首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Ecto-enzymes capable of hydrolyzing ATP and ADP (NTPDase) are present in the central nervous system of various species. In the present investigation we studied the synaptosomal NTPDase (ATP diphosphohydrolase, apyrase, E.C. 3.6.1.5) from fish, chicken and rats under different conditions and in the presence of several classical inhibitors. The cation concentration required for maximal activity was 0.5 mM for fish, 1.0 mM for chickens and 1.5 mM for rats with both substrates. The results showed that the pH optimum for all animal preparations was close to 8.0. The temperature used was 25–27°C for fish and 35–37°C for chicken and rat preparations. The inhibitors azide and fluoride only inhibited the preparation at high concentrations (10 mM). Lanthanum (0.1–0.4 mM), N-ethylmaleimide (0.4–3.0 mM) and ouabain (0.5–3.0 mM) had no effect on NTPDase activity from fish, chickens or rats. Orthovanadate (0.1–0.3 mM) only inhibited fish synaptosomal NTPDase. Trifluoperazine (0.05–0.2 mM) and suramin (0.03–0.3 mM) inhibited NTPDase at all concentrations tested. Suramin was the most potent compound in causing inhibition, presenting inhibition at 30 μM. Our results demonstrate that the synaptosomal NTPDase response to several factors is similar in fish, chickens and rats, and that the enzyme presents functional homology.  相似文献   

2.
This study aimed to characterize the activity of ectonucleoside triphosphate diphosphohydrolase (E‐NTPDase; EC 3.6.1.5) in peritoneal cavity cells from BALB/c mice. E‐NTPDase was activated in the presence of both calcium (1.5mM) and magnesium (1.5mM) ions. However, the activity was higher in the presence of Ca2+. A pH of 8.5 and temperature of 37°C were the optimum conditions for catalysis. The apparent Km values were 0.51mM and 0.66mM for the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively. The Vmax values were 136.4 and 120.8 nmol Pi/min/mg of protein for ATPase and ADPase activity, respectively. Nucleotide hydrolysis was inhibited in the presence of sodium azide (20mM, ATP: P < .05; ADP: P < .001), sodium fluoride (20mM; ATP and ADP: P < .001), and suramin (0.3mM; ATP: P < .01; ADP: P < .05), which is a known profile for NTPDase inhibition. Although all of the diphosphate and triphosphate nucleotides that were tested were hydrolyzed, enzyme activity was increased when adenine nucleotides were used as substrates. Finally, we stress that knowledge of the E‐NTPDase catalytic biochemical properties in mouse peritoneal cavity cells is indispensable for properly determining its activity, as well as to fully understand the immune response profile in both healthy and sick cells.  相似文献   

3.
Human lymphocytes contain NTPDase (NTPDase-1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5), a cation-dependent enzyme that hydrolyzes ATP and ADP and also other di- and triphosphate nucleosides, acting at an optimum pH of 8.0. A significant inhibition of ATP and ADP hydrolysis (P<0.05) was observed in the presence of 20 mM sodium azide. NTPDase inhibitors, 20 mM sodium fluoride, 0.2 mM trifluoperazine and 0.3 mM suramin, significantly decreased ATP and ADP hydrolysis (P<0.05) and ADP hydrolysis was only inhibited by 0.5 mM orthovanadate (P<0.05). ATP and ADP hydrolysis was not inhibited in the presence of 0.01 mM Ap5A (P1,P5-di(adenosine-5')pentaphosphate), 0.1 mM ouabain, 1 mM levamisole, 2 microg/mL oligomycin, 0.1 mM N-ethylmaleimide (NEM), or 5 mM sodium azide. With respect to kinetic behavior, apparent K(m) values of 77.6+/-10.2 and 106.8+/-21.0 microM, and V(max) values of 68.9+/-8.1 and 99.4+/-8.5 (mean+/-S.E., n=3) nmol Pi/min/mg protein were obtained for ATP and ADP, respectively. A Chevilard plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. The presence of CD39 was determined by flow cytometry, showing a low density of 2.72+/-0.24% (mean+/-S.E.; n=30) in human peripheral lymphocytes. The study of NTPDase activity in human lymphocytes may be important to determine the immune response status against infectious agents related to ATP and ADP hydrolysis.  相似文献   

