulin-like growth factor I also commonly increased both p70 S6 kinase and choline kinase activities. In support of the role of the choline kinase product phosphocholine in the mediation of mitogenic Ca2+ effects, cotreatments with the choline kinase substrate choline (250 microM) and the choline kinase inhibitor hemicholinium-3 (2 mM) enhanced and inhibited, respectively, the combined stimulatory effect of extra Ca2+ (3.8 mM total) and zinc on DNA synthesis. In various human skin fibroblast lines, 1-2 mM extra Ca2+ also stimulated DNA synthesis in synergism with zinc and insulin. The results show that in various fibroblast cultures, high concentrations of extracellular Ca2+ can collaborate with zinc and certain growth factors to stimulate DNA synthesis. Considering the high concentration of extracellular Ca2+ in the dermal layer, Ca2+ may promote fibroblast growth during wound healing in concert with zinc, insulin growth factor-I insulin, and perhaps other growth factors.  相似文献   

4.
In mouse embryo NIH 3T3 fibroblasts, ethanol (60-80 mM) was found to enhance the stimulatory effects of sphingosine 1-phosphate (S1P) on both DNA synthesis and cell proliferation. Well-detectable potentiating effects of ethanol on S1P-induced mitogenesis required the presence of calcium (>1 mM) and zinc (20-40 microM) in the incubation medium. The amphibian tetrapeptide bombesin, which is known to mobilize intracellular calcium in fibroblasts, had no effect alone, but it approximately doubled the combined stimulatory effects of ethanol and S1P on DNA synthesis. The synergistic mitogenic effects of ethanol and S1P were also slightly enhanced, rather than inhibited, by the alcohol dehydrogenase inhibitor 4-methylpyrazole (5 mM). Of the various growth regulatory enzymes examined, ethanol detectably enhanced the stimulatory effects of S1P on the phosphosphorylation (activation) of p42/p44 mitogen-activated protein (MAP) kinases, but not of p38 MAP kinase. Cotreatment of fibroblasts with ethanol for 10 min also enhanced the stimulatory effects of S1P on the activities of c-Raf-1 kinase and p70 S6 kinase, but neither S1P nor ethanol had effects on phosphatidylinositol 3'-kinase and Akt/PKB kinase activities. Ethanol-plus-S1P-induced DNA synthesis was partially inhibited by both PD 98059 (50 microM) and rapamycin (10 nM), inhibitors of p42/p44 MAP kinase kinase and mTOR/p70 S6 kinases, respectively. The results indicate that in NIH 3T3 fibroblasts, ethanol can enhance the mitogenic effects of S1P by a zinc- and calcium-dependent mechanism involving both the rapamycin-sensitive p70 S6 kinase-dependent and the c-Raf-1/MAP kinase-dependent growth regulatory pathways.  相似文献   

5.
Nucleocytoplasmic transport of fluorescent-labeled macromolecules was investigated in transformed and nontransformed 3T3 fibroblasts. Insulin and epidermal growth factor enhanced transport three-fold after 1-2-h incubation with nontransformed adhering fibroblasts; no enhancement of transport was observed for spherical unattached fibroblasts. The concentration of growth factor for maximal enhancement was 3-10 nM. Nuclear transport for Kirsten murine sarcoma virus-transformed BALB/c 3T3 fibroblasts, however, was maximally enhanced before addition of growth factors; addition of insulin or epidermal growth factor causes no additional transport enhancement. Transformation also minimizes cell shape effects on macromolecular nuclear transport. These results provide evidence that protein growth factors and oncogenic transformation may use a similar mechanism for activation of nuclear transport.  相似文献   

