首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the primary points of regulation of transforming growth factor-beta (TGF-beta) activity is control of its conversion from the latent precursor to the biologically active form. We have identified thrombospondin-1 as a major physiological regulator of latent TGF-beta activation. Activation is dependent on the interaction of a specific sequence in thrombospondin-1 (K412RFK415) with the latent TGF-beta complex. Platelet thrombospon-din-1 has TGF-beta activity and immunoreactive mature TGF-beta associated with it. We now report that the latency-associated peptide (LAP) of the latent TGF-beta complex also interacts with thrombospondin-1 as part of a biologically active complex. Thrombospondin.LAP complex formation involves the activation sequence of thrombospondin-1 (KRFK) and a sequence (LSKL) near the amino terminus of LAP that is conserved in TGF-beta1-5. The interactions of LAP with thrombospondin-1 through the LSKL and KRFK sequences are important for thrombospondin-mediated activation of latent TGF-beta since LSKL peptides can competitively inhibit latent TGF-beta activation by thrombospondin or KRFK-containing peptides. In addition, the association of LAP with thrombospondin-1 may function to prevent the re-formation of an inactive LAP.TGF-beta complex since thrombospondin-bound LAP no longer confers latency on active TGF-beta. The mechanism of TGF-beta activation by thrombospondin-1 appears to be conserved among TGF-beta isoforms as latent TGF-beta2 can also be activated by thrombospondin-1 or KRFK peptides in a manner that is sensitive to inhibition by LSKL peptides.  相似文献   

2.
Growth factors of the transforming growth factor-beta family are potent regulators of the extracellular matrix formation, in addition to their immunomodulatory and regulatory roles for cell growth. TGF-beta s are secreted from cells as latent complexes containing TGF-beta and its propeptide, LAP (latency-associated peptide). In most cells LAP is covalently linked to an additional protein, latent TGF-beta binding protein (LTBP), forming the large latent complex. LTBPs are required for efficient secretion and correct folding of TGF-beta s. The secreted large latent complexes associate covalently with the extracellular matrix via the N-termini of the LTBPs. LTBPs belong to the fibrillin-LTBP family of extracellular matrix proteins, which have a typical repeated domain structure consisting mostly of epidermal growth factor (EGF)-like repeats and characteristic eight cysteine (8-Cys) repeats. Currently four different LTBPs and two fibrillins have been identified. LTBPs contain multiple proteinase sensitive sites, providing means to solubilize the large latent complex from the extracellular matrix structures. LTBPs are now known to exist both as soluble molecules and in association with the extracellular matrix. An important consequence of this is LTBP-mediated deposition and targeting of latent, activatable TGF-beta into extracellular matrices and connective tissues. LTBPs have a dual function, they are required both for the secretion of the small latent TGF-beta complex as well as directing bound latent TGF-beta to extracellular matrix microfibrils. However, it is not known at present whether LTBPs are capable of forming microfibrils independently, or whether they are a part of the fibrillin-containing fibrils. Most LTBPs possess RGD-sequences, which may have a role in their interactions with the cell surface. At least LTBP-1 is chemotactic to smooth muscle cells, and is involved in vascular remodelling. Analyses of the expressed LTBPs have revealed considerable variations throughout the molecules, generated both by alternative splicing and utilization of multiple promoter regions. The significance of this structural diversity is mostly unclear at present.  相似文献   

3.
Transforming growth factor (TGF)-betas are secreted in large latent complexes consisting of TGF-beta, its N-terminal latency-associated peptide (LAP) propeptide, and latent TGF-beta binding protein (LTBP). LTBPs are required for secretion and subsequent deposition of TGF-beta into the extracellular matrix. TGF-beta1 associates with the 3(rd) 8-Cys repeat of LTBP-1 by LAP. All LTBPs, as well as fibrillins, contain multiple 8-Cys repeats. We analyzed the abilities of fibrillins and LTBPs to bind latent TGF-beta by their 8-Cys repeats. 8-Cys repeat was found to interact with TGF-beta1*LAP by direct cysteine bridging. LTBP-1 and LTBP-3 bound efficiently all TGF-beta isoforms, LTBP-4 had a much weaker binding capacity, whereas LTBP-2 as well as fibrillins -1 and -2 were negative. A short, specific TGF-beta binding motif was identified in the TGF-beta binding 8-Cys repeats. Deletion of this motif in the 3(rd) 8-Cys repeat of LTBP-1 resulted in loss of TGF-beta*LAP binding ability, while its inclusion in non-TGF-beta binding 3(rd) 8-Cys repeat of LTBP-2 resulted in TGF-beta binding. Molecular modeling of the 8-Cys repeats revealed a hydrophobic interaction surface and lack of three stabilizing hydrogen bonds introduced by the TGF-beta binding motif necessary for the formation of the TGF-beta*LAP - 8-Cys repeat complex inside the cells.  相似文献   

