首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A human melanoma cell line was cultivated for more than 5 months in a serum-free medium without macromolecular growth factors. A mechanically stirred loop bioreactor was used for the culture of the melanoma cells. The tip speed of the marine impellers was 1.5 m s−1. This cell line was able to endure tip speeds of up to 3.5 m s−1 for a few hours without significant cell damage. By using process control it was possible to obtain growth rates and cell numbers close to those found in medium with serum. The pO2 was controlled at 125 mbar and the pH at 7.15. The signal of an on-line fluorometer, although not caused by the cells, correlates with cell number. The partial pressure of CO2 in the culture medium and the redox potential of the medium were monitored by on-line sensors.  相似文献   

2.
Sphaeralcea angustifolia is a plant used for the treatment of inflammatory processes. Scopoletin, tomentin, and sphaeralcic acid were identified as the compounds with anti‐inflammatory and immunomodulatory effects. Successful establishment of the cell culture in Erlenmeyer flasks has been reported previously. The aim of this study was to evaluate the ability of cells in suspension from S. angustifolia grown in a stirred tank bioreactor and demonstrate their capacity to produce bioactive compounds. Cells in suspension grown at 200 rpm reached a maximal cell biomass in dry weight at 19.11 g/L and produced 3.47 mg/g of sphaeralcic acid. The mixture of scopoletin and tomentin was only detected at the beginning of the culture (12.13 μg/g). Considering that the profile of dissolved oxygen during the cultures was lesser than 15%, it is possible that the low growth at 100 rpm could be due to oxygen limitations or to cell sedimentation. At 400 rpm, a negative effect on cell viability could be caused by the increase in the hydrodynamic stress, including the impeller tip, average shear rate, and Reynolds number. The sphaeralcic acid content in the cell suspension of S. angustifolia obtained in the bioreactor was two orders of magnitude greater than that reported for the culture grown in Erlenmeyer flasks.  相似文献   

3.
Mouse hematopoiesis is initiated by long-term hematopoietic stem cells (HSC) that differentiate into a series of multipotent progenitors that exhibit progressively diminished self-renewal ability. In human hematopoiesis, populations enriched for HSC activity have been identified, as have downstream lineage-committed progenitors, but multipotent progenitor activity has not been uniquely isolated. Previous reports indicate that human HSC are enriched in Lin-CD34+CD38- cord blood and bone marrow and express CD90. We demonstrate that the Lin-CD34+CD38- fraction of cord blood and bone marrow can be subdivided into three subpopulations: CD90+CD45RA-, CD90-CD45RA-, and CD90-CD45RA+. Utilizing in vivo transplantation studies and complementary in vitro assays, we demonstrate that the Lin-CD34+CD38-CD90+CD45RA- cord blood fraction contains HSC and isolate this activity to as few as 10 purified cells. Furthermore, we report the first prospective isolation of a population of candidate human multipotent progenitors, Lin-CD34+CD38-CD90-CD45RA- cord blood.  相似文献   

4.
5.
6.
Embryonic stem (ES) cells can differentiate into functional hepatic lineage cells, which can potentially be used in biomedicine. To obtain hepatic lineage cells from ES cells, embryoid bodies (EBs) must be formed. In this study, we developed an EB formation system using a spinner flask for mass production of EBs. ES cells were inoculated into the spinner flask, where they formed EBs within 4 d. The EBs were then transferred into an attached culture for hepatic differentiation. To verify the hepatic lineage cells, albumin secretion and hepatic-specific gene expression were examined. We found that EBs formed by either the spinner flask or hanging drops exhibited similar albumin secretion potential and hepatic-specific gene expression. We conclude that the spinner flask method can be used to produce mouse EBs that can be used to mass produce hepatic lineage cells for use in biomedicine.  相似文献   

7.
The influence of temperature and agitation on the growth ofEscherichia coli expressing hepatitis B core antigen (HBcAg) in stirred tank bioreactor were investigated. The highest specific growth rate forE. coli (0.844 h−1) was achieved at a temperature of 37°C and an agitation speed of 250 rpm. The activation energy for the growth of theE. coli strain W3110IQ in the stirred tank bioreactor was estimated to be 11 kcal/mol. The highest protein yield was achieved at a temperature of 44°C and an agitation speed of 250 rpm. The relative protein concentration at 44°C is 30 and 6% higher compared to that at 30 and 37°C, respectively.  相似文献   

8.
Summary The distribution of gas hold-up in pseudoplastic xanthan-gum media, as prepared to mimic bioreactor states formed in the time-course of fermentation of Streptomyces fradiae during the antibiotic production of Tylosin, is studied. Cases of gas maldistribution at high viscosity, such as very low gas concentration near the vessel wall and relatively high gas concentration near the vessel axis, which reveal flow deficiencies, such as gas channelling and flow stagnancy, are registered and quantified.  相似文献   