6.
The secreted growth factor pleiotrophin (PTN) can induce mitogenesis in cells that express the receptor for this growth factor, anaplastic lymphoma kinase (ALK). Here we examine the ability of PTN to produce anti-apoptotic signals. We demonstrate that PTN is a survival factor for SW-13 epithelial cells and show that ribozyme-mediated depletion of ALK from SW-13 cells abolishes this effect of PTN. Furthermore, in serum-starved NIH3T3 fibroblasts PTN prevents apoptosis (measured by annexin V staining) with an EC(50) of 0.2 ng/ml and induces cell growth at higher concentrations of PTN. A polyclonal antibody against the PTN ligand-binding domain of the ALK receptor (alpha-LBD) was a partial agonist for ALK in NIH3T3 cells. This alpha-LBD antibody showed high agonist activity for anti-apoptosis (56 +/- 9% relative to PTN), low agonist activity for cell growth (21 +/- 1% relative to PTN), and was an antagonist of PTN-induced cell growth (61 +/- 2% inhibition). Both MAP kinase and phosphatidylinositol (PI) 3-kinase cascades in NIH3T3 cells were activated by PTN, and this effect persisted for up to 3 h. Surprisingly, the anti-apoptotic effect of PTN was completely blocked by the MAP kinase inhibitor UO126, but was not affected by the PI 3-kinase inhibitor LY294002. In contrast, PTN-dependent cell growth required both MAPK and PI 3-kinase activity. We conclude that anti-apoptotic signaling of PTN through ALK in NIH3T3 fibroblasts is via the MAP kinase pathway.  相似文献   

7.
In mammalian cells, growth factors, oncogenes, and carcinogens stimulate phosphocholine (PCho) synthesis by choline kinase (CK), suggesting that PCho may regulate cell growth. To validate the role of PCho in mitogenesis, we determined the effects of insulin, insulin-like growth factor I (IGF-I), and other growth factors on DNA synthesis in NIH 3T3 fibroblast sublines highly expressing human choline kinase (CK) without increasing phosphatidylcholine synthesis. In serum-starved CK expressor cells, insulin and IGF-I stimulated DNA synthesis, p70 S6 kinase (p70 S6K) activity, phosphatidylinositol 3-kinase (PI3K) activity, and activating phosphorylation of p42/p44 mitogen-activated protein kinases (MAPK) to greater extents than in the corresponding vector control cells. Furthermore, the CK inhibitor hemicholinium-3 (HC-3) inhibited insulin- and IGF-I-induced DNA synthesis in the CK overexpressors, but not in the vector control cells. The results indicate that high cellular levels of PCho potentiate insulin- and IGF-I-induced DNA synthesis by MAPK- and p70 S6K-regulated mechanisms.  相似文献   

8.
We have recently identified a novel candidate oncogene, MCT-1, in the HUT 78 T-cell line. When overexpressed in NIH3T3 fibroblasts, the MCT-1 gene shortens the G1 phase of the cell cycle and promotes anchorage-independent growth. Progression of cells through a late G1 phase restriction point is regulated by G1 cyclins whose phosphorylation of the retinoblastoma gene product facilitates entry into S phase. Deregulated expression of G1 cyclins and their cognate cdk partners is often found in human tumor cells. In order to address the potential relationship of MCT-1 to cell cycle regulatory molecules, we analyzed the ability of MCT-1 overexpression to modulate cdk4 and cdk6 kinase activity in NIH3T3 fibroblasts constitutively overexpressing MCT-1. We observed an increase in the kinase activity of both cdk4 and cdk6 in asynchronously growing transformed cells compared with the parent cells. This increased kinase activity was accompanied by an elevated level of cyclin D1 protein and increased G1 cyclin/cdk complex formation. We also observed a correlation between increased protein levels of MCT-1 with cyclin D1 expression in a panel of lymphoid cell lines derived from T-cell malignancies. These results demonstrate that constitutive expression of MCT-1 is associated with deregulation of protein kinase-mediated G1 phase checkpoints.  相似文献   