4.
The three mammalian transforming growth factor beta (TGF-beta) isoforms are each secreted in a latent complex in which TGF-beta homodimers are non-covalently associated with homodimers of their respective pro-peptide called the latency-associated peptide (LAP). Release of TGF-beta from its LAP, called activation, is required for binding of TGF-beta to cellular receptors, making extracellular activation a critical regulatory point for TGF-beta bioavailability. Our previous work demonstrated that latent TGF-beta1 (LTGF-beta1) is efficiently activated by ionizing radiation in vivo and by reactive oxygen species (ROS) generated by Fenton chemistry in vitro. In the current study, we determined the specific ROS and protein target that render LTGF-beta1 redox sensitive. First, we compared LTGF-beta1, LTGF-beta2 and LTGF-beta3 to determine the generality of this mechanism of activation and found that redox-mediated activation is restricted to the LTGF-beta1 isoform. Next, we used scavengers to determine that ROS activation was a function of OH(.) availability, confirming oxidation as the primary mechanism. To identify which partner of the LTGF-beta1 complex was functionally modified, each was exposed to ROS and tested for the ability to form a latent complex. Exposure of TGF-beta1 did not alter its ability to associate with LAP, but exposing LAP-beta1 to ROS prohibited this phenomenon, while treatment of ROS-exposed LAP-beta1 with a mild reducing agent restored its ability to neutralize TGF-beta1 activity. Taken together, these results suggest that ROS-induced oxidation in LAP-beta1 triggers a conformational change that releases TGF-beta1. Using site-specific mutation, we identified a methionine residue at amino acid position 253 unique to LAP-beta1 as critical to ROS-mediated activation. We propose that LTGF-beta1 contains a redox switch centered at methionine 253, which allows LTGF-beta1 to act uniquely as an extracellular sensor of oxidative stress in tissues.  相似文献   

5.
《The Journal of cell biology》1993,120(4):995-1002
Transforming growth factor beta (TGF-beta) is released from cells in a latent form consisting of the mature growth factor associated with an aminoterminal propeptide and latent TGF-beta binding protein (LTBP). The endogenous activation of latent TGF-beta has been described in co- cultures of endothelial and smooth muscle cells. However, the mechanism of this activation remains unknown. Antibodies to native platelet LTBP and to a peptide fragment of LTBP inhibit in a dose-dependent manner the activation of latent TGF-beta normally observed when endothelial cells are cocultured with smooth muscle cells. Inhibition of latent TGF- beta activation was also observed when cells were co-cultured in the presence of an excess of free LTBP. These data represent the first demonstration of a function for the LTBP in the extracellular regulation of TGF-beta activity and indicate that LTBP participates in the activation of latent TGF-beta, perhaps by concentrating the latent growth factor on the cell surface where activation occurs.  相似文献   

6.
Transforming growth factor-betas (TGF-beta) are secreted as inactive complexes containing the TGF-beta, the TGF-beta propeptide, also called the latency-associated protein (LAP), and the latent TGF-beta binding protein (LTBP). Extracellular activation of this complex is a critical but incompletely understood step in TGF-beta regulation. We have investigated the role of LTBP in modulating TGF-beta generation by the integrin alphaVbeta6. We show that even though alphavbeta6 recognizes an RGD on LAP, LTBP-1 is required for alphaVbeta6-mediated latent TGF-beta activation. The domains of LTBP-1 necessary for activation include the TGF-beta propeptide-binding domain and a basic amino acid sequence (hinge domain) with ECM targeting properties. Our results demonstrate an LTBP-1 isoform-specific function in alphaVbeta6-mediated latent TGF-beta activation; LTBP-3 is unable to substitute for LTBP-1 in this assay. The results reveal a functional role for LTBP-1 in latent TGF-beta activation and suggest that activation of specific latent complexes is regulated by distinct mechanisms that may be determined by the LTBP isoform and its potential interaction with the matrix.  相似文献   