9.
Abstract

The objective of this work was to develop a subgingival biofilm model using a stirred bioreactor. Discs of bovine teeth were adapted to a stirred bioreactor filled with a culture medium containing bacterial species associated with periodontal health or disease. After anaerobic incubation, the biofilms growing on the substratum surfaces were collected and analyzed. The mean number of Colony-forming Units (CFUs) varied, but with no difference between 3 and 7?days of biofilm formation (p?>?0.05). Scanning Electron Microscopy (SEM) analysis showed a uniform biofilm layer covering the cement layer of the root surface containing bacteria with diverse morphology. In checkerboard DNA-DNA hybridization, bacterial species were identified in both biofilms. In conclusion, a subgingival biofilm model was developed using a stirred bioreactor, allowing the in vitro reproduction of complex microbial communities. This is an advanced model that may be useful to mimic complex clinical periodontal biofilms.  相似文献   

10.
In this study, the biohydrogen (bioH2) production of a microbial consortium was optimized by adjusting the type and configuration of two impellers, the mixing regimen and the mass transfer process (KLa coefficients). A continuous stirred-tank reactor (CSTR) system, with a nonstandard geometry, was characterized. Two different mixing configurations with either predominant axial (PB4 impeller) or radial pumping (Rushton impeller) were assessed and four different impeller configurations to produce bioH2. The best configuration for an adequate mixing time was determined by an ANOVA analysis. A response surface methodology was also used to fully elucidate the optimal configuration. When the PB4 impellers were placed in best configuration, c/Dt?=?0.5, s/Di?=?1, the maximum bioH2 productivity obtained was 440?mL?L?1?hr?1, with a bioH2 molar yield of 1.8. The second best configuration obtained with the PB4 impellers presented a bioH2 productivity of 407.94?mL?L?1?hr?1. The configurations based on Rushton impellers showed a lower bioH2 productivity and bioH2 molar yield of 177.065?mL?L?1?hr?1 and 0.71, respectively. The experiments with axial impellers (PB4) showed the lowest KLa coefficient and the highest bioH2 production, suggesting that mixing is more important than KLa for the enhanced production of bioH2.  相似文献   

11.
Induced pluripotent stem cells (iPSCs) are typically derived in adherent culture. Here we report fast and efficient derivation of mouse iPSCs in stirred suspension bioreactors, with and without the use of c-Myc. Suspension-reprogrammed cells expressed pluripotency markers, showed multilineage differentiation in vitro and in vivo, and contributed to the germline in chimeric mice. Suspension reprogramming has the potential to accelerate and standardize iPSC research.  相似文献   

12.
BACKGROUND: One of the major barriers to the clinical application of hematopoietic stem cell (HSC) gene therapy has been relatively low gene transfer efficiency. Other inadequacies of current transduction protocols are related to their multi-step procedures, e.g., using tissue-culture flasks, roller bottles or gas-permeable bags for clinical application. METHODS: In comparison with a conventional bag transduction protocol, a 'closed' hollow-fiber bioreactor system (HBS) was exploited to culture and transduce human peripheral blood CD34(+) progenitor cells (PBPC(MPS)) from patients with mucopolysaccharidosis type I (MPS I) using an amphotropic retroviral vector based on a murine Moloney leukemia virus LN prototype. Both short-term colony-forming cell (CFC) and long-term culture initiating cell (LTCIC) assays were employed to determine transduction frequency and transgene expression in committed progenitor cells and primitive progenitors with multi-lineage potentials. RESULTS: A novel ultrafiltration-transduction method was established to culture and transduce enzyme-deficient PBPC(MPS) over a 5-day period without loss in viability and CD34 identity (n = 5). Significantly higher transduction efficiencies were achieved in primary CFC that derived from the HBS (5.8-14.2%) in comparison with those from gas-permeable bags (undetectable to 1.7%; p < 0.01). Up to 15-fold higher-than-normal enzyme activity was found in selected PBPC(MPS)-LP1CD transductants. Moreover, higher gene transfer (4.4-fold) and expression in very primitive progenitors were observed in products from the HBS compared with bag experiments as indicated by CFC derived from primitive LTCIC. Remarkably, with relatively modest gene transfer levels in LTCIC from HBS experiments, the expression of the IDUA transgene corrected the enzyme-deficiency in 5-week long-term cultures (LTC). CONCLUSIONS: MPS I progenitor cells achieved normalized enzyme levels in LTC after transduction in a HBS system. These studies demonstrate the advantages of a bioreactor-transduction system for viral-mediated stem cell gene transfer.  相似文献   

13.
14.
15.
16.
Cell growth, monoterpenoid oxindole alkaloid (MOA) production, and morphological properties of Uncaria tomentosa cell suspension cultures in a 2-L stirred tank bioreactor were investigated. U. tomentosa (cell line green Uth-3) was able to grow in a stirred tank at an impeller tip speed of 95 cm/s (agitation speed of 400 rpm), showing a maximum biomass yield of 11.9 +/- 0.6 g DW/L and a specific growth rate of 0.102 d(-1). U. tomentosa cells growing in a stirred tank achieved maximum volumetric and specific MOA concentration (467.7 +/- 40.0 microg/L, 44.6 +/- 5.2 microg/g DW) at 16 days of culture. MOA chemical profile of cell suspension cultures growing in a stirred tank resembled that of the plant. Depending on culture time, from the total MOA produced, 37-100% was found in the medium in the bioreactor culture. MOA concentration achieved in a stirred tank was up to 10-fold higher than that obtained in Erlenmeyer flasks (agitated at 110 rpm). In a stirred tank, average area of the single cells of U. tomentosa increased up to 4-fold, and elliptical form factor increased from 1.40 to 2.55, indicating enlargement of U. tomentosa single cells. This work presents the first report of U. tomentosa green cell suspension cultures that grow and produce MOA in a stirred tank bioreactor.  相似文献   