9.
The effect of insulin on the growth of murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental cells (NIH/3T3) was characterized. Insulin in the absence of other mitogens increased the rate of incorporation of thymidine into NIH 3T3/HIR cells with a half-maximal response occurring at an insulin concentration of 35 ng/ml and a maximal response that was equivalent to that elicited by 10% fetal calf serum. The thymidine incorporation rate was increased by 12 h, was maximal at approximately 16 h, and returned to basal rates at 24 h after the addition of insulin. Insulin induced a maximum of 65% of cells to incorporate thymidine. The increased DNA synthesis was accompanied by net growth. Addition of insulin to the NIH 3T3/HIR cells resulted in increased DNA content with a half-maximal response occurring at approximately 30 ng/ml insulin and a maximal response equivalent to that elicited by serum. An increase in cell number detected after the addition of insulin to the NIH 3T3/HIR suggests that the cells had progressed through mitosis. Insulin did not increase the rate of thymidine incorporation, DNA content, or number of the parental NIH 3T3 cells. These data show that insulin, in the absence of a second mitogen, is able to induce NIH 3T3/HIR fibroblasts to traverse the cell cycle.  相似文献   

10.
Necl-5/Tage4/poliovirus receptor/CD155 has been shown to be the poliovirus receptor and to be up-regulated in rodent and human carcinoma. We have found previously that mouse Necl-5 regulates cell motility. We show here that mouse Necl-5 is furthermore involved in the regulation of cell proliferation. Studies using a specific antibody against Necl-5 and a dominant negative mutant of Necl-5 revealed that Necl-5 enhanced the serum-induced proliferation of NIH3T3, Swiss3T3, and mouse embryonic fibroblast cells. Necl-5 enhanced the serum-induced activation of the Ras-Raf-MEK-ERK signaling, up-regulated cyclins D2 and E, and down-regulated p27(Kip1), eventually shortening the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 similarly enhanced the platelet-derived growth factor-induced activation of the Ras-Raf-MEK-ERK signaling and shortened the period of the G(0)/G(1) phase of the cell cycle in NIH3T3 cells. Necl-5 acted downstream of the platelet-derived growth factor receptor and upstream of Ras. Moreover, up-regulated Necl-5 was involved at least partly in the enhanced proliferation of transformed cells including NIH3T3 cells transformed by an oncogenic Ras or v-Src. These results indicate that Necl-5 plays roles not only in cell motility but also in cell proliferation.  相似文献   

11.
Gas6 is a secreted protein previously identified as the ligand of the Axl receptor tyrosine kinase. We have shown that Gas6 is able to induce cell cycle reentry of serum-starved NIH 3T3 cells and to efficiently prevent apoptosis after complete growth factor removal, a survival effect uncoupled from Gas6-induced mitogenesis. Here we report that the mitogenic effect of Gas6 requires phosphatidylinositol 3-kinase (PI3K) activity since it is abrogated both by the specific inhibitor wortmannin and by overexpression of the dominant negative P13K p85 subunit. Consistently, Gas6 activates the P13K downstream targets S6K and Akt, whose activation is abrogated by addition of wortmannin. Moreover, rapamycin treatment blocks Gas6-induced entry into the S phase of serum-starved NIH 3T3 cells. We also demonstrate the requirement of Src tyrosine kinase for Gas6 signalling since stable or transient expression of a catalytically inactive form of Src significantly inhibited Gas6-stimulated entry into the S phase. Accordingly, Gas6 addition to serum-starved NIH 3T3 cells causes activation of the intrinsic Src kinase activity. When specifically analyzed in a survival assay, these elements were found to be required for the survival effect of Gas6. Taken together, the evidence presented here identifies elements involved in the Gas6 transduction pathway that are responsible for its antiapoptotic effect and suggests that Src is involved in the events regulating cell survival.  相似文献   