4.
The degradation of nucleotides is catalyzed by the family of enzymes called nucleoside triphosphate diphosphohydrolases (NTPDases). The aim of this work was to demonstrate the presence of NTPDase in the rat gastric mucosa. The enzyme was found to hydrolyze ATP and ADP at an optimum pH of 8.0 in the presence of Mg2+ and Ca2+. The inhibitors ouabain (0.01-1 mM), N-ethylmaleimide (0.01-4 mM), levamisole (0.10-0.2 mM) and Ap5A (0.03 mM) had no effect on NTPDase 1 activity. Sodium azide (0.03-30 mM), at high concentrations (>0.1 mM), caused a parallel hydrolysis inhibition of ATP and ADP. Suramin (50-300 microM) inhibited ATP and ADP hydrolysis at all concentrations tested. Orthovanadate slightly inhibited (15%) Mg2+ and Ca2+ ATP/ADPase at 100 microM. Lanthanum decreased Mg2+ and Ca2+ ATP/ADPase activities. The presence of NTPDase as ecto-enzyme in the gastric mucosa may have an important role in the extracellular metabolism of nucleotides, suggesting that this enzyme plays a role in the control of acid and pepsin secretion, mucus production, and contractility of the stomach.  相似文献   

5.
The inhibition of adenine nucleotide hydrolysis by heparin and chondroitin sulfate (sulfated polysaccharides) was studied in membrane preparations from liver and kidney of adult rats. Hydrolysis was measured by the activity of NTPDase and 5′-nucleotidase. The inhibition of NTPDase by heparin was observed at three different pH values (6.0, 8.0 and 10.0). In liver, the maximal inhibition observed for ATP and ADP hydrolysis was about 80% at pH 8.0 and 70% at pH 6.0 and 10.0. Similarly to the effect observed in liver, heparin caused inhibition of ATP and ADP hydrolysis that reached a maximum of 70% in kidney (pH 8.0). Na+, K+ and Rb+ changed the inhibitory potency of heparin, suggesting that its effects may be related to charge interaction. In addition to heparin, chondroitin sulfate also caused a dose-dependent inhibition in liver and kidney membranes. The maximal inhibition observed for ATP and ADP hydrolysis was about 60 and 50%, respectively. In addition, the hepatic and renal activity of 5′-nucleotidase was inhibited by heparin and chondroitin sulfate, except for kidney membranes where chondroitin sulfate did not alter AMP hydrolysis. On this basis, the findings indicate that glycosaminoglycans have a potential role as inhibitors of adenine nucleotide hydrolysis on the surface of liver and kidney cell membranes in vitro.  相似文献   

6.
1. Glucokinase was absent from chicken liver and only the low Km hexokinases, inhibited by AMP, ADP but not ATP, were present. 2. The Km of chicken liver glucose-6-phosphatase for glucose-6-phosphate was reduced from 5.65 to 3.75 mM following starvation, and the enzyme was inhibited by glucose. 3. Starvation of chickens for 24 hr slightly lowered the hexokinase activity and doubled glucose-6-phosphatase activity; it did not change subcellular distribution of the enzymes. Oral glucose rapidly restored the activities to fed values. 4. It was concluded that glucose uptake into, and efflux from, chicken hepatocytes, was regulated by the activity and kinetic characteristics of glucose-6-phosphatase and by the glucose-6-phosphate concentration, and that the hexokinases had little regulatory function.  相似文献   

7.
Here we described an nucleoside triphosphate diphosphohydrolase (NTPDase) activity in living trophozoites of Trichomonas gallinae. The enzyme hydrolyzes a variety of purine and pyrimidine nucleoside di- and triphosphates in an optimum pH range of 6.0-8.0. This enzyme activity was activated by high concentrations of divalent cations, such as calcium and magnesium. Contaminant activities were ruled out because the enzyme was not inhibited by classical inhibitors of ATPases (ouabain, 5.0 mM sodium azide, oligomycin) and alkaline phosphatases (levamisole). A significant inhibition of ATP hydrolysis (38%) was observed in the presence of 20 mM sodium azide. Sodium orthovanadate inhibited ATP and ADP hydrolysis (24% and 78%), respectively. The apparent K(M) (Michaelis constant) values were 667.62+/-13 microM for ATP and 125+/-5.3 microM for ADP. V(max) (maximum velocity) values were 0.44+/-0.007 nmol Pi min(-1) per 10(6) trichomonads and 0.91+/-0.12 nmol Pi min(-1) per 10(6) trichomonads for ATP and ADP, respectively. Moreover, we showed a marked decrease in ATP, ADP and AMP hydrolysis when the parasites were grown in the presence of penicillin and streptomycin. The existence of an NTPDase activity in T. gallinae may be involved in pathogenicity, protecting the parasite from the cytolytic effects of the extracellular nucleotides.  相似文献   