7.
The role of latent transforming growth factor-beta (TGF-beta) binding protein (LTBP) in the association of TGF-beta 1 to the extracellular matrix of cultured fibroblasts and HT-1080 fibrosarcoma cells was studied by immunochemical methods. The matrices were isolated from the cells, and the levels of LTBP and TGF-beta 1 were estimated by immunoblotting and immunoprecipitation. LTBP, TGF-beta 1, and its propeptide (latency-associated peptide, LAP) were found to associate to the extracellular matrix. Immunoblotting analysis indicated that treatment of the cells with plasmin resulted in a concomitant time and dose dependent release of both LTBP and TGF-beta 1 from the extracellular matrix to the supernatant. Comparison of molecular weights suggested that plasmin treatment resulted in the cleavage of LTBP from the high molecular weight fibroblast form to a form resembling the low molecular weight LTBP found in platelets. Pulse- chase and immunoprecipitation analysis indicated that both the free form of LTBP and LTBP complexed to latent TGF-beta were efficiently incorporated in the extracellular matrix, from where both complexes were slowly released to the culture medium. Addition of plasmin to the chase solution resulted, however, in a rapid release of LTBP from the matrix. Fibroblast derived LTBP was found to associate to the matrix of HT-1080 cells in a plasmin sensitive manner as shown by immunoprecipitation analysis. These results suggest that the latent form of TGF-beta 1 associates with the extracellular matrix via LTBP, and that the release of latent TGF-beta 1 from the matrix is a consequence of proteolytic cleavage(s) of LTBP.  相似文献   

8.
9.
Latent TGF-beta1 activation by platelets   总被引:7,自引:0,他引:7  
Platelets are a major source of transforming growth factor-beta1 (TGF-beta1) in the circulation as they release latent growth factor in response to activation. We report here that human platelets, when stimulated with thrombin, activated a significant proportion of the latent TGF-beta released. Latent TGF-beta activation was independent of cytokine release, since activation was delayed compared to platelet degranulation. Activation occured in releasates and did not require the continuous presence of platelets. Classical mechanisms of latent TGF-beta activation were not involved, since activation was not affected by gene deletion and/or inhibitors of the known TGF-beta activators/co-factors, thrombospondin-1 (TSP-1), mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR), plasminogen/plasmin, or several other candidate proteases. In contrast, latent TGF-beta activation was significantly inhibited by the furin inhibitors, decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone and L-hexaarginine. We show that platelets contain a furin-like enzyme which is released upon platelet activation. We conclude that, following activation, platelets release and activate latent TGF-beta1 via mechanisms involving the release and activity of a furin-like proprotein convertase. This novel mechanism of latent TGF-beta activation might represent an important mediator and therapeutic target of platelet TGF-beta1 functions, for example, in early wound repair, fibrosis, or arteriosclerosis.  相似文献   

10.
Activation of latent TGF-beta by thrombospondin-1: mechanisms and physiology   总被引:13,自引:0,他引:13  
Regulation of the activation of latent TGF-beta is essential for health as too much or too little TGF-beta activity can have serious, deleterious consequences. The processes that control conversion of the precursor to the biologically active form of TGF-beta in vivo are not well characterized. We have identified a mechanism for the activation of latent TGF-beta that involves binding of the secreted and extracellular matrix protein, thrombospondin-1 (TSP-1), to the latent precursor. Specific sequences in TSP-1 and in the precursor portion (the latency associate peptide-LAP) have been determined to be essential for activation of latent TGF-beta by TSP-1. It is thought that binding of TSP-1 to the latent complex induces a conformational rearrangement of the LAP in such a manner as to prevent the LAP from conferring latency on the mature domain of TGF-beta. A TSP-dependent mechanism of activation may be locally important during wound healing and in post-natal development of epithelial structures. The possible involvement of TSP-1 in TGF-beta activation during several disease processes is also discussed.  相似文献   

11.
beta-Transforming growth factor (TGF-beta) is stored in platelets and secreted as a high molecular weight latent form associated with a carrier protein of about 440 KD. This carrier protein could be separated from TGF-beta in 1 N acetic acid and could again mask the activity of TGF-beta under neutral conditions. Therefore, it was named the masking protein of TGF-beta. The masking protein was separated from TGF-beta by gel filtration on a Sephacryl S-300 column or by anion-exchanger FPLC on a Mono Q column in the presence of 6 M urea. Partially purified masking protein from rat platelets neutralized the activity of TGF-beta dose-dependently and was effective at 0.3 microgram/ml. This masking protein could also mask the activity of human TGF-beta, suggesting that it was not species specific. The masking protein was a heat- and acid-stable protein, but was inactivated by treatment with dithiothreitol. The Physiological role of the masking protein in the mechanisms of wound healing and liver regeneration is discussed.  相似文献   