12.
The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.  相似文献   

13.
Abstract

The PID1/NYGGF4/PCLI1 gene encodes for a protein with a phosphotyrosine-binding domain, which interacts with the lipoprotein receptor-related protein 1. Previous work by us and others suggested a function of the gene in cell proliferation of NIH3T3 fibroblasts and 3T3-L1 pre-adipocytes. The molecular characterization of PCLI1 protein, ectopically expressed in NIH3T3 fibroblasts, revealed two phosphorylation sites at Ser154 and Ser165. In order to clarify the functions of this gene, we analyzed the effects of its downregulation on cellular proliferation and cell cycle progression in NIH3T3 cell cultures. Downregulation of PID1/NYGGF4/PCLI1 mRNA levels by short hairpin RNAs (shRNAs) elicited decreased proliferation rate in mammalian cell lines; cell cycle analysis of serum-starved, synchronized NIH3T3 fibroblasts showed an increased accumulation of shRNA-interfered cells in the G1 phase. Decreased levels of FOS and MYC mRNAs were accordingly associated with these events. The molecular scenario emerging from our data suggests that PID1/NYGGF4/PCLI1 controls cellular proliferation and cell cycle progression in NIH3T3 cells.  相似文献   

14.
Lu Y  Liu S  Zhang S  Cai G  Jiang H  Su H  Li X  Hong Q  Zhang X  Chen X 《Molecules and cells》2011,31(3):225-230
Tissue inhibitor of metalloproteinase-1 (TIMP-1) plays various roles in cell growth in different cell types. However, few studies have focused on TIMP-1’s effect on fibroblast cells. In this study, we investigated the effects of TIMP-1 overexpression on NIH3T3 fibroblast proliferation and potential transduction signaling pathways involved. Overexpression of TIMP-1, by transfection of the pLenti6/V5-DESTTIMP-1 plasmid, significantly promoted NIH3T3 proliferation as determined by the BrdU array. Neither 5 nor 15 nM GM6001 (matrix metalloproteinase system inhibitor) affected NIH3T3 proliferation, but 45 nM GM6001 inhibited proliferation. TIMP-1 overexpression activated the p-Akt pathway, but not the p-ERK or p-p38 pathway. In TIMP-1-transfected cells, cyclinD1 was upregulated and p21CIP1 and p27KIP1 were downregulated, which promoted cell entry into the S and G2/M phases. The PI3-K inhibitor LY294002 abolished the TIMP-1-induced effects. Overexpression of intracellular TIMP-1 stimulated NIH3T3 fibroblast proliferation in a matrix metalloproteinase (MMP)-independent manner by activating the p-Akt pathway and related cell cycle progression.  相似文献   

15.
Previous data show a relation between GSH content and proliferation of normal and tumour cells. We recently demonstrated a specific involvement of GSH in the autophosphorylation activity of the platelet-derived growth factor (PDGF) receptor in NIH3T3 fibroblasts. In this study we demonstrate that the stimulation by PDGF of serum-starved NIH3T3 cells increases cellular GSH content, while no change in oxidized GSH content was measured. Experiments performed with actinomycin, cycloheximide and buthionine sulfoximide, a specific inhibitor of the rate-limiting enzyme of the de novo synthesis of GSH gamma-glutamylcysteine synthetase (gamma-GCS), confirm PDGF induction of GSH synthesis. These results provide the first demonstration that PDGF mediated transduction signals seem strictly related to mechanisms involved in the increase of gamma-GCS activity associated with increased gamma-GCS heavy subunit mRNA levels. In fact, serum and epidermal growth factor (EGF) stimulation of quiescent NIH3T3 and NIH3T3, which overexpress EGF receptor, does not affect GSH content or its synthesis. These data may be related to a possible GSH role in the redox regulation of cell proliferation mediated by PDGF.  相似文献   

16.
17.
We studied the effect of heparin on proliferation and signalling in normal NIH/3T3 fibroblasts, and in cells transformed by different oncogenes. Heparin inhibited the proliferation of normal as well as of v-sis and v-erbB transformed fibroblasts in the presence of serum, but failed to inhibit v-erbB-driven proliferation in serum-starved cultures; under these conditions, heparin inhibited by approximately 50% the proliferation of normal and v-sis- transformed cells. Heparin also inhibited PDGF-induced cell proliferation and inositol lipid turnover in v-sis transformants, but it did not affect PDGF mitogenic signalling in NIH/3T3 fibroblasts.  相似文献   