8.
Alcohol abuse is an acute health problem throughout the world and alcohol consumption is linked to the occurrence of several pathological conditions. Here we tested the acute effects of ethanol on NTPDases (nucleoside triphosphate diphosphohydrolases) and 5'-nucleotidase in zebrafish (Danio rerio) brain membranes. The results have shown a decrease on ATP (36.3 and 18.4%) and ADP (30 and 20%) hydrolysis after 0.5 and 1% (v/v) ethanol exposure during 60 min, respectively. In contrast, no changes on 5'-nucleotidase activity were observed in zebrafish brain membranes. Ethanol in vitro did not alter ATP and ADP hydrolysis, but AMP hydrolysis was inhibited at 0.5, and 1% (23 and 28%, respectively). Acetaldehyde in vitro, in the range 0.5-1%, inhibited ATP (40-85%) and ADP (28-65%) hydrolysis, whereas AMP hydrolysis was reduced (52, 58 and 64%) at 0.25, 0.5 and 1%, respectively. Acetate in vitro did not alter these enzyme activities. Semi-quantitative expression analysis of NTPDase and 5'-nucleotidase were performed. Ethanol treatment reduced NTPDase1 and three isoforms of NTPDase2 mRNA levels. These findings demonstrate that acute ethanol intoxication may influence the enzyme pathway involved in the degradation of ATP to adenosine, which could affect the responses mediated by adenine nucleotides and nucleosides in zebrafish central nervous system.  相似文献   

9.
ATP is an important excitatory neurotransmitter and adenosine acts as a neuromodulatory structure inhibiting neurotransmitters release in the central nervous system. Since the ecto-nucleotidase cascade that hydrolyzes ATP to adenosine is involved in the control of brain functions and previous studies realized in our laboratory have recently reported that acute administration of Arg decreases the NTPDase and 5′-nucleotidase activities of rat blood serum, in the present study we investigated the effect of arginine administration on NTPDase and 5′-nucleotidase activities by synaptosomes from hippocampus of rats. First, sixty-days-old rats were treated with a single or a triple intraperitoneal injection of arginine (0.8 g/Kg) or an equivalent volume of 0.9% saline solution (control) and were killed 1 h later. Second, rats received an intracerebroventricular injection of 1.5 mM arginine solution or saline (5 μL) and were killed 1 h later. We also tested the in vitro effect of arginine (0.1–1.5 mM) on nucleotide hydrolysis in synaptosomes from rat hippocampus. Results showed that intraperitoneal arginine administration did not alter nucleotide hydrolysis. On the other hand, arginine administered intracerebroventricularly reduced ATP (32%), ADP (30%) and AMP (21%) hydrolysis, respectively. In addition, arginine added to the incubation medium, provoked a decrease on ATP (19%), ADP (17%) and AMP (23%) hydrolysis, respectively. Furthermore, kinetic studies showed that the inhibitory effect of arginine was uncompetitive in relation to ATP, ADP and AMP. In conclusion, according to our results it seems reasonable to postulate that arginine alters the cascade involved in the extracellular degradation of ATP to adenosine.  相似文献   

10.
Nucleotides, e.g. ATP and ADP, are important signaling molecules, which elicit several biological responses. The degradation of nucleotides is catalyzed by a family of enzymes called NTPDases (nucleoside triphosphate diphosphohydrolases). The present study reports the enzymatic properties of a NTPDase (CD39, apyrase, ATP diphosphohydrolase) in brain membranes of zebrafish (Danio rerio). This enzyme was cation-dependent, with a maximal rate for ATP and ADP hydrolysis in a pH range of 7.5-8.0 in the presence of Ca(2+) (5 mM). The enzyme displayed a maximal activity for ATP and ADP hydrolysis at 37 degrees C. It was able to hydrolyze purine and pyrimidine nucleosides 5'-di and triphosphates, being insensitive to classical ATPase inhibitors, such as ouabain (1 mM), N-ethylmaleimide (0.1 mM), orthovanadate (0.1 mM) and sodium azide (0.1 mM). A significant inhibition of ATP and ADP hydrolysis (68% and 34%, respectively) was observed in the presence of 20 mM sodium azide, used as a possible inhibitor of ATP diphosphohydrolase. Levamisole (1 mM) and tetramisole (1 mM), specific inhibitors of alkaline phosphatase and P1, P(5)-di (adenosine 5'-) pentaphosphate, an inhibitor of adenylate kinase did not alter the enzyme activity. The presence of a NTPDase in brain membranes of zebrafish may be important for the modulation of nucleotide and nucleoside levels, controlling their actions on specific purinoceptors in central nervous system of this specie.  相似文献   