12.
Glutamine (Gln) and keratinocyte growth factor (KGF) each stimulate intestinal epithelial cell growth, but regulatory mechanisms are not well understood. We determined whether Gln and KGF alter intra- and extracellular thiol/disulfide redox pools in Caco-2 cells cultured in oxidizing or reducing cell medium and whether such redox variations are a determinant of proliferative responses to these agents. Cells were cultured over a physiological range of oxidizing to reducing extracellular thiol/disulfide redox (Eh) conditions, obtained by varying cysteine (Cys) and cystine (CySS) concentrations in cell medium. Cell proliferation was determined by 5-bromo-2-deoxyuridine (BrdU) incorporation. Gln (10 mmol/l) or KGF (10 microg/l) did not alter BrdU incorporation at reducing Eh (-131 to -150 mV), but significantly increased incorporation at more oxidizing Eh (Gln at 0 to -109 mV; KGF at -46 to -80 mV). Cellular glutathione/glutathione disulfide (GSH/GSSG) Eh was unaffected by Gln, KGF, or variations in extracellular Cys/CySS Eh. Control cells largely maintained extracellular Eh at initial values after 24 h (-36 to -136 mV). However, extracellular Eh shifted toward a narrow physiological range with Gln and KGF treatment (Gln -56 to -88 mV and KGF -76 to -92 mV, respectively; P < 0.05 vs. control). The results indicate that thiol/disulfide redox state in the extracellular milieu is an important determinant of Caco-2 cell proliferation induced by Gln and KGF, that this control is independent of intracellular GSH redox status, and that both Gln and KGF enhance the capability of Caco-2 cells to modulate extremes of extracellular redox.  相似文献   

13.
14.
Skin repair and scar formation: the central role of TGF-beta   总被引:1,自引:0,他引:1  
Wound healing is a complex process that we have only recently begun to understand. Central to wound repair is transforming growth factor beta (TGF-beta), a cytokine secreted by several different cell types involved in healing. TGF-beta has diverse effects, depending upon the tissue studied. This review focuses on healing in skin, particularly the phases of cutaneous wound repair and the role of TGF-beta in normal and impaired wound-healing models. It also explores TGF-beta activity in scarless foetal wound healing. Knowledge of TGF-beta function in scarless repair is critical to improving healing in clinical scenarios, such as diabetic wounds and hypertrophic scars.  相似文献   

15.
The binding of growth factors to the extracellular matrix (ECM) may be a key pathway for regulation of their activity. We have shown that a major mechanism for storage of transforming growth factor-beta (TGF-beta) in bone ECM is via its association with latent TGF-beta-binding protein-1 (LTBP1). Although proteolytic cleavage of LTBP1 has been reported, it remains unclear whether this represents a physiological mechanism for release of matrix-bound TGF-beta. Here we examined the role of LTBP1 in cell-mediated release of TGF-beta from bone ECM. We first characterized the soluble and ECM-bound forms of latent TGF-beta produced by primary osteoblasts. Next, we examined release of ECM-bound TGF-beta by bone resorbing cells. Isolated avian osteoclasts and rabbit bone marrow-derived osteoclasts released bone matrix-bound TGF-beta via LTBP1 cleavage. 1,25-Dihydroxyvitamin D3 enhanced LTBP1 cleavage, resulting in release of 90% of the ECM-bound LTBP1. In contrast, osteoblasts failed to cleave LTBP1 or release TGF-beta from bone ECM. Cleavage of LTBP1 by avian osteoclasts was inhibited by serine protease and metalloproteinase (MMP) inhibitors. Studies using purified proteases showed that plasmin, elastase, MMP2, and MMP9 were able to cleave LTBP1 to produce 125-165-kDa fragments. These studies identify LTBP1 as a novel substrate for MMPs and provide the first demonstration that LTBP1 proteolysis may be a physiological mechanism for release of TGF-beta from ECM-bound stores, potentially the first step in the pathway by which matrix-bound TGF-beta is rendered active.  相似文献   

16.
A major house dust mite allergen Der f 1 belongs to the papain-like cysteine protease family. This study investigated whether Der f 1 can cleave the latency-associated peptide (LAP) of transforming growth factor (TGF)-β via its proteolytic activity and activate latent TGF-β. We found that Der f 1 can cleave LAP and induce the activation of latent TGF-β, leading to functional Smad signaling. Importantly, these actions of Der f 1 were inhibited by cysteine protease inhibitor E64 or inactivation of the protease activity by heat. Thus, latent TGF-β may be a direct target of Der f 1 protease activity.  相似文献   