18.
19.
Platelet-derived growth factor (PDGF) stimulation of NIH 3T3 cells leads to the rapid tyrosine phosphorylation of the GTPase-activating protein (GAP) and an associated 64- to 62-kDa tyrosine-phosphorylated protein (p64/62). To assess the functions of these proteins, we evaluated their phosphorylation state in normal NIH 3T3 cells as well as in cells transformed by oncogenically activated v-H-ras or overexpression of c-H-ras genes. No significant GAP tyrosine phosphorylation was observed in unstimulated cultures, while PDGF-BB induced rapid tyrosine phosphorylation of GAP in all cell lines analyzed. In NIH 3T3 cells, we found that PDGF stimulation led to the recovery of between 37 and 52% of GAP molecules by immunoprecipitation with monoclonal antiphosphotyrosine antibodies. Furthermore, PDGF exposure led to a rapid and sustained increase in the levels of p21ras bound to GTP, with kinetics similar to those observed for GAP tyrosine phosphorylation. The PDGF-induced increases in GTP-bound p21ras in NIH 3T3 cells were comparable to the steady-state level observed in serum-starved c-H-ras-overexpressing transformants, conditions in which these cells maintained high rates of DNA synthesis. These results imply that the level of p21ras activation following PDGF stimulation of NIH 3T3 cells is sufficient to support mitogenic stimulation. Addition of PDGF to c-H-ras-overexpressing cells also resulted in a rapid and sustained increase in GTP-bound p21ras. In these cells GAP, but not p64/62, showed increased tyrosine phosphorylation, with kinetics similar to those observed for increased GTP-bound p21ras. All of these findings support a role for GAP tyrosine phosphorylation in p21ras activation and mitogenic signaling.  相似文献   

20.
Growth hormone (GH) has previously been reported to influence the adipose conversion of 3T3-F442A murine fibroblasts, partly by causing these cells to exit the cell cycle and to become unresponsive to serum-stimulated mitogenesis. To better understand this process, quiescent fibroblasts were treated with fully stimulatory doses (50 nM) of epidermal growth factor (EGF) in the presence or absence of pituitary human GH (hGH) or the phorbol ester phorbol 12-myristate 13-acetate (PMA), which is known to down-regulate EGF receptor activity. EGF-induced DNA synthesis was attenuated by hGH in a dose-dependent manner with an ED50 of approximately 0.1 nM and a maximally effective dose of 10–30 nM. This effect appeared to be the result of inhibition of DNA synthesis and exclusive of a time shift in the initiation of the S phase of the cell cycle. Additionally, insulin-like growth factor-1 (IGF-1), which can act as an important in vivo mediator of GH, failed to mimic the anti-mitogenic effects of GH. The ability of hGH to antagonize EGF-stimulated mitogenesis did not appear to be due to the down-regulation of EGF receptor mass or to pronounced changes in EGF-induced tyrosine kinase activity. Furthermore, when GH was administered at various times after EGF addition, GH continued to be effective at inhibiting EGF-induced DNA synthesis for up to 9 hr after EGF treatment. Modulation of EGF-induced cell cycle progression was further evidenced by the ability of GH to promote a marked decrease in the EGF-induced expression of D cyclins. In comparison, PMA inhibited EGF-induced DNA synthesis for up to 18 hr after EGF addition and also down-regulated EGF receptor mass and activity; these observations suggest that the mechanism of GH action is largely distinct from that of PMA. We conclude that GH can selectively and dose-dependently modulate EGF receptor-mediated DNA synthesis exclusive of any rapid or extensive effects on EGF receptor mass or tyrosine kinase activity. Furthermore, the capacity of GH to attenuate EGF-induced mitogenesis, even when administered 9 hr after EGF addition, and the GH modulation of EGF-induced expression of D cyclins, suggest that there are GH-induced effects on systems involved in the transition of these fibroblasts through the G1 phase of the cell cycle. In sum, these data support a specific interaction of this somatotropic hormone/cytokine with EGF in the control of cell cycle progression in 3T3-F442A fibroblasts. J. Cell. Physiol. 173:44–53, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号