11.
Extracellular nucleotides affect female reproductive functions, fertilization, and pregnancy. The aim of this study was to investigate biochemical characteristics of ATP and ADP hydrolysis and identify E-NTPDases in myometrial cell membranes from Wistar albino rats. The apparent K m values were 506.4?±?62.1 and 638.8?±?31.3?μM, with a calculated V max (app) of 3,973.0?±?279.5 and 2,853.9?±?79.8?nmol/min/mg for ATP and ADP, respectively. The enzyme activity described here has common properties characteristic for NTPDases: divalent cation dependence; alkaline pH optimum for both substrates, insensitivity to some of classical ATPase inhibitors (ouabain, oligomycine, theophylline, levamisole) and significant inhibition by suramine and high concentration of sodium azides (5?mM). According to similar apparent Km values for both substrates, the ATP/ADP hydrolysis ratio, and Chevillard competition plot, NTPDase1 is dominant ATP/ADP hydrolyzing enzyme in myometrial cell membranes. RT-PCR analysis revealed expression of three members of ectonucleoside triphosphate diphosphohydrolase family (NTPDase 1, 2, and 8) in rat uterus. These findings may further elucidate the role of NTPDases and ATP in reproductive physiology.  相似文献   

12.
ATP-sensitive K+ channels in inside-out membrane patches from dispersed rat pancreatic B-cells were studied using patch-clamp methods. The dose-response curve for ATP-induced channel inhibition was shifted to higher concentrations in the presence of ADP (2 mM). In glucose-free solution, the total intracellular concentration of ATP was 3.8 mM and of ADP 1.5 mM; glucose (20 mM) increased ATP and decreased ADP by approx. 40%. These results suggest that both ADP and ATP may be involved in regulating the activity of the glucose-sensitive K+ channel in intact B-cells.  相似文献   

13.
NTPDase is one of the principal enzymes involved in the sequential hydrolysis of ATP. In the present study, the presence and functionality of NTPDase in the mesenteric vein and artery were examined. Adenosine triphosphate (ATP) (0.01-1000 pmol) induces a dose-dependent vasodilation in the isolated arterial and venous mesenteric vasculatures of the guinea pig. Adenosine diphosphate (ADP) (0.01-1000 pmol) but not adenosine monophosphate (AMP) (0.01-1000 pmol) induces a similar response in the mesenteric vascular circuit. L-NAME, a nitric oxide synthase inhibitor (200 microM, 30 min), significantly reduces the arterial dilatory effect of ATP and abolishes the responses to ADP and AMP. Complete removal of the endothelium with 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate (CHAPS) (20 mM, 2 x 45 s) abolishes ATP-induced responses. Infusion of ATP in the vascular circuit generated detectable amounts of ADP and AMP, as measured by HPLC. CHAPS treatment significantly reduced the level of ATP and the production of AMP in the arterial mesenteric circuit. In contrast to the arterial mesenteric vasculature, endothelium removal in the venous circuit triggered a marked potentiation of ADP release and, interestingly, a marked reduction in the release of AMP. Moreover, a specific inhibitor of NTP diphosphohydrolase, 1-hydroxynaphthlene-3,6-disulfonic acid BGO 136 (10 mM for 20 min), significatively reduced AMP production in both vascular preparations. These results confirm that the endothelium contributes to the vasoactive properties of ATP, ADP, and AMP. Our data also demonstrated a significant role of endothelium in NTPDase activity on ADP and AMP production prior to exogenous administration of ATP. The activity of this particular enzyme appears to be different from the reaction products viewpoint (i.e., the production of ADP) in the pre- and post-mesenteric circuits, suggesting two different isoforms with different substrate specificities.  相似文献   