17.
Targeting cytokines to inflammation sites   总被引:2,自引:0,他引:2  
To increase the half-life of a cytokine and target its activation specifically to disease sites, we have engineered a latent cytokine using the latency-associated protein (LAP) of transforming growth factor-beta 1 (TGF-beta 1) fused via a matrix metalloproteinase (MMP) cleavage site to interferon (IFN)-beta at either its N or C terminus. The configuration LAP-MMP-IFN-beta resembles native TGF-beta and lacks biological activity until cleaved by MMPs, whereas the configuration IFN-beta-MMP-LAP is active. LAP provides for a disulfide-linked shell hindering interaction of the cytokine with its cellular receptors, conferring a very long half-life of 55 h in vivo. Mutations of the disulfide bonds in LAP abolish this latency. Samples of cerebrospinal fluid (CSF) or synovial fluid from patients with inflammatory diseases specifically activate the latent cytokine, whereas serum samples do not. Intramuscular injection in arthritic mice of plasmid DNA encoding these constructs demonstrated a greater therapeutic effect of the latent as compared to the active forms.  相似文献   

18.
Transforming growth factor-beta complexes with thrombospondin.   总被引:20,自引:0,他引:20       下载免费PDF全文
Thrombospondin (TSP) was demonstrated to inhibit the growth of bovine aortic endothelial cells, an activity that was not neutralized by antibodies to TSP or by other agents that block TSP-cell interactions but that partially was reversed by a neutralizing antibody to transforming growth factor-beta (TGF-beta). Similar to TGF-beta, TSP supported the growth of NRK-49F colonies in soft agar in a dose-dependent manner, which required epidermal growth factor and was neutralized by anti-TGF-beta antibody. Chromatography of a TSP preparation did not separate the TGF-beta-like NRK colony-forming activity from high molecular weight protein. However, when chromatography was performed at pH 11, this activity was dissociated from TSP. These results suggest that at least some growth modulating activities of TSP are due to TGF-beta associated with TSP by strong non-covalent forces. Most of the active TGF-beta released from platelets after degranulation was associated with TSP, as demonstrated by anti-TSP immunoaffinity and gel permeation chromatography. 125I-TGF-beta binds to purified TSP in an interaction that is specific in the sense that bound TGF-beta could be displaced by TGF-depleted TSP but not significantly by native TSP, heparin, decorin, alpha 2-macroglobulin, fibronectin, or albumin. Hence, TGF-beta can bind to TSP, and the complex forms under physiological conditions. Furthermore, TSP-associated TGF-beta is biologically active, and the binding of TGF-beta to TSP may protect TGF-beta from extracellular inactivators.  相似文献   

19.
Regenerating agents (RGTA) are defined as heparan sulfate mimics, which in vivo stimulate tissue repair. RGTA are obtained by controlled grafting of carboxymethyl and sulfate groups on dextran polymers. RGTA are selected in vitro, on their ability to protect heparin binding growth factors such as TGF-beta1 for example, as well as to alter extracellular matrix biosynthesis. We had reported that RGTA were able to modulate smooth muscle cell (SMC) collagen biosynthesis. Here, we demonstrated that a specific RGTA (RG-1503), altered differentially collagen type expression by post-confluent SMC and that this action involves TGF-beta1. RG-1503 decreased, by 50%, collagen I and III biosynthesis and stimulated specifically, by twofold, collagen V biosynthesis. TGF-beta1 stimulated collagen I and V by 1.5- and threefold, respectively. A synergic action for RGTA in association with TGF-beta1 was observed specifically for collagen V expression (eightfold increase). The stimulation of collagen V biosynthesis by RGTA was abolished by TGF-beta1 neutralizing antibodies. These modulations occurred at protein and mRNA levels. RG-1503 did not alter TGF-beta1 mRNA steady state level or total TGF-beta1 protein content (latent+active forms). However, RG-1503 significantly induced an elevated proportion of active TGF-beta1 form, which could result from the selective protection from proteolytic degradation of TGF-beta1 by RG-1503. These data open a rationale for understanding the stimulation of tissue repair induced by RGTA, and also, a new insight for developing drugs adapted to inhibit excess collagen deposition in smooth muscle cells associated vascular disorder, and in fibrotic diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号