17.
Zhou Y  Chen H  Li X  Wang Y  Chen K  Zhang S  Meng X  Lee EY  Lee MY 《PloS one》2011,6(7):e22224
Eukaryotic DNA polymerase δ (pol δ) plays a crucial role in chromosomal DNA replication and various DNA repair processes. It is thought to consist of p125, p66 (p68), p50 and p12 subunits. However, rigorous isolation of mammalian pol δ from natural sources has usually yielded two-subunit preparations containing only p125 and p50 polypeptides. While recombinant pol δ isolated from infected insect cells have some problems of consistency in the quality of the preparations, and the yields are much lower. To address these deficiencies, we have constructed recombinant BmNPV baculoviruses using MultiBac system. This method makes the generation of recombinant forms of pol δ containing mutations in any one of the subunits or combinations thereof extremely facile. From about 350 infected larvae, we obtained as much as 4 mg of pol δ four-subunit complex. Highly purified enzyme behaved like the one of native form by rigorous characterization and comparison of its activities on poly(dA)/oligo(dT) template-primer and singly primed M13 DNA, and its homogeneity on FPLC gel filtration. In vitro base excision repair (BER) assays showed that pol δ plays a significant role in uracil-intiated BER and is more likely to mediate LP BER, while the trimer lacking p12 is more likely to mediate SN BER. It seems likely that loss of p12 modulates the rate of SN BER and LP BER during the repair process. Thus, this work provides a simple, fast, reliable and economic way for the large-scale production of human DNA polymerase δ with a high activity and purity, setting up a new platform for our further research on the biochemical properties of pol δ, its regulation and the integration of its functions, and how alterations in pol δ function could contribute to the etiology of human cancer or other diseases that can result from loss of genomic stability.  相似文献   

18.
Laminin 5 is a multifunctional extracellular matrix protein, which supports epithelial cell adhesion through multiple cell binding sites. For elaborate studies, a 35 kDa fragment localized at the C-terminal extremity of the molecule, the LG4/5 fragment was recombinantly expressed in mammalian HEK293-EBNA cells. As the production of the LG4/5 fragment by adherent cell monolayers was very low (<1 microg/ml), we used the commercially available small scale bioreactor system miniPERM. The HEK293-EBNA transfectants were adapted to grow in suspension in defined medium containing low level of fetal calf serum and produced the recombinant LG4/5 protein with quality consistent with that produced in conventional static cell culture conditions. Cells grew without forming aggregates in the bioreactor and the resulting HEK293-EBNA-LG4/5 cell line was suitable for unlimited passages in the bioreactor. 2.5x10(5) cells/ml were cultured for 25 days to reach the maximal cell density of 1.6x10(7) cells/ml. The quantification of protein synthesis revealed that the highest level of 2.4 mg of recombinant LG4/5 protein was harvested when 10(7) transfected cells/ml were injected in the bioreactor and allowed to grow for 2 days. The mean daily recombinant LG4/5 fragment product yield of 1.2 mg of protein per minifermenter shows that cultivation of HEK293-EBNA transfectants in suspension is highly convenient for the production of recombinant laminin fragments.  相似文献   

19.
20.
The ex vivo expansion of hematopoietic progenitor cells is of great interest for a variety of clinical applications, e.g. bone marrow transplantation or gene therapy. Therefore it is of general interest to develop a culture system, able to mimic the in vivo hematopoesis, which is a prerequisite for long-term hematopoietic culture. Our approach was to modify a continuously perfused bioreactor for cultivation and expansion of human hematopoietic stem cells. Therefore we immobilized stromal cells (human primary stromal cells or the murine cell line M2-10B4) in porous glass carriers in a fixed bed reactor and cocultivated human hematopoietic progenitor cells for several weeks. After inoculation of mononuclear cells derived from umbilical cord blood or peripheral blood stem cells both adherent and non adherent cells were harvested and analyzed by flow cytometry and short-term colony assays. During cultivation there was a permanent production of progenitor cells and mature blood cells derived from the immobilized cells in the carriers. We could demonstrate the immobilization of hematopoietic progenitor cells of the myeloid system detectable in short-term colony assays. Additionally we could observe the expansion of very early progenitor cells (CFU-GEMM) up to 4.2-fold and later progenitor cells (CFU-GM and BFU-E) up to 7-fold and 1.8-fold, respectively. P.M. and B.S. contributed equal parts to this work. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号