首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transducer is a device that receives energy from one system and transmits it, often in a different form, to another. Glycogen phosphorylase receives information from the cell or organism in the form of metabolic signals. The energy associated with the binding of these ligand signals is integrated and transmitted at an atomic level, allowing precise adjustment of the enzymatic activity. Understanding this elegant allosteric control has required several different approaches, but the structural requirements of allostery are being defined.  相似文献   

2.
Archaeal A-ATP synthases catalyze the formation of the energy currency ATP. The chemical mechanisms of ATP synthesis in A-ATP synthases are unknown. We have determined the crystal structure of a transition-like state of the vanadate-bound form of catalytic subunit A (AVi) of the A-ATP synthase from Pyrococcus horikoshii OT3. Two orthovanadate molecules were observed in the AVi structure, one of which interacts with the phosphate binding loop through residue S238. The second vanadate is positioned in the transient binding site, implicating for the first time the pathway for phosphate entry to the catalytic site. Moreover, since residues K240 and T241 are proposed to be essential for catalysis, the mutant structures of K240A and T241A were also determined. The results demonstrate the importance of these two residues for transition-state stabilization. The structures presented shed light on the diversity of catalytic mechanisms used by the biological motors A- and F-ATP synthases and eukaryotic V-ATPases.  相似文献   

3.
4.
The review focuses on the anisotropy of proton transfer at the surface of biological membranes. We consider (i) the data from "pulsed" experiments, where light-triggered enzymes capture or eject protons at the membrane surface, (ii) the electrostatic properties of water at charged interfaces, and (iii) the specific structural attributes of proton-translocating enzymes. The pulsed experiments revealed that proton exchange between the membrane surface and the bulk aqueous phase takes as much as about 1 ms, but could be accelerated by added mobile pH-buffers. Since the accelerating capacity of the latter decreased with the increase in their electric charge, it was concluded that the membrane surface is separated from the bulk aqueous phase by a barrier of electrostatic nature. The barrier could arise owing to the water polarization at the negatively charged membrane surface. The barrier height depends linearly on the charge of penetrating ions; for protons, it has been estimated as about 0.12 eV. While the proton exchange between the surface and the bulk aqueous phase is retarded by the interfacial barrier, the proton diffusion along the membrane, between neighboring enzymes, takes only microseconds. The proton spreading over the membrane is facilitated by the hydrogen-bonded networks at the surface. The membrane-buried layers of these networks can eventually serve as a storage/buffer for protons (proton sponges). As the proton equilibration between the surface and the bulk aqueous phase is slower than the lateral proton diffusion between the "sources" and "sinks", the proton activity at the membrane surface, as sensed by the energy transducing enzymes at steady state, might deviate from that measured in the adjoining water phase. This trait should increase the driving force for ATP synthesis, especially in the case of alkaliphilic bacteria.  相似文献   

5.
The review focuses on the anisotropy of proton transfer at the surface of biological membranes. We consider (i) the data from “pulsed” experiments, where light-triggered enzymes capture or eject protons at the membrane surface, (ii) the electrostatic properties of water at charged interfaces, and (iii) the specific structural attributes of proton-translocating enzymes. The pulsed experiments revealed that proton exchange between the membrane surface and the bulk aqueous phase takes as much as about 1 ms, but could be accelerated by added mobile pH-buffers. Since the accelerating capacity of the latter decreased with the increase in their electric charge, it was concluded that the membrane surface is separated from the bulk aqueous phase by a barrier of electrostatic nature. The barrier could arise owing to the water polarization at the negatively charged membrane surface. The barrier height depends linearly on the charge of penetrating ions; for protons, it has been estimated as about 0.12 eV. While the proton exchange between the surface and the bulk aqueous phase is retarded by the interfacial barrier, the proton diffusion along the membrane, between neighboring enzymes, takes only microseconds. The proton spreading over the membrane is facilitated by the hydrogen-bonded networks at the surface. The membrane-buried layers of these networks can eventually serve as a storage/buffer for protons (proton sponges). As the proton equilibration between the surface and the bulk aqueous phase is slower than the lateral proton diffusion between the “sources” and “sinks”, the proton activity at the membrane surface, as sensed by the energy transducing enzymes at steady state, might deviate from that measured in the adjoining water phase. This trait should increase the driving force for ATP synthesis, especially in the case of alkaliphilic bacteria.  相似文献   

6.
7.
8.
The purpose of this paper is to investigate a possible form of the elastic energy function for soft tissues, which can reproduce the characteristic feature as observed in experiments. The function is assumed to be the sum of the distortional and the dilatational strain energy. The relations between the axial stress and deformation in uniaxial tension are plotted.  相似文献   

9.
Hudáky P  Perczel A 《Proteins》2006,62(3):749-759
A model of the catalytic triad of chymotrypsin is built assuring the arrangement and properties as they are within the complete enzyme. The model contains 18 amino acid residues of chymotrypsin and its substrate. A total of 135 atoms (including 70 heavy atoms) were subjected to full ab initio geometry optimizations through 127 individual steps along the reaction coordinate of the complete catalytic mechanism. It was shown that the described model of the catalytic apparatus forms a self-stabilized molecule ensemble without the rest of the enzyme and substrate. According to the calculations, the formations of the first and second tetrahedral intermediates in the model have 20.3 and 15.7 kcal/mol activation energy barriers, respectively. Removing elements of the catalytic apparatus such as the (1) catalytic aspartate or (2) the anion hole, as well as (3) inserting a water molecule "early" in the catalytic process, or (4) introducing conformational rigidity of the substrate, results in an increase of the above energy barrier of the first catalytic step in the model by 6.4, 13.7, 3.7, and 4.1 kcal/mol, respectively. Based on the calculated process one can conclude that the catalytic reaction in this model is much more similar to the reaction in the enzyme than to the reference reaction. To our knowledge, this is the first model system that mimics the complete catalytic mechanism.  相似文献   