14.
The kinetic and regulatory properties of purified rat heart AMP deaminase were investigated. In the presence of 100 mM KCl, the enzyme exhibited a slightly sigmoid-shaped plot of reaction rate, vs. substrate concentration, which shifted to a more hyperbolic form when ATP, ADP or GTP were added. ATP was the most potent activator of the enzyme, whereas GTP at low (less than 0.25 mM) concentrations increased the enzyme activity. The activation effect was negligible at higher concentrations of GTP. The calculated value of K0.5 of approx. 3 mM for unactivated enzyme decrased to approx. 0.6 mM and 1.1 mM when 0.5 mM ATP or 1.5 mM ADP were present in the incubation mixture, respectively. The theoretical model (Monod, J., Wyman, J. and Changeux, J.P. (1965) J. Mol. Biol. 12, 88-118) gave a partial explanation of these results.  相似文献   

15.
In rat liver mitochondria there exists an AMP-dephosphorylating activity which converts external 5'-AMP to adenosine. It exhibits a pH optimum of 7.5 and a Km(AMP) of 0.085 mM. Furthermore, this activity is stimulated by magnesium (Km = 0.5 mM) and seems to be not affected by low concentrations of ATP or ADP. From the characteristics of the enzyme the existence of a 5'-nucleotidase in rat liver mitochondria which is localized on the outer surface of the inner mitochondrial membrane was concluded. The enzyme may be important for the production of cellular adenosine.  相似文献   

16.
Initial velocity and isotope exchange studies confirmed that the over-all reaction, like that catalyzed by pyruvate carboxylase purified from rat liver and chicken liver, was a nonclassical Ping Pong Bi Bi Uni Uni sequence with ATP and HCO3-binding randomly in the Bi Bi partial reaction. Three possible mechanisms for the coupling of ATP hydrolysis and CO2 fixation are considered: (i) Mechanism i, a concerted mechanism without the formation of a kinetically significant or detectable intermediate; (ii) Mechanism ii, activation of the enzyme by ATP to form an activated phosphoenzyme complex which can react with HCO3- by formation of a phosphorylated intermediate. On the basis of other evidence, an activated intermediate containing the ADP moiety was considered improbable. Evidence is presented which indicates that an isotopic exchange between ATP and ADP in the absence of added orthophosphate is not a property of the sheep kidney enzyme. This observation removed the need to postulate either that this exchange is an abortive reaction, or that there is a compulsory formation of a phosphoenzyme intermediate. Two analogues of ADP, alpha,beta-methylene adenosine diphosphate, and adenosine 5'-phosphosulfate, have been used to provide further evidence against Mechanism ii. Both compounds were competitive inhibitors with respect to MgATP2- (Ki values respectively, 0.58 mM and 3.0 mM, compared with 0.17 mM for ADP), but neither could be phosphorylated by the enzyme. Neither analogue could replace ADP in the HCO3-: oxalacetate isotopic exchange reaction, indicating that phosphorylation of ADP is necessary for this exchange to occur, and that Mechanism ii is not applicable. Since Mechanism iii involves formation of a carbonly phosphate intermediate, analogues of this compound, namely, carbamyl phosphate and phosphonacetic acid were used to examine this pathway. The fact that the enzyme catalyzed the synthesis of ATP from ADP and carbamyl phosphate, and that phosphonacetic acid was a noncompetitive inhibitor with respect to MgATP2- (Ki = 0.5 mM) provides strong evidence that a carbonyl phosphate derivative is involved in the reaction mechanism. However, we have not found from initial velocity studies evidence for the formation of this intermediate, and it may therefore have only a transient existence in an essentially concerted reaction.  相似文献   

17.
A novel mammalian plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase), named NTPDase8, has been cloned and characterized. Analysis of cDNA reveals an open reading frame of 1491 base pairs encoding a protein of 497 amino acid residues with an estimated molecular mass of 54650 Da and a predicted isoelectric point of 5.94. In a mouse, the genomic sequence is located on chromosome 2A3 and is comprised of 10 exons. The deduced amino acid sequence reveals eight putative N-glycosylation sites, two transmembrane domains, five apyrase-conserved regions, and 20-50% amino acid identity with other mammalian NTPDases. mRNA expression was detected in liver, jejunum, and kidney. Both intact cells and crude cell lysates from COS-7 cells expressing NTPDase8 hydrolyzed P2 receptor agonists, namely, ATP, ADP, UTP, and UDP, but did not hydrolyze AMP. There was an absolute requirement for divalent cations for the catalytic activity (Ca(2+) > Mg(2+)) with an optimal pH between 5.5 and 8.0 for ATP and 6.4 for ADP hydrolysis. Kinetic parameters derived from analysis of crude cell lysates showed that the enzyme had lower apparent K(m) values for adenine nucleotides and for triphosphonucleosides (K(m,app) of 13 microM for ATP, 41 microM for ADP, 47 microM for UTP, and 171 microM for UDP). Hydrolysis of triphosphonucleosides resulted in a transient accumulation of the corresponding diphosphonucleoside, as expected from the apparent K(m) values. Enzymatic properties of NTPDase8 differ from those of other NTPDases suggesting an alternative way to modulate nucleotide levels and consequently P2 receptor activation.  相似文献   

18.
1. Two Na(+)-stimulated ATPase activities were determined in gill homogenates from squid, shrimp and teleost fish; in kidney slice homogenates from teleost fish, bullfrog, toad, iguana, chicken, duck, rat, pig and cow, as well as in homogenates from rat small intestinal cells, brain cortex and liver slices. The two Na(+)-stimulated ATPase activities, the Na- and the Na,K-ATPase, showed a different behavior toward K+ and ouabain. 2. The ouabain-insensitive, K(+)-independent, Na-ATPase activity for all the studied homogenates was completely inhibited by 2 mM furosemide. 3. An increase in cell volume of the kidney, brain cortex and liver slice preparations, as well as of the rat small intestinal cells, produced a concomitant increase of the ouabain-insensitive Na-ATPase.  相似文献   

19.
1. At the lowered concentrations of 0.5 mM ATP and 1.5 mM MgCl2, 2.0 mM UTP, UDP and UMP inhibited the activity of Crithidia fasciculata carbamoyl-phosphate synthetase II by about 65, 80 and 40% respectively. 2. The result suggests that feedback inhibition of the activity by uridine nucleotides is a mechanism of regulation of the de novo pyrimidine biosynthetic pathway in C. fasciculata. 3. ADP, AMP and CDP inhibited the activity (about 70, 40 and 40%). 4. Excess Mg2+ at around 1 mM, relative to the ATP concentration, was required for the maximum activity. 5. 5-Phosphoribosyl 1-pyrophosphate had no significant effect on the activity under various conditions examined.  相似文献   

20.
A quantitative analysis of the phosphorus-31 NMR spectra of excised perfused rat liver has been carried out at 80.9 MHz using a 30-mm sample cell. The results indicate that in liver from fed rats, all intracellular ATP is detected by NMR. In contrast, only the cytosolic fractions of Pi and ADP can be observed as indicated by careful analysis of spectra obtained from perchloric acid liver extracts and intact liver under valinomycin perfusion. In well-oxygenated perfused liver the ATP concentration is 7.4 mM. Values of 5.3 mM and 0.9 mM are found respectively for Pi and ADP concentrations in the cytosolic compartment. Cytosolic pH value (pHi) is 7.25 +/- 0.05 and free magnesium concentration 0.5 mM. Addition of 70 mM (0.4%) ethanol to the perfusate of a fed rat liver induces 25% and 38% reduction of ATP and Pi levels, respectively. A large amount of sn-glycerol 3-phosphate is synthesized (up to 11 mM) in the cytosol. After ethanol withdrawal, a large overshoot in cytosolic Pi is observed, which is indicative of a net uptake of Pi across the plasma membrane that occurred during ethanol oxidation. No significant pH variation is observed during ethanol infusion. In perfused liver of rats subjected to 48-h fasts, the concentrations of cytosolic phosphorylated metabolites are 5.3 mM, 0.8 mM and 11.5 mM for ATP, ADP and Pi, respectively. The perfusion of the liver with 70 mM ethanol does not change the adenine nucleotide levels, while the Pi content is decreased by 10%. During a 4-min hypoxia, induced by reducing the perfusion flow rate from 12 ml to 3 ml min-1 (100 g body weight)-1, ATP concentration decreases to 5.8 mM in the fed rat liver. Cytosolic Pi and ADP increase to 8.7 mM and 1.6 mM, respectively. The cytosolic pH evolves to more acidic values and reaches 7.02 +/- 0.05 at the end of the 4-min hypoxic period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号