10.
11.
Mounting evidence suggests that the ion pump, Na,K-ATPase, can, in the presence of ouabain, act as a signal transducer. A prominent binding motif linking the Na,K-ATPase to intracellular signaling effectors has, however, not yet been identified. Here we report that the N-terminal tail of the Na,K-ATPase catalytic alpha-subunit (alphaNT-t) binds directly to the N terminus of the inositol 1,4,5-trisphosphate receptor. Three amino acid residues, LKK, conserved in most species and most alpha-isoforms, are essential for the binding to occur. In wild-type cells, low concentrations of ouabain trigger low frequency calcium oscillations that activate NF-kappaB and protect from apoptosis. All of these effects are suppressed in cells overexpressing a peptide corresponding to alphaNT-t but not in cells overexpressing a peptide corresponding to alphaNT-t deltaLKK. Thus we have identified a well conserved Na,K-ATPase motif that binds to the inositol 1,4,5-trisphosphate receptor and can trigger an anti-apoptotic calcium signal.  相似文献   

12.
A rapid, simple, and reproducible method for determination of iron in biological material is suggested using the oxidation of p-phenetidine hydrochloride with hydrogen peroxide in a reaction catalyzed by Fe(III) and activated by 1,10-phenanthroline. The high sensitivity of the reaction allows a single determination to be carried out with as much as 1–5 mg fresh tissue.  相似文献   

13.
14.
The TonB and TolA proteins are energy transducers that couple the ion electrochemical potential of the cytoplasmic membrane to support energy-dependent processes at the outer membrane of the gram-negative envelope. The transfer of energy to these transducers is facilitated by energy-harvesting complexes, which are heteromultimers of cytoplasmic membrane proteins with homologies to proton pump proteins of the flagellar motor. Although the cognate energy-harvesting complex best services each transducer, components of the complexes (for TonB, ExbB and ExbD; for TolA, TolQ and TolR) are sufficiently similar that each complex can imperfectly replace the other. Previous investigations of this molecular cross talk considered energy-harvesting complex components expressed from multicopy plasmids in strains in which the corresponding genes were interrupted by insertions, partially absent due to polarity, or missing due to a larger deletion. These questions were reexamined here using strains in which individual genes were removed by precise deletions and, where possible, components were expressed from single-copy genes with native promoters. By more closely approximating natural stoichiometries between components, this study provided insight into the roles of energy-harvesting complexes in both the energization and the stabilization of TonB. Further, the data suggest a distinct role for ExbD in the TonB energy transduction cycle.  相似文献   

15.
MOTIVATION: Genome-wide high density SNP association studies are expected to identify various SNP alleles associated with different complex disorders. Understanding the biological significance of these SNP alleles in the context of existing literature is a major challenge since existing search engines are not designed to search literature for SNPs or other genetic markers. The literature mining of gene and protein functions has received significant attention and effort while similar work on genetic markers and their related diseases is still in its infancy. Our goal is to develop a web-based tool that facilitates the mining of Medline literature related to genetic studies and gene/protein function studies. Our solution consists of four main function modules for (1) identification of different types of genetic markers or genetic variations in Medline records (2) distinguishing positive versus negative linkage or association between genetic markers and diseases (3) integrating marker genomic location data from different databases to enable the retrieval of Medline records related to markers in the same linkage disequilibrium region (4) and a web interface called MarkerInfoFinder to search, display, sort and download Medline citation results. Tests using published data suggest MarkerInfoFinder can significantly increase the efficiency of finding genetic disorders and their underlying molecular mechanisms. The functions we developed will also be used to build a knowledge base for genetic markers and diseases. AVAILABILITY: The MarkerInfoFinder is publicly available at: http://brainarray.mbni.med.umich.edu/brainarray/datamining/MarkerInfoFinder.  相似文献   

16.
Cornelis H  Coop AD  Bower JM 《PloS one》2012,7(1):e28956
Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components.  相似文献   

17.
18.
Consideration of the high energy conversion efficiency of biological systems leads to the idea that mechanical energy may arise via a series of steps, of which a rate-determining one occurs in a fuel-cell-like element. The mitochondrion is suggested as the site of such entities. The observed efficiency would be consistent with a potential loss of about 0.5 V. The supposed biological fuel cells would be able to act as an electrical power source, driving chemical reactions against their spontaneous direction.Considerations of electrical conductance in wet proteins shows that ohmic (i.e., non-interfacial) potential differences through mitochondrial membranes could be negligible. The cathodic reaction would be the reduction of oxygen, O2+4H++4eH2O and the anodic reaction, 2NADH+2NAD+2H++4e. The anodes are suggested as being molecular, buried in the invaginations of the inner membrane forming the cristae. The cathodes are located on enzymes which are probably on the inner side of the membrane but could be, respectively, on the outer (cathodic), and the inner (anodic) sides. The electron transport occurs though proteins within each membrane. The relation of the so-called fuel cell potentials to potentially observable membrane potentials, and those measured by fluorescent probes, are discussed.The fuel cells produce electrical energy and this energy is transferred to ADP by an electrolytic route, using electric power from the cells to work the endergonic ATP synthesis. Possible electrode reactions are suggested. An exponential dependence of the rate of ATP synthesis upon applied potential has been observed.Biological cells radiate electromagnetically in the 109 to 1015 Hz region. Such phenomena support a fuel cell model of a biological cell because they demand the presence of mobile electrons.  相似文献   

19.

Background  

The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号